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On the Reflexivity of Point Sets
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Abstract

We introduce a new measure for planar point sets S that captures a combinatorial distance
that S is from being a convex set: The reflexivity ρ(S) of S is given by the smallest number
of reflex vertices in a simple polygonalization of S. We prove various combinatorial bounds
and provide efficient algorithms to compute reflexivity, both exactly (in special cases) and ap-
proximately (in general). Our study considers also some closely related quantities, such as the
convex cover number κc(S) of a planar point set, which is the smallest number of convex chains
that cover S, and the convex partition number κp(S), which is given by the smallest number
of convex chains with pairwise-disjoint convex hulls that cover S. We have proved that it is
NP-complete to determine the convex cover or the convex partition number and have given
logarithmic-approximation algorithms for determining each.

1 Introduction

In this paper, we study a fundamental combinatorial property of a discrete set, S, of points in the
plane: What is the minimum number, ρ(S), of reflex vertices among all of the simple polygonaliza-
tions of S? A polygonalization of S is a closed tour on S whose straight-line embedding in the plane
defines a connected cycle without crossings, i.e., a simple polygon. A vertex of a simple polygon is
reflex if it has interior angle greater than π. We refer to ρ(S) as the reflexivity of S. We let ρ(n)
denote the maximum possible value of ρ(S) for a set S of n points.

In general, there are many different polygonalizations of a point set S. There is always at least
one: simply connect the points in angular order about some point interior to the convex hull of S
(e.g., the center of mass suffices). A set S has precisely one polygonalization if and only if it is in
convex position; in general, though, a point set has numerous polygonalizations. Studying the set
of polygonalizations (e.g., counting them, enumerating them, or generating a random element) is
a challenging and active area of investigation in computational geometry [5, 6, 9, 18, 20, 39].

The reflexivity ρ(S) quantifies, in a combinatorial sense, the degree to which the set of points
S is in convex position. See Figure 1 for an example. We remark that there are other notions of
combinatorial “distance” from convexity of a point set S, e.g., the minimum number of points to
delete from S in order that the remaining point set is in convex position, the number of convex
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Figure 1: Two polygonalizations of a point set, one (left) using 7 reflex vertices and one (right)
using only 3 reflex vertices.

layers, or the minimum number of changes in the orientation of triples of points of S in order to
transform S into convex position.

We have conducted a formal study of reflexivity, both in terms of its combinatorial properties
and in terms of an algorithmic analysis of the complexity of computing it, exactly or approximately.
Some of our attention is focussed on the closely related convex cover number of S, which gives the
minimum number of convex chains (subsets of S in convex position) that are required to cover all
points of S. For this question, we distinguish between two cases: The convex cover number, κc(S),
is the smallest number of convex chains required to cover S; the convex partition number, κp(S), is
the smallest number of convex chains with pairwise-disjoint convex hulls required to cover S. Note
that nested chains are feasible for a convex cover but not for a convex partition.

Motivation. In addition to the fundamental nature of the questions and problems we address,
we are also motivated to study reflexivity for several other reasons:

(1) An application motivating our original investigation is that of meshes of low stabbing number
and their use in performing ray shooting efficiently. If a point set S has low reflexivity or a low
convex partition number, then it has a triangulation of low stabbing number, which may be much
lower than the general O(

√
n) upper bound guaranteed to exist ([1, 22, 38]). For example, if the

reflexivity is O(1), then S has a triangulation with stabbing number O(log n).
(2) Classifying point sets by their reflexivity may give us some structure for dealing with the

famously difficult question of counting and exploring the set of all polygonalizations of S. See
[20, 39] for some references to this problem.

(3) There are several applications in computational geometry in which the number of reflex
vertices of a polygon can play an important role in the complexity of algorithms. If one or more
polygons are given to us, there are many problems for which more efficient algorithms can be
written with complexity in terms of “r” (the number of reflex vertices), instead of “n” (the total
number of vertices), taking advantage of the possibility that we may have r ≪ n for some practical
instances (see, e.g., [23, 27]). The number of reflex vertices also plays an important role in convex
decomposition problems for polygons; see Keil [28] for a recent survey, and see Agarwal, Flato, and
Halperin [2] for applications of convex decompositions to computing Minkowski sums of polygons.

(4) Reflexivity is intimately related to the issue of convex cover numbers, which has roots in the
classical work of Erdős and Szekeres [16, 17], and has been studied more recently by Urabe et al. [25,
26, 35, 36].

2



(5) Our problems are related to some problems in curve (surface) reconstruction, where the goal
is to obtain a “good” polygonalization of a set of sample points (see, e.g., [8, 12, 13]).

Related Work. The study of convex chains in finite planar point sets is the topic of classical
papers by Erdős and Szekeres [16, 17], who showed that any point set of size n has a convex
subset of size t = Ω(log n). This is closely related to the convex cover number κc, since it implies
an asymptotically tight bound on κc(n), the worst-case value for sets of size n. There are still a
number of open problems related to the exact relationship between t and n; see, for example, [33]
for recent developments.

Other issues have been considered, such as the existence and computation ([14]) of large “empty”
convex subsets (i.e., with no points of S interior to their hull); this is related to the convex partition
number, κp(S). It was shown by Horton [24] that there are sets with no empty convex chain larger
than 6; this implies that κp(n) ≥ n/6.

Tighter worst-case bounds on κp(n) were given by Urabe [35, 36], who shows that ⌈(n−1)/4⌉ ≤
κp(n) ≤ ⌈2n/7⌉ and that κc(n) = Θ(n/ log n) (with the upper and lower bounds having a gap of
roughly a factor of 2). (Urabe [37] also studies the convex partitioning problem in ℜ3, where, in
particular, the upper bound on κp(n) is shown to be ⌈2n/9⌉.) Most recently, Hosono and Urabe [26]
have obtained improved bounds on the size of a partition of a set of points into disjoint convex
quadrilaterals, which has the consequence of improving the upper bound on κp(n): κp(n) ≤ ⌈5n/18⌉
and κp(n) ≤ (3n + 1)/11 for n = 11 · 2k−1 − 4 (k ≥ 1). The remaining gaps in the constants
between upper and lower bounds for κc(n) and κp(n) (as well as the gap that our bounds exhibit
for reflexivity in terms of n) all point to the apparently common difficulty of these combinatorial
problems on convexity.

For a given set of points, we are interested in polygonalizations of the points that are “as convex
as possible”. This has been studied in the context of TSP (traveling salesperson problem) tours of
a point set S, where convexity of S implies (trivially) the optimality of a convex tour. Convexity
of a tour can be characterized by two conditions. If we drop the global condition (i.e., no crossing
edges), but keep the local condition (i.e., no reflex vertices), we get “pseudo-convex” tours. In [19]
it was shown that any set with |S| ≥ 5 has such a pseudo-convex tour. It is natural to require
the global condition of simplicity instead, and minimize the number of local violations – i.e., the
number of reflex vertices. This kind of problem is similar to that of minimizing the total amount
of turning in a tour, as studied by Aggarwal et al. [4].

The number of polygonalizations on n points is, in general, exponential in n; Garćıa et al. [20]
prove a lower bound of Ω(4.64n).

Another related problem is studied by Hosono et al. [25]: Compute a polygonalization P of a
point set S such that the interior of P can be decomposed into a minimum number (f(S)) of empty
convex polygons. They prove that ⌊(n− 1)/4⌋ ≤ f(n) ≤ ⌊(3n− 2)/5⌋, where f(n) is the maximum
possible value of f(S) for sets S of n points. The authors conjecture that f(n) grows like n/2.
For reflexivity ρ(n), we show that ⌊n/4⌋ ≤ ρ(n) ≤ ⌈n/2⌉ and conjecture that ρ(n) grows like n/4,
which, if true, would imply that f(n) grows like n/2.

We mention one final related problem. A convex decomposition of a point set S is a convex
planar polygonal subdivision of the convex hull of S whose vertices are S. Let g(S) denote the
minimum number of faces in a convex decomposition of S, and let g(n) denote the maximum value
of g(S) over all n-point sets S. It has been conjectured ([34]) that g(n) = n + c for some constant
c, and it is known that g(n) ≤ 3n/2 ([34]) and that n + 2 ≤ g(n) ([7]).
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Summary of Main Results. We have both combinatorial and algorithmic results on reflexivity.
Our combinatorial results include

• Tight bounds on the worst-case value of ρ(S) in terms of nI , the number of points of S interior
to the convex hull of S; in particular, we show that ρ(S) ≤ ⌈nI/2⌉ and that this upper bound
can be achieved by a class of examples.

• Upper and lower bounds on ρ(S) in terms of n = |S|; in particular, we show that ⌊n/4⌋ ≤
ρ(n) ≤ ⌈n/2⌉. In the case in which S has two layers, we show that ρ(S) ≤ ⌈n/4⌉, and this
bound is tight.

• Upper and lower bounds on “Steiner reflexivity”, which is defined with respect to the class
of polygonalizations that allow Steiner vertices (not from the input set S).

Our algorithmic results include

• We prove that it is NP-complete to compute the convex cover number (κc(S)) or the convex
partition number (κp(S)), for a given point set S.

• We give polynomial-time approximation algorithms, having approximation factor O(log n),
for the problems of computing convex cover number, convex partition number, or Steiner
reflexivity of S.

• We give efficient exact algorithms to test if ρ(S) = 1 or ρ(S) = 2.

In Section 6 we study a closely related problem – that of determining the “inflectionality” of
S, defined to be the minimum number of inflection edges (joining a convex to a reflex vertex) in
any polygonalization of S. We give an O(n log n) time algorithm to determine an inflectionality-
minimizing polygonalization, which we show will never need more than 2 inflection edges.

2 Preliminaries

Throughout this paper, S will be a set of n points in the plane ℜ2. A polygonalization, P , of S is
a simple polygon whose vertex set is S. Let P be the set of all polygonalizations of S. Note that
P is not empty, since any point set S having n ≥ 3 points has at least one polygonalization (e.g.,
the star-shaped polygonalization obtained by sorting points of S angularly about a point interior
to the convex hull of S).

Each vertex of a simple polygon P is either reflex or convex, according to whether the interior
angle at the vertex is greater than π or less than or equal to π, respectively. We let r(P ) (resp.,
c(P )) denote the number of reflex (resp., convex) vertices of P . We define the reflexivity of a planar
point set S to be ρ(S) = minP∈P r(P ). Similarly, the convexivity of a planar point set S is defined
to be χ(S) = maxP∈P c(P ). Note that χ(S) = n − ρ(S). We let ρ(n) = max|S|=n ρ(S).

We let CH(S) denote the convex hull of S. The point set S is partitioned into (convex) layers,
S1, S2, . . ., where the first layer is given by the set S1 of points of S on the boundary of CH(S), and
the ith layer, Si (i ≥ 2) is given by the set of points of S on the boundary of CH(S\(S1∪· · ·∪Si−1)).
We say that S has k layers or onion depth k if Sk 6= ∅, while Sk+1 = ∅. We say that S is in convex
position (or forms a convex chain) if it has one layer (i.e., S = S1).

A Steiner point is a point not in the set S that may be added to S in order to improve some
structure of S. We define the Steiner reflexivity ρ′(S) to be the minimum number of reflex vertices of
any simple polygon with vertex set V ⊃ S. We let ρ′(n) = max|S|=n ρ′(S). The Steiner convexivity,
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Figure 2: Computing a polygonalization with at most ⌈nI/2⌉ reflex vertices.

χ′(S), is defined similarly. A convex cover of S is a set of subsets of S whose union covers S, such
that each subset is a convex chain (a set in convex position). A convex partition of S is a partition
of S into subsets each of which is in convex position, such that the convex hulls of the subsets are
pairwise disjoint. We define the convex cover number, κc(S), to be the minimum number of subsets
in a convex cover of S. We similarly define the convex partition number, κp(S). We denote by
κc(n) and κp(n) the worst-case values for sets of size n.

Finally, we state a basic property of polygonalizations of point sets.

Lemma 2.1. In any polygonalization of S, the points of S that are vertices of the convex hull of
S are convex vertices of the polygonalization, and they occur in the polygonalization in the same
order in which they occur along the convex hull.

Proof. Any polygonalization P of S must lie within the convex hull of S, since edges of the polyg-
onalization are convex combinations of points of S. Thus, if p ∈ S is a vertex of CH(S), then the
local neighborhood of P at p lies within a convex cone, so p must be a convex vertex of P .

Consider a clockwise traversal of P and let p and q be two vertices of CH(S) occurring consec-
utively along P . Then p and q must also appear consecutively along a clockwise traversal of the
boundary of CH(S), since the subchain of P linking p to q partitions CH(S) into a region to its
left (which is outside the polygon P ) and a region to its right (which must contain all points of S
not in the subchain).

3 Combinatorial Bounds

In this section we establish several combinatorial results on reflexivity and convex cover numbers.

3.1 Reflexivity

One of our main combinatorial results establishes an upper bound on the reflexivity of S that is
worst-case tight in terms of the number nI of points interior to the convex hull, CH(S), of S. Since,
by Lemma 2.1, the points of S that are vertices of CH(S) are required to be convex vertices in any
(non-Steiner) polygonalization of S, the bound in terms of nI seems to be quite natural.

Theorem 3.1. Let S be a set of n points in the plane, nI of which are interior to the convex hull
CH(S). Then ρ(S) ≤ ⌈nI/2⌉.

Proof. We describe a polygonalization in which at most half of the interior points are reflex. We
begin with the polygonalization of the convex hull vertices that is given by the convex polygon

5



Figure 3: Left: The configuration of points, S0(n), which has reflexivity ρ(S0(n)) ≥ ⌈nI/2⌉. Right:
A polygonalization having ⌈nI/2⌉ reflex vertices.

bounding the hull. We then iteratively incorporate interior points of S into the polygonalization.
Fix a point p0 that lies on the convex hull of S. At a generic step of the algorithm, the following
invariants hold: (1) our polygonalization consists of a simple polygon, P , whose vertices form a
subset of S; and (2) all points S′ ⊂ S that are not vertices of P lie interior to P ; in fact, the points
S′ all lie within the subpolygon, Q, to the left of the diagonal p0pi, where pi is a vertex of P such
that the subchain of ∂P from pi to p0 (counter-clockwise) together with the diagonal p0pi forms
a convex polygon (Q). If S′ is empty, then P is a polygonalization of S and we are done; thus,
assume that S′ 6= ∅. Define pi+1 to be the first point of S′ that is encountered when sweeping the
ray −−→p0pi counter-clockwise about its endpoint p0. Then we sweep the subray with endpoint pi+1

further counter-clockwise, about pi+1, until we encounter another point, q, of S′. (If |S′| = 1, we
can readily incorporate pi+1 into the polygonalization, increasing the number of reflex vertices by
one.) Now the ray −−−→pi+1q intersects the boundary of P at some point c ∈ ab on the boundary of Q.

As a next step, we modify P to include interior points pi+1 and q (and possibly others as well)
by replacing the edge ab with the chain (a, pi+1, q, q1, . . ., qk, b), where the points qi are interior
points that occur along the chain we obtain by “pulling taut” the chain (q, c, b). In this “gift
wrapping” fashion, we continue to rotate rays counter-clockwise about each interior point qi that
is hit until we encounter b. This results in incorporating at least two new interior points (of S′)
into the polygonalization P , while creating only one new reflex vertex (at pi+1). It is easy to check
that the invariants (1) and (2) hold after this step.

In fact, the upper bound of Theorem 3.1, ρ(S) ≤ ⌈nI/2⌉, is tight in the worst case, as we now
argue based on the special configuration of points, S = S0(n), in Figure 3. The set S0(n) is defined
for any integer n ≥ 6, as follows: ⌈n/2⌉ points are placed in convex position (e.g., forming a regular
⌈n/2⌉-gon), forming the convex hull CH(S), and the remaining nI = ⌊n/2⌋ interior points are also
placed in convex position, each one placed “just inside” CH(S), near the midpoint of an edge of
CH(S). The resulting configuration S0(n) has two layers in its convex hull.

Lemma 3.2. For any n ≥ 6, ρ(S0(n)) ≥ ⌈nI/2⌉ ≥ ⌊n/4⌋.

Proof. Let (x1, x2, . . . , x⌈n/2⌉) denote the points of S0(n) on the convex hull, in clockwise order,
and let (v1, v2, . . . , v⌊n/2⌋) denote the remaining points of S0(n), with vi just inside the convex hull
edge (xi, xi+1). We define x⌈n/2⌉+1 = x1.

Consider any polygonalization, P , of S0(n). From Lemma 2.1 we know that the points xi are
convex vertices of P , occurring in the order x1, x2, . . ., x⌈n/2⌉ around the boundary of P . Consider
the subchain, γi, of ∂P that goes from xi to xi+1, clockwise around ∂P . Let mi denote the number
of points vj, interior to the convex hull of S0(n), that appear along γi.

If mi = 0, γi = xixi+1. If mi = 1, then γi = xivixi+1 and vi is a reflex vertex of P ; to see this,
note that vi lies interior to the triangle determined by xi, xi+1, and any vj with j 6= i. If mi > 1,
then we claim that (a) vi must be a vertex of the chain γi, (b) vi is a convex vertex of P , and (c)
any other point vj, j 6= i, that is a vertex of γi must be a reflex vertex of P . This claim follows from
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x i

x i+1

v i

Figure 4: Proof of the lower bound: ρ(S0(n)) ≥ ⌈nI/2⌉ ≥ ⌊n/4⌋.

the fact that the points xi, xi+1, and any nonempty subset of {vj : j 6= i} are in convex position,
with the point vi interior to the convex hull. Refer to Figure 4, where the subchain γi is shown
dashed.

Thus, the number of reflex vertices of P occurring along γi is in any case at least ⌈mi/2⌉, and
we have

ρ(S0(n)) ≥
∑

⌈mi/2⌉

≥
⌈

∑

(mi/2)
⌉

= ⌈nI/2⌉ ≥ ⌊n/4⌋.

Since nI ≤ n, the corollary below is immediate from Theorem 3.1 and Lemma 3.2. The gap
in the bounds for ρ(n), between ⌊n/4⌋ and ⌈n/2⌉, remains an intriguing open problem. While
our combinatorial bounds are worst-case tight in terms of nI (the number of points of S whose
convexity/reflexivity is not forced by the convex hull of S), they are not worst-case tight in terms
of n.

Corollary 3.3. ⌊n/4⌋ ≤ ρ(n) ≤ ⌈n/2⌉.

Based on experience with a software tool developed by A. Dumitrescu that computes, in expo-
nential time, the reflexivity of user-specified or randomly generated point sets, as well as the proven
behavior of ρ(n) for small values of n (see Section 3.5), we make the following conjecture:

Conjecture 3.4. ρ(n) = ⌊n/4⌋.

3.2 Steiner Points

If we allow Steiner points in the polygonalizations of S, the reflexivity of S may go down substan-
tially, as the example in Figure 5 shows. In fact, the illustrated class of examples shows that the use
of Steiner points may allow the reflexivity to go down by a factor of two. The Steiner reflexivity,
ρ′(S), of S is the minimum number of reflex vertices of any simple polygon with vertex set V ⊃ S.
We conjecture that ρ′(S) ≥ ρ(S)/2 for any set S, which would imply that this class of examples
(essentially) maximizes the ratio ρ(S)/ρ′(S).

Conjecture 3.5. For any set S of points in the plane, ρ′(S) ≥ ρ(S)/2.

We have seen (Corollary 3.3) that ⌊n/4⌋ ≤ ρ(n) ≤ ⌈n/2⌉. We now show that allowing Steiner
points in the polygonalization allows us to prove a smaller upper bound, while still being able to
prove roughly the same lower bound:
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Figure 5: Left: A point set S having reflexivity ρ(S) = r. Right: The reflexivity of S when Steiner
points are permitted is substantially reduced from the no-Steiner case: ρ′(S) = r/2.

pn+1

p0

p
−1

Figure 6: Polygonalization of n points using only ⌈n/3⌉ reflex (Steiner) points.

Theorem 3.6.
⌈

n − 1

4

⌉

− 1 ≤ ρ′(n) ≤
⌈n

3

⌉

.

Proof. For the upper bound, we give a specific method of constructing a polygonalization (with
Steiner points) of a set S of n points. Sort the points S by their x-coordinates and group them into
consecutive triples. Let pn+1 denote a (Steiner) point with a very large positive y-coordinate and
let p0 denote a (Steiner) point with a very negative y-coordinate. Each triple, together with either
point pn+1 or point p0, forms a convex quadrilateral. Then, we can polygonalize S using one reflex
(Steiner) point per triple, as shown in Figure 6, placed very close to pn+1 or p0 accordingly. This
polygonalization has at most ⌈n/3⌉ reflex points.

For the lower bound, we consider the configuration of n points, S, used in Urabe [35] to prove
that κp(n) ≥ ⌈(n − 1)/4⌉. For this set S of n points, let P be a Steiner polygonalization having r
reflex vertices. Then the simple polygon P can be partitioned into r + 1 (pairwise-disjoint) convex
pieces; this is a simple observation of Chazelle [10] (see Theorem 2.5.1 of [32]). The points S occur
as a subset of the vertices of these pieces; thus, the partitioning also decomposes S into at most r+1
subsets, each in convex position. Since κp(n) ≥ ⌈(n − 1)/4⌉, we get that r ≥ ⌈(n − 1)/4⌉ − 1.

3.3 Two-Layer Point Sets

Let S be a point set that has two (convex) layers. It is clear from our repeated use of the example
in Figure 3 that this is a natural case that is a likely candidate for worst-case behavior. With a very
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careful analysis of this case, we are able to obtain tight combinatorial bounds on the worst-case
reflexivity in terms of n.

Theorem 3.7. Let S be a set of n points having two layers. Then ρ(S) ≤ ⌈n/4⌉, and this bound
is tight in the worst case.

Proof. Consider a set S of n points with onion depth two. Let h be the number of points on
the convex hull. Thus there are n − h points on the interior onion layer. Let the points on the
convex hull be a0, a1, . . . , ah−1 in clockwise order. Let the points on the interior onion layer be
b0, b1, . . . , bn−h−1 in clockwise order. All arithmetic involving the subscripts of the a’s and b’s is
done mod h and mod (n − h), respectively.

Fact 3.8. In any polygonalization of S each pocket has at least one reflex vertex.

Proof. This follows from the fact that the polygon defined by the pocket and its convex hull edge
must have at least three convex vertices (as does any simple polygon).

Consider any point bi on the interior onion layer. Let the intersection of ray
−−−→
bi−1bi with the

convex hull be xi ∈ ajaj+1. We call the directed segment bixi the spoke si originating at bi, and we
say that the spoke si belongs to the convex hull segment ajaj+1 and the segment ajaj+1 has the
spoke si. Refer to Figure 7.

The number of spokes a convex hull segment has is called its spoke count. Let cj be the spoke
count of convex hull segment ajaj+1. Clearly there are n−h spokes s0, s1, . . . , sn−h−1 and each spoke
belongs to exactly one convex hull segment (assuming no degeneracy). Also for all j, 0 ≤ cj ≤ n−h

and
∑h−1

j=0 cj = n − h.

c4 = 3

c3 = 3

c1 = 3

c8 = 1

c7 = 0

c6 = 0

c5 = 1

c0 = 2

a0

a1

a5

a6

a7

a8

b0

b1
b2 b3

b4

b5

b6
b7b8b9

b10

b11

b12

c2 = 0

a4

a3

a2

Figure 7: The situation for a point set with two layers.

Consider any convex hull edge ajaj+1 with non-zero spoke count cj. Assume that the originating
points of its spokes are bi, bi+1,. . . , bi+cj−1 in clockwise order. Then the pocket aj, bi, bi+1,. . . ,
bi+cj−1, aj+1 is called the standard pocket for the convex hull edge ajaj+1. See Figure 8.

Fact 3.9. A standard pocket has exactly one reflex vertex.

Proof. Vertices bi+1, bi+2, . . . , bi+cj−2 are convex, since the angles at these vertices are the interior
angles of the inner onion layer. The vertex bi+cj−1 is convex because point aj+1 is on the right
of directed line bi+cj−2bi+cj−1. The vertex bi is reflex because there has to be at least one reflex
vertex in any pocket.
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Figure 8: Standard pockets.

Fact 3.10. No two standard pockets intersect each other, except possibly at their endpoints.

Proof. The annulus between the two onion rings is divided into n−h disjoint regions by the spokes.
A standard pocket for segment ajaj+1 may share a region with each of the standard pockets (if
any) for segments aj−1aj and ajaj+1. In such shared regions two pockets have a segment each.
The two segments do not intersect because the two segments are obtained by rotating two spokes
about their points of origin until their intersection with the convex hull reaches a vertex. The two
segments can hence either remain disjoint or share an endpoint.

We obtain the standard polygonalization by connecting all standard pockets, in order, using
convex hull segments with zero spoke count. See Figure 8.

Fact 3.11. The number of reflex vertices in the standard polygonalization is at most ⌊n/2⌋.

Proof. The number of standard pockets can neither exceed the number of convex hull segments h
nor the number of internal points, n − h. Hence, this polygonalization has at most min{h, n − h}
standard pockets and hence reflex vertices. This can be at most ⌊n/2⌋.

Consider a convex hull segment ajaj+1 that has a non-zero spoke count cj . Assume that the
origins of its spokes are bi, bi+1, . . . , bi+cj−1. We call the pocket aj , bi−i, bi, bi+1, . . . , bi+cj−1, aj+1

the premium pocket for convex hull segment ajaj+1. Note that the premium pocket of a segment
has one more point than its standard pocket. We obtain the premium polygonalization as follows:
Start with the convex hull. Process convex hull segments in clockwise order beginning anywhere.
If the convex hull segment aiai+1 has spoke count greater than or equal to two, replace the edge
with its standard pocket. If the spoke count is zero, do nothing. If the spoke count is one, move to
the next segment with non-zero spoke count and replace it with its premium pocket provided that
it is not already processed. If the next segment with non-zero spoke count was already processed,
replace the segment being processed with its standard pocket, and we are done. One can verify
that this process gives a valid polygonalization.

10



Fact 3.12. The number of reflex vertices in a premium polygonalization is at most ⌊n/3⌋.

Proof. In the premium polygonalization, each pocket has at least one reflex and one convex vertex,
with the exception of the last pocket created, which may have only a single reflex vertex. Thus,
the number of pockets created cannot exceed ⌊(n − h + 1)/2⌋. Also, the number of pockets cannot
exceed the number of convex hull edges, h. Thus, the number of pockets and, therefore, the number
of reflex vertices cannot exceed min{h, ⌊(n − h + 1)/2⌋}, which can be at most ⌊n/3⌋.

We now define the intruding polygonalization, as follows: Start with the convex hull. Process
convex hull segments in clockwise order, beginning anywhere. We consider cases, depending on the
spoke count, cj , of the convex hull segment ajaj+1:

cj = 0 Do nothing.

cj ≥ 3 Replace ajaj+1 with a standard pocket.

cj = 1 Replace the next non-zero count unprocessed hull segment with its premium pocket. (If no
such non-zero count unprocessed segment exists, then replace ajaj+1 by its standard pocket
and stop.)

cj = 2 We distinguish two subcases:

Case A If this is the last segment to be processed or if the sequence of spoke counts following
this segment begins with either 0, or a count ≥ 4, or an odd number of 1’s, or an even
number of 1’s followed by a zero, do the following: Replace ajaj+1 with its standard
pocket.

Case B If there are an even number of 1’s followed by a non-zero spoke count, or if the
sequence begins with 2 or 3, do one of the following, depending on the current “mode”;
initially, the mode is “normal.”

Normal Mode. Replace aj+1aj+2 with its premium pocket. This leaves one of the
originating points of ajaj+1; call a point P of this type the pending point. Go into
“Point Pending Mode.”

Point Pending Mode. Let the origins of the spokes of ajaj+1 be bi, . . . , bi+cj−1. Find

the first point of intersection of the ray
−→
Pbi with the current polygonalization. There

are only two choices for where the point of intersection can lie.

If the point of intersection lies on ajaj+1, treat ray
−→
Pbi as a spoke of ajaj+1, thus

increasing cj by 1. Now replace ajaj+1 by its standard pocket, and return to the “Normal
Mode.”

If the point of intersection lies on ajbi−1, replace ajbi−1 with ajbiPbi−1. This reduces cj

from 2 to 1. Now handle as in Case 1.

Fact 3.13. The intruding polygonalization produces a valid (non-crossing) polygonalization of S,
with at most ⌊n/4⌋ reflex vertices.

Proof. It is straightforward to check each case to make certain that the polygonalization is valid.
We prove the bound on the number of reflex vertices by charging each reflex vertex created to a
set of 4 input points.

In case cj = 0, we do not create any reflex points.

11



In case cj ≥ 3, we create a reflex vertex as part of the standard pocket. We charge this to the
three internal vertices of the pocket and the source vertex of the segment being processed.

In case cj = 1, we create a reflex vertex as part of the premium pocket of the next segment
having non-zero spoke count. We charge this to the sources of the segment being processed and
the next segment and to the (at least two) internal vertices of the pocket.

If cj = 2 and we are in Case A, we create a reflex vertex as part of the standard pocket. We
charge this to the source of the segment being processed and the two internal vertices. We need to
charge it to one more point.

• If the next segment has zero spoke count, we charge it to its source.

• If the next segment has spoke count greater than or equal to four, we charge it to one of its
internal vertices. (Recall that for a segment with spoke count greater than or equal to four,
only three of its internal vertices will get charged by its own standard pocket.)

• If there are some number of 1’s followed by a 0, we charge the source of segment having spoke
count 0.

• If there are odd number of 1’s followed by a non-zero count, then note that the segment
following this sequence of 1’s will be replaced by its premium pocket by our algorithm. This
segment will have a spoke count greater than or equal to 2. We put the extra charge needed
on one of the internal points of this premium pocket. (Recall that this premium pocket will
have at least 3 internal points and the pocket itself will charge only two of them.)

If cj = 2 and we are in Case B, we consider each of the two modes separately:

Normal Mode If the sequence begins with a 2 or 3, we charge the reflex vertex created to the
internal points (at least 3) of the premium pocket and the source of segment being replaced.

If the sequence has an even number of 1’s followed by a non-zero spoke count, then we have
a case similar to that above, but we have only two internal points to charge in the premium
pocket. However, since the first segment with spoke count 1 will be replaced by its premium
pocket, there will be an odd number of 1’s remaining. Hence, the segment following this
sequence of one (which has spoke count ≥ 2) will be replaced with a premium pocket, which
has an extra internal point to which we can charge.

Note that in Normal Mode, in both of the cases above, the source of the segment being
processed remains uncharged. Also, the pending point remains to be incorporated into the
polygonalization.

Point Pending Mode Depending on where ray
−→
Pbi intersects in this case, there are two possi-

bilities:

If the point of intersection lies on ajaj+1, then we are creating a pocket with at least 2 internal
points. We charge the reflex vertex created to the two internal points and to the source of
the segment being processed and to the uncharged point in the previous Normal Mode. See
Figure 9.

If the point of intersection lies on ajbi−1, then the subpocket has two internal points. In this
case we charge its reflex point (which is the pending point P ) to these two internal points
and to the uncharged point in the previous normal mode. We need to make one more charge,
which depends on the spoke count of next segment. If it is 2 or 3, we charge the extra
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Figure 9: Subcase of Case B, cj = 2: Ray b0b4 intersects segment a2a3, but not segment b3a2.
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Figure 10: Subcase of Case B, cj = 2: Ray b0b4 intersects segment b3a2, but not segment a2a3.

13



internal point in its premium pocket. If it is 1, note that since there were even number of 1’s
following, after we replace the next one with its premium pocket, there would be odd number
of 1’s remaining. Hence, the segment following this sequence of 1’s (which has non-zero spoke
count), will be replaced with its premium pocket, by our algorithm. Hence, we can charge its
extra internal point. See Figure 10.

This concludes the proof of Theorem 3.7

Remark. Using a variant of the polygonalization given in the proof of Theorem 3.7, it is possible
to show that a two-layer point set S in fact has a polygonalization with at most ⌈n/3⌉ reflex vertices
such that none of the edges in the polygonalization pass through the interior of the convex hull
of the second layer. (The polygonalization giving upper bound of ⌈n/4⌉ requires edges that pass
through the interior of the convex hull of the second layer.) This observation may be useful in
attempts to reduce the worst-case upper bound (ρ(n) ≤ ⌈n/2⌉) for more general point sets S.

3.4 Convex Cover/Partition Numbers

As a consequence of the Erdős-Szekeres theorem [16, 17], Urabe has given bounds on the convex
cover number of a set of n points: Urabe [35] and Hosono and Urabe [26] have obtained bounds as
well on the convex partition number of an n-point set:

⌈

n − 1

4

⌉

≤ κp(n) ≤
⌈

5n

18

⌉

.

While it is trivially true that κc(S) ≤ κp(S) the ratio κp(S)/κc(S) for a set S may be as large
as Θ(n); the set S = S0(n) (Figure 3) has κc(S) = 2, but κp(S) ≥ n/4.

The fact that κp(S) ≤ ρ(S)+1 follows easily by iteratively adding ρ(S) segments to an optimal
polygonalization P , bisecting each reflex angle. The result is a partitioning of P into ρ(S) + 1
convex pieces. Thus, we can obtain a convex partitioning of S by associating a subset of S with
each convex piece of P , assigning each point of S to the subset associated with any one of the
convex pieces that has the point on its boundary. (This is the same observation of Chazelle [10]
used in the proof of Theorem 3.6.)

We believe that the relationship between reflexivity (ρ(S)) and convex partition number (κp(S))
goes the other way as well: A small convex partition number should imply a small reflexivity. In
particular, we have invested considerable effort in trying to prove the following conjecture:

Conjecture 3.14. ρ(S) = O(κp(S)).

The reflexivity can be as large as twice the convex cover number (ρ(S) = 2κp(S)), as illustrated
in the example of Figure 11; however, this is the worst class of examples we have found so far.

Turning briefly to Steiner reflexivity, it is not hard to see that ρ′(S) = O(κp(S)) (see the proof
of Corollary 5.4). Thus, a proof of Conjecture 3.14 would follow from the validity of Conjecture 3.5.

3.5 Small Point Sets

It is natural to consider the exact values of ρ(n), κc(n), and κp(n) for small values of n. Table 1
below shows some of these values, which we obtained through (sometimes tedious) case analysis.
Aichholzer and Krasser [6] have recently applied their software that enumerates point sets of size
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Figure 11: An example with ρ(S) = 2κp(S). Each thick oval shape represents a numerous subset
of points of S in convex position.

n ρ(n) κc(n) κp(n)

≤ 3 0 1 1
4 1 2 2
5 1 2 2
6 2 2 2
7 2 2 2
8 2 2 3
9 3 3 3
10 3 - -

Table 1: Worst-case values of ρ, κc, κp for small values of n.

n of all distinct order types to verify our results computationally; in addition, they have obtained
the result that ρ(10) = 3. (Experiments are currently under way for n = 11; values of n ≥ 12 seem
to be intractable for enumeration.)

4 Complexity

We now prove lower bounds on the complexity of computing the convex cover number, κc(S), and
the convex partition number, κp(S). The proof for the convex cover number uses a reduction of the
problem 1-in-3 SAT and is inspired by the hardness proof for the Angular Metric TSP given
in [4]. The proof for the convex partition number uses a reduction from Planar 3 Sat.

Theorem 4.1. It is NP-complete to decide whether for a planar point set S the convex partition
number κp(S) is below some threshold k.

Proof. We give a reduction from Planar 3 Sat, which was shown to be NP-complete by Lichten-
stein (see [29]). A 3 Sat instance I is called a Planar 3 Sat instance, if the (bipartite) “occurrence
graph” GI = (VI , EI) is planar, where each vertex of VI corresponds to a variable or a clause, and
two vertices are joined by an edge of EI if and only if the vertices correspond to a variable x and
a clause c such that x appears in the clause c in I. See Figure 12(a) for an example, where a solid
edge denotes an un-negated literal, while a dashed edge represents a negated literal in a clause.

The basic idea is the following: Each variable is represented by a set of points that can be
partitioned into s disjoint convex chains in two different ways. One of these possibilities will
correspond to a setting of “true”, the other to a setting of “false”. Each clause is represented by a
set of points, such that it can be covered by three convex chains disjoint from all other chains, if
and only if at least one of the variables is set in a way that satisfies the clause.

15



c2

x3

c1

x1

x2

c3

x4 (b) (c)

3

1

1

3

4

2

c

x

c

x

c

x

x

2

polygon

gadget set

convex chain
(d)

Figure 12: (a) A straight-line embedding of the occurrence graph for the 3 Sat instance (x1 ∨ x2 ∨
x3)∧(x2∨x3∨x4)∧(x1∨x2∨x4); (b) a polygon for a variable vertex; (c) a point set SI representing
the Planar 3 Sat instance I; (d) joining point sets along the odd or even polygon edges.

So let I be a Planar 3 Sat instance with n variables and m = O(n) clauses. Consider a
straight-line embedding of its occurrence graph GI . In a first step, for every vertex vx representing
a variable x, draw a small polygon Px with 2s ≤ 2m edges around vx, where s is bounded by the
maximum degree of a variable vertex. (See Figure 12(b).) This is done such that no edge of GI

passes through one of the corners of Px, and only edges adjacent to vx intersect Px; moreover, we
choose edge orientations for all polygons that assure that no two different polygons Px and Py have
two collinear edges (See Figure 12(c), where we have s = 2 and we have used rectangles as polygons
to keep the figure clear.) Furthermore, we choose the polygons such that all of the line segments
connecting vx to clauses where vx appears un-negated intersect “even” edges of the polygon, and
all the line segments connecting vx to clauses where vx appears negated intersect “odd” edges of
the polygon.

In a second step, replace the polygons (and thus the variable vertices) by appropriate sets of

2s(kn4 +1) points – see Figure 12 for an example. Each of the corners b
(1)
x , . . . , b

(2s)
x of a polygon Px

is represented by a dense convex chain B
(i)
x of kn4 points, forming a convex curve with an opening

of roughly π/s, and an additional “pivot” point p
(i)
x .

Finally, we describe how to represent the clauses: Each vertex vc in GI representing a clause
c is replaced by three points forming a small triangle Tc; furthermore, for each of the three edges
connecting some variable vertex vx to vc, add a convex chain Cx,c of k∗n2 points within the polygon
Px. Cx,c is lined up with the triangle Tc such that Tc ∪ Cx,c is a convex chain. On the other hand,
the opening of Cx,c towards Tc is narrow enough to prevent any other point from forming a convex
chain with all points in Cx,c. We also avoid any other collinearities in the overall arrangement.

Now we claim the following correspondence:
The resulting point set SI can be partitioned into at most 3m + sn disjoint convex chains, if

and only if the Planar 3 Sat instance I is satisfiable.

To see that a satisfying truth assignment induces a feasible decomposition, note that there are
exactly two ways to cover the points for a polygon with 2s edges by at most s disjoint convex
chains. (One of these choices arises by joining the pairs of sets that belong to the “even” edges of
a polygons box into one convex chain, the other by joining the pairs of sets for the “odd” edges
of a polygon. This is shown in Figure 12(d).) For a true variable, take the “even” choice, for a
false variable, the “odd” choice. Now consider a clause c and a variable x that satisfies c. By the
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choice of chains covering the points for x, we join the triangle Tc for vc with the chain Cx,c into one
convex chain, without intersecting any other chain. The other two chains Cy,c are each covered by
separate chains. This yields a decomposition into 3m + sn disjoint convex chains, as claimed.

To see the converse, assume we have a decomposition into at most 3m + sn disjoint convex
chains.

We start by considering how the sets B
(i)
x and the sets Cx,c (henceforth called “gadget sets”

Gj , with j = 1, . . . , 3m + 2sn) can be covered in such a solution. Associate each chain with all the
Gj of which it covers at least Ω(n) points. It is straightforward to see that a convex chain that
covers at least Ω(n) points from each of three different gadget sets must contain some other point
of the set SI in its interior, so this cannot occur in the given feasible decomposition. Therefore, no
chain can be associated with more than two gadget sets. Moreover, a convex chain can contain at

least k ∗ n3 − O(n) points from each of two different gadget sets without any pivot points p
(i)
x in

its interior, only if these sets are some B
(i)
x and B

(i±1)
x . (In particular, it is not hard to see that no

chain that covers Ω(n) points of a set Cx,c can cover points from any other gadget set.) Since there
are 3m + sn = O(n2) chains in total, there must be at least one chain associated with each gadget
set, and a chain associated with a set Cx,c cannot be associated with any other set. This means
that 3m of the chains are used to cover the 3m chains Cx,c. Therefore, the remaining 2sn gadget

sets B
(i)
x must be covered by the remaining sn convex chains. None of these chains can cover more

than two of these sets. It follows that the remaining chains form a perfect matching on the set of

B
(i)
x , implying that each chain covers a B

(i)
x and a neighboring set B

(i±1)
x . Therefore, the gadget

sets for each variable are either covered by pairing along the “odd” edges, or by pairing along the
“even” edges of the associated polygon.

This describes the gadget sets associated with all the convex chains. Now it is straightforward
to verify that a point from one of the triangles Tc can only be part of one of the chains associated
with a set Cx,c. This can only happen if this chain does not intersect a chain along an edge of the
polygon for the variable x – implying that this variable satisfies the clause c. This completes the
proof.

Theorem 4.2. It is NP-complete to decide whether for a planar point set S the convex cover
number κc(S) is below some threshold k.

Proof. Our proof uses a reduction of the problem 1-in-3 SAT. It is inspired by the hardness proof
for the Angular Metric TSP given in [4].

xn

xi

x1

cj

Figure 13: A point set SI for a 1-in-3 SAT instance I. Pivot points are shown for the clause
(x1 ∨ xi ∨ xn).
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The construction is as follows: For a 1-in-3 SAT instance I with n variables and m clauses,
represent each clause cj by a triple of vertical columns, each one associated with a variable that
occurs in cj . Each variable xi is represented by a pair of horizontal rows, the upper one corre-
sponding to “true”, the lower one corresponding to “false”. This results in a grid pattern as shown
in Figure 13. For each pair of a variable xi and a clause cj , we get a 2x3 pattern of intersections
points. If variable xi appear in clause cj, we add three “pivot” points to this pattern: If xi occurs
un-negated in cj , a pivot point is added at the intersection of xi’s “true” row with the column of
cj that corresponds to xi; for both other two columns, a pivot point is added at the intersection
with the “false” row. If xi occurs negated in cj , a pivot point is added at the intersection of xi’s
“false” row with the column of cj that corresponds to xi; for both other two columns, a pivot point
is added at the intersection with the “true” row.

Finally, a horizontal “staple” gadget that consists of Ω(n4) points is added to the rows for each
variable, and two nested vertical staple gadgets are added to the columns for each of the clauses.
These are constructed in a way that a staple forms a convex chain that can cover all the pivot
points in one row or one column, but not more than that, and no pivot points from any other
clauses or variables. Thus, for each variable, we can collect one of two rows, and for each clause,
we can cover two of three rows.

Now it is possible to show the following: The 1-in-3 SAT instance I has a satisfying truth
assignment, if and only if the point set SI can be covered with not more than n + 2m convex
chains.

It is easy to see that a satisfying truth assignment implies a small convex cover, by covering
each staple gadget by one chain, and choosing the appropriate rows and columns of pivot points
to be covered by the staple gadgets: For each variable, choose the row corresponding to its truth
assignment. For each clause, choose the two columns for the two variables that do not satisfy it.
Now it is straightforward to check that all pivot points are covered.

To see the converse, we can argue in a similar way as in the proof of Theorem 4.1 that each
staple needs its own convex chain. Then we are left with a choice of one row for each variable, and
two columns for each clause. This choice of rows induces a truth assignment to variables; it is not
hard to check that the remaining uncovered pivot points lie in not more than two columns, if and
only if this truth assignment is valid for the 1-in-3 SAT instance I.

So far, the complexity status of determining the reflexivity of a point set remains open. However,
the apparently close relationship between convex cover/partition numbers and reflexivity leads us
to believe the following:

Conjecture 4.3. It is NP-complete to determine the reflexivity ρ(S) of a point set.

5 Algorithms

We have obtained a number of algorithmic results on computing, exactly or approximately, reflex-
ivity and convex cover/partition numbers. We begin with the following theorem, which shows that
one can compute efficiently a constant-factor approximation to the convexivity of S:

Theorem 5.1. Given a set S of n points in the plane, in O(n log n) time one can compute a
polygonalization of S having at least χ(S)/2 convex vertices, where χ(S) = n−ρ(S) is the convexivity
of S.
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Proof. The proof of Theorem 3.1 is constructive, producing a polygonalization of S having at
most ⌈nI/2⌉ ≤ ⌈n/2⌉ reflex vertices, and thus at least ⌊n/2⌋ convex vertices (thereby giving a 2-
approximation for convexivity). In order to obtain the stated time bound, we must implement the
algorithm efficiently. This can be done using a data structure for dynamic convex hulls, under pure
deletion (see Chazelle [11] and Hershberger and Suri [21]). At each main step of the algorithm, we
identify the vertices along the chain (pi+1, q, q1, . . . , b) by making repeated extreme-point queries in
the convex hull data structure, and then delete the points pi+1, q, q1, q2, . . . from the data structure,
and repeat. The dynamic data structure supports deletions and queries in O(log n) time per
operation, for an overall time bound of O(n log n).

Theorem 5.2. Given a set S of n points in the plane, the convex cover number, κc(S), can be
computed approximately, within a factor O(log n), in polynomial time.

Proof. We use a greedy set cover heuristic. At each stage, we need to compute a largest convex
subset among the remaining (uncovered) points of S. This can be done in polynomial time using
the dynamic programming methods of [31].

Theorem 5.3. Given a set S of n points in the plane, the convex partition number, κp(S), can be
computed approximately, within a factor O(log n), in polynomial time.

Proof. Let C∗ = {P1, . . . , Pk∗} denote an optimal solution, consisting of k∗ = κp(S) disjoint convex
polygons whose vertices are the set S.

By Theorem 2 of [15], we know that there are k∗ pairwise-disjoint convex polygons P ′
1, . . . , P

′
k∗ ,

having a total complexity of O(k∗), with Pi ⊆ P ′
i , for each i. Furthermore, the sides of the polygons

P ′
i can be assumed to be segments lying on the O(n2) lines determined by pairs of points of S.

Let S be the convex polygonal subdivision of C = CH(P ′
1 ∪ · · ·P ′

k∗) obtained by decomposing the
region C \ (P ′

1 ∪ · · ·P ′
k∗) into convex polygons (e.g., a triangulation suffices). Then, S has total

complexity O(k∗), its vertices are among the set V of O(n4) vertices in the arrangement of O(n2)
lines determined by S, and its faces are convex polygons. (Note that some faces of S may be empty
of points of S.)

We now decompose each face of S into a set of vertical trapezoids by erecting vertical cuts
through the vertices of each face, within each face. (Some of these trapezoids may be triangles,
which we can consider to be degenerate trapezoids.) Finally, for each such trapezoid τ we decompose
it using vertical cuts into O(log n4) = O(log n) canonical trapezoids, whose x-projection is one of
the O(n4) canonical x-intervals determined by a segment tree on V . The resulting canonical
trapezoidalization, T , has O(k∗ log n) faces, each of which is a canonical trapezoid. An important
property of T is that it has the following binary space partition property: For any canonical
trapezoid, τ , the subdivision of τ induced by T is such that either (a) there exists an edge of T
that cuts τ in two, extending from its left side to its right side, or (b) the vertical cut that splits
τ into two canonical subtrapezoids lies entirely on the edge set of T . This property allows us to
optimize recursively using dynamic programming, in much the same way as was done in [3, 30] for
problems involving optimal separation and surface approximation.

In particular, for any canonical trapezoid, τ , we desire to compute the quantity f(τ), defined to
be the minimum number of faces in a partitioning of τ into canonical trapezoids, such that within
each face of the partitioning, the subset of points of S within the face is in convex position. (The
empty set is considered trivially to be in convex position.) Then f(τ) obeys a recursion,

f(τ) = min{min
ℓ

{f(τ+
ℓ ) + f(τ−

ℓ )}, f(τleft) + f(τright)},
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where the minimization over ℓ considers all choices of lines ℓ, intersecting τ on both of its vertical
sides, determined by two vertices of V ; τ+

ℓ (resp., τ−
ℓ ) denotes the portion of τ lying above (resp.,

below) the line ℓ. We have used τleft (resp., τright) to indicate the canonical trapezoid obtained
by splitting τ by a vertical line at the x-median value (among the x-coordinates of V that lie in
the vertical slab defined by τ). We leave it to the reader to write the boundary conditions of the
recursion, which is straightforward.

Our algorithm gives us a minimum-cardinality partition of S into a disjoint set, C ′, of (empty)
convex subsets whose x-projections are canonical intervals. Since the optimal solution, C∗, can
be converted into at most k∗ · O(log n) such convex sets, we know we have obtained an O(log n)-
approximate solution to the disjoint convex partition problem.

Corollary 5.4. Given a set S of n points in the plane, its Steiner reflexivity, ρ′(S), can be computed
approximately, within a factor O(log n), in polynomial time.

Proof. Let P ∗ denote an optimal solution, a simple polygon having ρ′(S) reflex vertices. Then, we
know that P ∗ can be decomposed into at most ρ′(S)+1 convex polygons, each of which corresponds
to a subset of S. This gives us a partition of S into at most ρ′(S) + 1 disjoint convex sets; thus,
κp(S) ≤ ρ′(S)+1. By Theorem 5.3, we can compute a set, C, of k ≤ O(log n) ·κp(S) disjoint convex
sets. We can polygonalize S by “merging” these k polygons of C, using a doubling of a spanning
tree on C. The important property of the embedding of the spanning tree is that it consists of
(k − 1) line segment bridges (with endpoints on the boundaries of polygons C) that are pairwise
non-crossing and do not cross any of the polygons C. (One way to determine such a tree is to select
one point interior to each polygon of C, compute a minimum spanning tree of these k points, and
then utilize the portions of the line segments that constitute the tree that lie outside of the polygons
C to be the set of k−1 bridging segments.) A simple polygonalization is obtained by traversing the
boundary of the union of the polygons C and the k−1 bridging segments, while slightly perturbing
the doubled bridge segments. Since each bridge segment is responsible for creating at most 4 new
(Steiner) points, this results in a polygon, with at most 4(k−1) Steiner points, each of which may be
reflex. (All other vertices in the polygonalization are convex.) Thus, we obtain a polygonalization
with at most 4(k − 1) ≤ O(log n) · κp(S) ≤ O(log n) · ρ′(S) reflex vertices.

For small values of r, we have devised particularly efficient algorithms that check if ρ(S) ≤ r
and, if so, produce a witness polygonalization having at most r vertices. Of course, the case r = 0
is trivial, since that is equivalent to testing if S lies in convex position (which is readily done in
O(n log n) time, which is worst-case optimal). It is not surprising that for any fixed r one can
obtain an nO(r) algorithm: enumerate over all combinatorially distinct (with respect to S) convex
subdivisions of CH(S) into O(r) convex faces and test that the subsets of S within each face are
in convex position, and then check all possible ways to order these O(r) convex chains to form a
circuit that may form a simple polygon. The factor in front of r in the exponent, however, is not so
trivial to reduce. In particular, the straightforward method applied to the case r = 1 gives O(n5)
time. With a more careful analysis of the cases r = 1, 2, we obtain the next two theorems.

Theorem 5.5. Given a set S of n points in the plane, in O(n log n) time one can determine if
ρ(S) = 1, and, if so, produce a witness polygonalization. Further, Ω(n log n) is a lower bound on
the time required to determine if ρ(S) = 1.

Proof. First notice that if a point set S is polygonalized with exactly 1 reflex vertex, then (a) the
two supporting lines from the endpoints of the lid of the pocket to the second convex layer of S
are supported by the same point p of the layer, which is the reflex vertex of the polygonalization,
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Figure 14: Proof of the Ω(n log n) lower bound for determining if ρ(S) = 1.

and (b) the vertices of the pocket appear in angular order around p. The upper bound involves
computing the convex hull and the second layer of the onion (the entire onion can be computed in
time O(n log n)), and then performing a careful case analysis for how the single pocket must be.

In fact, if the second convex layer is empty, or has 1 or 2 points, the solution is trivial. If the
second convex layer has three points or has all the internal points, then for each edge e of the
convex hull, trace the supporting lines from its endpoints to the second layer. In the cases where
the two tangents are supported by the same point p, check whether or not the angular order of
the interior points gives a pocket with lid e and only one reflex vertex p. The cost of this step is
O(n log n): if the layer is a triangle, computing the supporting lines can be done in constant time,
and the complexity comes from sorting the interior points around the vertex p of the triangle; if
the layer has all the interior points, then the sorted order is given, and the complexity comes from
the computation of the supporting lines (in fact, the supporting lines can be computed in overall
O(n) time by a “rotating calipers”-like technique). In all the remaining cases, the point set cannot
be polygonalized with one reflex vertex.

The lower bound follows from convexity testing: determining if a set of n points is in convex
position. Given a set S of n points, we compute (in O(n) time) one edge, e = v1v2, of the convex
hull of S. We then determine (in O(n) time) the point v3 ∈ S furthest from the line through v1

and v2; thus, v3 is also a vertex of CH(S). Next we let p1 6∈ S be a point within ∆v1v2v3 that
is closer to edge v1v2 than is any point of S. We also select points p2 and p3 within ∆p1v1v2 in
such a way that v3 lies within the convex cone of apex p3 defined by the rays −−→p3p1 and −−→p3p2 and
that v1 lies within the convex cone of apex p2 defined by the rays −−→p2p1 and −−→p2p3. (Points p1, p2, p3

can be determined in O(n) time.) Refer to Figure 14. Then, −−→p3p1 and −−→p3p2 intersect distinct edges
of CH(S), as do −−→p2p1 and −−→p2p3, while −−→p1p2 and −−→p1p3 both intersect the edge v1v2 of CH(S). This
implies that the only way that a polygonalization of S′ = S ∪ {p1, p2, p3} can have only a single
reflex vertex is if that reflex vertex is p1 and the corresponding pocket has lid v1v2 and vertices
p1, p2, p3 (with p2 and p3 both being convex in the polygonalization). Thus, the only way to have
ρ(S′) = 1 is if the points S are in convex position. We conclude that determining if ρ(S′) = 1 is
equivalent to solving the convex position problem on the input points S.

Theorem 5.6. Given a set S of n points in the plane, in O(n3 log n) time one can determine if
ρ(S) = 2, and, if so, produce a witness polygonalization.

Proof. We distinguish two cases according to whether or not the two reflex vertices belong to the
same pocket.

Two pockets: Assume that it is possible to polygonalize S with 2 reflex vertices, p and q, each
one in a different pocket. Since each pocket only has one reflex vertex, its convex hull (including
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the lid) is a triangle. We distinguish three subcases: (i) the two triangles lie entirely on the same
side of the line pq, (ii) the two triangles lie entirely on different sides of the line pq, and (iii) at least
one of the triangles intersects the line pq.

In the first subcase, since all of the interior points lie on one side of the line pq, the segment pq
is an edge of the second convex layer of S. In addition, the vertices of the pocket containing p (resp.
q) appear in angular order about p (resp. q). This gives a possible algorithm to detect whether
such a polygonalization is possible for S: For each edge pq of the second convex layer of S, explore
all of the points of S in angular order around p, starting on the side of pq that does not contain
any interior point. Once the first interior point is found, we have entered the possible pocket of
p. Check the convexity of all (but one) of the interior points found before the next external point,
which will be the endpoint of the lid of the pocket. Proceed symmetrically from q (if the angular
order around p was checked clockwise, the order around q must be checked counter-clockwise). End
by making sure that no interior points are left unexplored. Since the second convex layer of S has
O(n) edges, and the checking for each one of them takes linear time, this case is checked in overall
O(n2) time.

In the second subcase, the segment pq may not be an edge of the second convex layer, making
the previous algorithm impossible to apply. On the other hand though, all of the vertices of the
polygonalization lying on one side of the line pq are angularly sorted about p, while all of those
lying on the other side are angularly sorted about q. This gives an algorithm to detect whether such
a polygonalization is possible for S. In a first stage we construct a data structure as follows. For
each interior point p and for each oriented line ℓ through p, our structure will store the following
information: (a) the points lying to the left of ℓ, angularly sorted from p, (b) a label indicating
whether the angular order produces a correct polygonalization to the left of ℓ, and (c) in the
affirmative, a pointer to the first interior point q that ℓ will hit when rotated clockwise around p.
This structure can be built in O(n2) time: for each point p, it can be initialized at any arbitrary
line through p in O(n) time, and then all lines through p can be explored by rotation around p.
Every time that a new point is found, it is added/eliminated at one end of the ordered list of points
to the left of ℓ, checking for convexity of at most one vertex (notice that the actualization of the
pointer q can be done in amortized O(n) time per point p). The second phase of the algorithm is
straightforward. Explore all of the pairs (p, ℓ) having a satisfactory left polygonalization. For each
one of them, a pointer indicates its possible complementary pair (q,−ℓ). Checking whether or not
the two partial polygonalizations connect properly can be done in constant time. Hence, this case
can be checked in overall O(n2) time.

Finally, in the third subcase, none of the previous good properties apply (pq is not necessarily
an edge of the second convex layer of S, and the polygonalization may not be in angular order
around p or q on one side of the line pq), but there is at least one side of the line pq where the
polygonalization appears in angular order both around p and q. This gives a possible algorithm to
detect whether such a polygonalization is possible for S. Consider all pairs of interior points, (p, q).
Angularly check around p or q whether all of the points on one side of the line pq form a convex
chain. If so, keep turning around p and around q separately and in opposite senses on the other
halfplane, until the two possible pockets are found. The remaining chain between p and q can be
checked from any of the two points. Since we perform linear time work for each pair of interior
points, this case is checked in overall O(n3) time.

One pocket: Assume that it is possible to polygonalize S with 2 reflex vertices, p and q, both
belonging to the same pocket, with lid ab. The pocket is formed by three convex chains: ap, pq
and qb. We will distinguish two subcases, depending on whether or not the chains ap and qb are
separable by a line through the point p. In the first subcase, the vertices of the chain ap appear
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in angular order around p before finding any point of the remaining chains. In the second subcase,
since the chains ap and qb are convex, they are linearly separable by a line defined by one point
l ∈ ap and one point r ∈ qb. Such a line must intersect the lid of the pocket. In addition, we will
distinguish the subcase in which the convex hull of the pocket, including the lid endpoints a and b
is a quadrilateral from the case in which it is a triangle. In the fist subcase, the segment pq is an
edge of the second convex layer of S, while in the second subcase it is not. These observations give
an algorithm to detect whether such a polygonalization is possible for S.

The subcase separable-quadrilateral can be detected in O(n2) time. For each edge pq of the
second convex layer of S, compute the lid ab of the possible pocket, if it exists, by intersecting the
convex hull of S with the prolongations of the edges of the second layer incident in p and q. From p,
explore in angular order the interior points until the first left turn is reached. Then check whether
the remaining interior points behave properly when explored in angular order from q.

The subcase separable-triangle can be detected in O(n2 log n) time. For each edge ab of the
convex hull, find the reflex vertex p of the possible pocket, if it exists, by computing the supporting
lines from a and b to the second convex layer of S. From p, explore in angular order the interior
points until the first left turn is reached. Then, check whether the remaining interior points,
together with p and b, form a set S′ such that ρ(S′) = 1. In this case we do not have a candidate
q to help us, and the complexity of this procedure comes from Theorem 5.5.

The subcase not-separable-quadrilateral can be detected in O(n3) time. For each pair (l, r) of
points of S, intersect the line lr with the convex hull of S to compute the two possible lids. Let ab
be a possible lid for lr; we will call s the opposite intersection point of lr and the convex hull of
S. Compute the supporting lines from a and b to the second convex layer to obtain the candidate
points p and q associated with the lid. Explore all of the points to the left of lr, together with s
and l (resp. r), in angular order around p. Analogously, do this for the points to the right, around
q. If a suitable polygonalization is possible in each halfplane, check the connection between them.
For each of the O(n2) pairs of points lr, we have performed linear time work.

The subcase not-separable-triangle can be detected in O(n3 log n) time. The only difference
from the previous subcase is that, to the right of the line lr we do not have a point q to be used to
perform the checking in angular order. But we can check whether the interior points to the right
of lr, together with b and s, form a set S′ such that ρ(S′) = 1. The complexity of this procedure
(O(n log n)) comes from Theorem 5.5.

6 Inflectionality of Point Sets

Consider a clockwise traversal of a polygonalization, P , of S. Then, convex (resp., reflex) vertices
of P correspond to right (resp., left) turns. In computing the reflexivity of S we desire a polygonal-
ization that minimizes the number of left turns. In this section we consider the related problem in
which we want to minimize the number of changes between left-turning and right-turning during a
traversal that starts (and ends) at a point interior to an edge of P . We define the minimum num-
ber of such transitions between left and right turns to be the inflectionality, φ(S), of S, where the
minimum is taken over all polygonalizations of S. (An alternative definition is based on defining an
inflection edge of P to be an edge connecting a reflex vertex and a convex vertex; the inflectionality
is the minimum number of inflection edges in any polygonalization of S.) Clearly, φ(S) must be an
even integer; it is zero if and only if S is in convex position. Somewhat surprisingly, it turns out
that φ(S) can only take on the values 0 or 2:

Theorem 6.1. For any finite set S of n points in the plane, φ(S) ∈ {0, 2}, with φ(S) = 0
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precisely when S is in convex position. In O(n log n) time, one can determine φ(S) as well as
a polygonalization that achieves inflectionality φ(S).

Proof. If S is in convex position, then trivially φ(S) = 0. Thus, assume that S is not in convex
position. Then φ(S) 6= 0, so φ(S) ≥ 2. We claim that φ(S) = 2. For simplicity, we assume that S
is in general position.

Consider the ℓ nested convex polygons, C1, C2, . . . , Cℓ, whose boundaries constitute the ℓ layers
(the “onion”) of the set S; these can be computed in time O(n log n) [11].

We construct a “spiral” polygonalization of S based on taking one edge, ab, of C1, and replacing
it with a pair of right-turning chains from a to p ∈ S ∩Cℓ and from b to p. The two chains exactly
cover the points of S on layers C2, . . . , Cℓ. A constructive proof that such a polygonalization exists
is based on the following claim:

Claim 6.2. For any 1 ≤ m < ℓ and any pair, a, b ∈ S, of vertices of Cm, there exist two purely
right-turning chains, γa = (a, u1, u2, . . . , ui, p) and γb = (b, v1, v2, . . . , vj , p), such that the points of
S interior to Cm are precisely the set {u1, u2, . . . , ui, p, vi, v2, . . . , vj}.

Proof of Claim. We prove the claim by induction on m. If m = ℓ − 1, the claim follows easily, by
a case analysis as illustrated in Figure 15.

a

b

a

b

a

b

a

bp p p

p

Figure 15: Simple case in the inductive proof: m = ℓ− 1. There are four subcases, left to right: (i)
Cℓ is a single point; (ii) Cℓ is a line segment determined by two points of S; (iii) Cℓ is a triangle
determined by three points of S; or (iv) Cℓ is a convex polygon whose boundary contains four or
more points of S.

Assume that the claim holds for m ≥ k + 1 and consider the case m = k. If Ck+1 is either a
single vertex or a line segment (which can only happen if k + 1 = ℓ), the claim trivially follows;
thus, we assume that Ck+1 has at least three vertices. We let u1 be the vertex of Ck+1 that is a
left tangent vertex with respect to a (meaning that Ck+1 lies in the closed halfplane to the right
of the oriented line au1); we let v be the left tangent vertex of Ck+1 with respect to b. Refer to
Figure 16. If v = u1, we define v1 to be the vertex of Ck+1 that is the counter-clockwise neighbor of
u1; otherwise, we let v1 = v. Let a′ be the counter-clockwise neighbor of v1. Let b′ be the counter-
clockwise neighbor of u1. (Thus, b′ may be the same point as v1.) By the induction hypothesis, we
know that there exist right-turning chains, γa′ and γb′ , starting from the points a′ and b′, spiraling
inwards to a point p interior to Ck+1. Then we construct γa to be the chain from a to u1, around
the boundary of Ck+1 clockwise to a′, and then along the chain γa′ . Similarly, we construct γb to
be the chain from b to v1, around the boundary of Ck+1 clockwise to b′, and then along the chain
γb′ .

The proof of the above claim is constructive; the required chains are readily obtained in
O(n log n) time, given the convex layers. This concludes the proof of the theorem.
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Figure 16: Left: Constructing the spiraling chains γa and γb. Right: An example of the resulting
spiral polygonalization.

7 Conclusion and Future Work

We have introduced a new class of combinatorial and algorithmic problems related to simple polyg-
onalizations of a planar point set. We have given lower and upper combinatorial bounds, settled
the complexity status of some problem variants, and given some efficient algorithms, both exact
algorithms and approximation algorithms.

There are a number of interesting open problems that our work suggests. First, there are the four
specific conjectures mentioned throughout the paper; these represent to us the most outstanding
open questions raised by our work. In addition, we mention three other areas of future study:

1. Instead of minimizing the number of reflex vertices, can we compute a polygonalization of
S that minimizes the sum of the turn angles at reflex vertices? (The turn angle at a reflex
vertex having interior angle θ > π is defined to be θ − π.) This question was posed to us by
Ulrik Brandes. It may capture a notion of goodness of a polygonalization that is useful for
curve reconstruction. The problem differs from the angular metric TSP ([4]) in that the only
turn angles contributing to the objective function are those of reflex vertices.

2. What can be said about the generalization of the reflexivity problem to polyhedral surfaces in
three dimensions? This may be of particular interest in the context of surface reconstruction.

3. There are a number of natural measures of “near convexity” for point sets. It would be
interesting to do a systematic study of how the various measures compare.
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tat Politècnica de Catalunya and Stony Brook University was made possible by a grant from
the Joint Commission USA-Spain for Scientific and Technological Cooperation Project 98191. E.
Arkin acknowledges additional support from the National Science Foundation (CCR-9732221, CCR-
0098172). S. Fekete acknowledges travel support by the Hermann-Minkowski-Minerva Center for
Geometry at Tel Aviv University. F. Hurtado, M. Noy, and V. Sacristán acknowledge support from
CUR Gen. Cat. 1999SGR00356, and Proyecto DGES-MEC PB98-0933. J. Mitchell acknowledges
support from NSF (CCR-9732221, CCR-0098172) and NASA Ames Research Center (NAG2-1325).

25



References

[1] P. K. Agarwal. Ray shooting and other applications of spanning trees with low stabbing
number. SIAM J. Comput., 21:540–570, 1992.

[2] P. K. Agarwal, E. Flato, and D. Halperin. Polygon decomposition for efficient construction of
Minkowski sums. Comput. Geom. Theory Appl., 21:39–61, 2002.

[3] P. K. Agarwal and S. Suri. Surface approximation and geometric partitions. SIAM J. Comput.,
27:1016–1035, 1998.

[4] A. Aggarwal, D. Coppersmith, S. Khanna, R. Motwani, and B. Schieber. The angular-metric
traveling salesman problem. In Proceedings of the Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 221–229, Jan. 1997.

[5] O. Aichholzer, F. Aurenhammer, and H. Krasser. Enumerating order types for small point
sets with applications. In Proc. 17th Annu. ACM Sympos. Comput. Geom., 2001, pp. 11–18.

[6] O. Aichholzer and H. Krasser. The point set order type data base: a collection of applications
and results. In Proc. 13th Canad. Conf. Comput. Geom., Waterloo, Canada, 2001, pp. 17–20.

[7] O. Aichholzer and H. Krasser. Personal communication, 2001.

[8] N. Amenta, M. Bern, and D. Eppstein. The crust and the β-skeleton: Combinatorial curve
reconstruction. Graphical Models and Image Processing, 60:125–135, 1998.

[9] T. Auer and M. Held. Heuristics for the generation of random polygons. In Proc. 8th Canad.
Conf. Comput. Geom., pages 38–43, 1996.

[10] B. Chazelle. Computational geometry and convexity. Ph.D. thesis, Dept. Comput. Sci., Yale
Univ., New Haven, CT, 1979. Carnegie-Mellon Univ. Report CS-80-150.

[11] B. Chazelle. On the convex layers of a planar set. IEEE Trans. Inform. Theory, IT-31(4):509–
517, July 1985.

[12] T. K. Dey and P. Kumar. A simple provable algorithm for curve reconstruction. In Proc. 10th
ACM-SIAM Sympos. Discrete Algorithms, pages 893–894, Jan. 1999.

[13] T. K. Dey, K. Mehlhorn, and E. A. Ramos. Curve reconstruction: Connecting dots with good
reason. In Proc. 15th Annu. ACM Sympos. Comput. Geom., pages 197–206, 1999.

[14] D. P. Dobkin, H. Edelsbrunner, and M. H. Overmars. Searching for empty convex polygons.
Algorithmica, 5:561–571, 1990.

[15] H. Edelsbrunner, A. D. Robison, and X. Shen. Covering convex sets with non-overlapping
polygons. Discrete Math., 81:153–164, 1990.
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