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Abstract. We discuss the problem of finding a simple polygonalization for a given set of
verticesP that has optimal area. We show that these problems are very closely related to
problems of optimizing the number of points from a setQ in a simple polygon with vertex
set P and prove that it is NP-complete to find a minimum weight polygon or a maximum
weight polygon for a given vertex set, resulting in a proof of NP-completeness for the
corresponding area optimization problems. This answers a generalization of a question
stated by Suri in 1989. Finally, we turn to higher dimensions, where we prove that, for
1 ≤ k ≤ d, 2 ≤ d, it is NP-hard to determine the smallest possible total volume of the
k-dimensional faces of ad-dimensional simple nondegenerate polyhedron with a given
vertex set, answering a generalization of a question stated by O’Rourke in 1980.

1. Introduction

While the classical geometric Travelling Salesman Problem is to find a (simple) polygon
with a given set of vertices that has shortest perimeter, it is natural to look for a simple
polygon with a given set of vertices that minimizes another basic geometric measure:
the enclosed area.

Minimum Area Polygonalization (MIN-AREA). Given a finite setP of points in the
Euclidean plane. Among all the simple polygons with vertex setP, find one with minimal
enclosed area.

The related problem ofmaximizingthe enclosed area of a polygonalization is called
MAX-AREA.

∗ A preliminary version of this paper, titled “Minimum Area Polygons,” was presented at the 1993 ACM
Symposium on Computational Geometry.
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Problems of the type MIN-AREA and MAX-AREA arise in the context of like pattern
recognition, image reconstruction, and clustering; higher-dimensional variants play a
role in the modeling of technical objects, as well as optimal surface design.

The complexity of these problems has been open for a while. In 1980 O’Rourke
[16] considered the complexity of a three-dimensional variant, where a given set of ver-
tices has to be covered with a simple polyhedralization of small surface area. At the
first Canadian Conference on Computational Geometry in 1989, Suri posed the com-
plexity of MIN-AREA as an open problem. In addition, there has been some research
on optimal polygonalizations of a given vertex set (see [2], [4], [5], and [25]) that
focussed on finding subpolygons with certain special properties, e.g., convexity. Typi-
cally, the results are fairly general and “area” is only one special case of a measure of
simple polygons for which an algorithm works—“perimeter” usually being among the
others.

One particularly nice aspect of the area of a simple polygon is provided byPick’s
theorem. It states that the areaAR(P) of any simple polygonP with integral vertices can
be expressed as a simple linear function of the number of grid points thatP encounters.
This yields strong connections to problems dealing with the separation of point sets,
and it yields an easy lower bound for the area, which is met iff no new grid points are
encountered. As a consequence, we get a close connection to problems arising from
the separation of point sets by means of polygonal curves which have been considered
by Mitchell and Suri [14], Mitchell [13], Mata and Mitchell [12], and Aggarwal and
Suri [1].

When dealing with structures of small area, one encounters specific difficulties. Most
notably, edges in a polygon with small area need not be short. This makes it difficult
to restrict potential neighbors of a point in a good polygonalization, inhibiting local
search methods for efficient algorithms on one hand, but also straightforward compo-
nent design for a proof of NP-hardness on the other. (See Fig. 1 for an illustrative
example.)

The main result of this paper is to resolve the open questions by O’Rourke and Suri by
giving proofs of NP-completeness for their respective problems. There are consequences
for related problems.

The rest of the paper is organized as follows:
In Section 2 we give a description of Pick’s theorem. We note that Pick’s theorem

yields easy upper and lower bounds for the area of a simple polygon on a given vertex
set.

Section 3 contains an NP-completeness proof for the problem GRID-EMPTY: Is there
a simple polygon that connects a given set of grid points and does not contain any other
grid points on its boundary or in its interior? Since this question is a strong version of
MIN-AREA, the result implies NP-completeness of MIN-AREA.

In Section 4 we shift our attention to the problem MAX-AREA of finding a simple
polygonalization of a given point set with maximal area. We show how a similar NP-
completeness result of MAX-AREA follows directly from the result for GRID-EMPTY.

In Section 5 we consider related problems in higher dimensions. We show that for
fixed dimensionsk andd, finding a simpled-dimensional polyhedron with a given set
of vertices that has minimal volume of itsk-dimensional faces is NP-hard. This answers
and generalizes a question stated by O’Rourke [16].
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Fig. 1. Two horizontally convex sets, with and without a grid-empty polygonalization.

The concluding Section 6 gives a brief discussion of connections to other problems.

2. Pick’s Theorem

Let P be a polygon, given by a set of vertices and a set of edges. We callP simple
if any vertex is only contained in two edges and nonadjacent edges do not intersect.
Now consider a simple polygonP with grid points as vertices. What is its enclosed area
AR(P)?

Algorithmically, this problem can be solved quite efficiently, e.g., see [18]. A
surprising and elegant answer of a different type is provided by Pick’s theorem (see
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Fig. 2. Pick’s theorem.

Fig. 2):

Theorem 2.1[19]. Let P be a simple polygon with integer vertices; let i(P) be the
number of grid points contained in the interior ofP, and let b(P) be the number of grid
points on the boundary ofP. Then

AR(P) = 1
2b(P)+ i (P)− 1.

An elegant proof can be found in [3]. For a discussion of alternative approaches see
the article by Niven and Zuckermann [15]. There are numerous generalizations to other
than the orthogonal grid, e.g., by Ren and Reay [23]; see [22] for a generalization to
higher dimensions.

Pick’s theorem yields a combinatorial interpretation for finding a polygon with
minimal or maximal possible area. (See Fig. 3.) Any grid point that is contained in

Fig. 3. A set of grid vertices with a grid-empty polygonaliztion and a grid-full polygonalization.
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the boundary contributes12 to the area of the polygon, any grid point in the inte-
rior contributes 1. The best we can do when minimizing the area is to avoid includ-
ing any grid points other than the givenn vertices, thus getting a polygon of area
n/2− 1.

If we want tomaximizethe area, we have to include as many additional grid points
as possible into the polygon, in a way that each of them contributes as much as pos-
sible. Since no grid point on the boundary of the convex hull of the given vertex set
can be contained in the interior, they can at most contribute1

2. Any other grid point
that is not given as a vertex will contribute 1 when contained in the interior of the
polygon.

We summarize this upper and lower bound:

Theorem 2.2. Let P be a set of n points in the plane that all have integer coordinates.
Let hi(P) denote the number of points of the integer grid that are not contained in P and
strictly inside the convex hull, and let hb(P) be the number of grid points not in P that
are on the boundary of the convex hull. Then for any simple polygonP on the vertex set
P, we have

n

2
− 1≤ AR(P) ≤ n

2
+ hb(P)

2
+ hi(P)− 1.

These bounds suggest the following questions that are closely related to MIN-AREA and
MAX-AREA:

Grid-Empty Polygonalization (GRID-EMPTY). Given n grid points in the plane. Is
there a simple polygon on this vertex set that does not contain any other grid points on
its boundary or in its interior, which is equivalent to having arean/2− 1?

Grid-Full Polygonalization (GRID-FULL). Givenn grid points in the plane. Is there a
simple polygon on this vertex set that contains as many additional grid points as well as
possible, which is equivalent to having arean/2+ hb(P)/2+ hi(P)− 1?

We show in the following section that these problems are NP-complete. This implies
that MIN-AREA or MAX-AREA cannot be solved in polynomial time, unless P= NP.

3. The Complexity of Minimum Area Polygonization

In this section we give a proof of our main result:

Theorem 3.1. GRID-EMPTY is NP-complete.

It is clear that the problem is in NP. To show that it is NP-hard, we give a reduction of
HAMILTONIAN CYCLE IN CUBIC PLANAR DIRECTED GRAPHS, which was shown to be
NP-complete by Ples´nik [21]. That is, for a given cubic planar digraphD, we construct
a point setPD in polynomial time, such thatPD can be described in polynomial space,
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and PD admits a GRID-EMPTY POLYGONALIZATION if and only if D has a Hamiltonian
cycle.

The idea for this construction is as follows:
After some minor rearrangements of the cubic planar directed graph, it is suitably

embedded in the plane, such that all edges are rectilinear sets of line segments. Then the
embedding is suitably scaled up. The endpoints of line segments are replaced by suitable
sets of grid points (“clusters”). The resulting point set is perturbed, in order to guarantee
that there are no collinearities between nonadjacent endpoints of line segments. It turns
out that a Hamiltonian path in the graph corresponds to a very narrow polygonization
of PD that does not encounter any other grid points. Each set of points corresponding to
an edge that is used in a Hamiltonian path is collected in one connected “branch” of the
polygon, while the clusters corresponding to an edge that is not used by the path are split
into two sets that are contained in two separate branches of the polygon. (This is somewhat
similar to the idea contained in the NP-hardness proof for HAMILTONIAN CYCLE IN GRID

GRAPHSdescribed in [10], [11], and [20]. See [8] and [9] for related techniques.)
The layout of the points is chosen in a way that these branches can only be put together

in a certain way without including any extra grid points.
As pointed out in the Introduction, dealing with areas instead of distances makes it

hard to localize neighbors in a set of points. We achieve the desired localization by the
perturbation mentioned above.

3.1. Basic Observations on Cubic Planar Digraphs

Throughout, we use the notation〈u, v〉 to denote a directed arc fromu to v in a digraph;
a directed path fromv1 to vn, consisting of edges〈v1, v2〉, 〈v2, v3〉, . . ., 〈vn−1, vn〉, is
denoted by〈v1, . . . , vn〉.

Now consider any cubic planar digraphD. There are a few easy assumptions that
we can make about the digraphD when we want to test it for Hamiltonicity: ifD has
a vertex with in-degree 3 or out-degree 3, there can be no Hamiltonian Circuit, so all
vertices must have either in-degree 2 or out-degree 2. Let the first type of vertices be
calledin-vertices, the secondout-vertices. An edge ismandatoryfor a vertex, if and only
if it is the only incoming or outgoing edge; otherwise it isoptional for the vertex. So
optional edges for a vertex come in incoming or outgoing pairs.

Assume there was an edge that was mandatory for one of its endpointsv1, but optional
for its other endpointv2. We could delete the other optional edge ofv2 without changing
the Hamiltonicity of the graph. The resulting vertices of degree 2 and their two adjacent
edges can be replaced by a single edge. We can continue this process until all edges are
either mandatory or optional for both their vertices. (See Fig. 4.)

So we may assume that any edge is either mandatory or optional for both its vertices.
This implies thatD is bipartite, since any mandatory edge goes from an in-vertex to
an out-vertex and any optional edge goes from an out-vertex to an in-vertex. LetV be
the set of vertices ofD, and|V | = m; sinceD is cubic, it has 3m/2 edges; as a planar
graph, it hasm/2+2 faces. Consider the undirected graphG with vertex setV , obtained
by replacing all arcs ofD with edges. Then the optional edges ofD induce a set of
vertex-disjoint cycles inG.
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Fig. 4. Making all edges mandatory or optional for both their vertices.

3.2. Embedding the Cubic Planar Digraph

In this section we show the following lemma:

Lemma 3.2. Let D be a cubic planar digraph with in-degree1 or 2 for each vertex,
and each edge optional or mandatory for both its end vertices. Then D can be drawn
in the plane, such that all edges are represented by rectilinear paths, with precisely two
line segments for the optional edges, and at most eleven line segments for the mandatory
edges. Furthermore, all endpoints of line segments(“joints” ) have coordinates which
are multiples of18 in the range between0 and m, and no two line segments are collinear.

Proof. We use three intermediate steps to produce the required embedding ofD:

(a) Contract a perfect matching ofD to get a 4-regular planar digraphD.
(b) RepresentD by a planar drawing.
(c) Use the drawing ofD to get a drawing ofD with the required properties.

(a) We start by identifying the cycles formed by the optional edges. As noted above,
they are vertex-disjoint and even, so we can easily choose one (of two possible) perfect
matchings in each cycle. For an edgee= 〈v1, v2〉 in a chosen matching, leto+ = 〈v3, v2〉
be the optional edge adjacent tov2, let e− = 〈v2, v4〉 be the mandatory edge adjacent
to v2, let o− = 〈v1, v5〉 be the optional edge adjacent tov1, and lete+ = 〈v6, v1〉 be
the mandatory edge adjacent tov1. Now all selected edgese are contracted: replace
v1 andv2 by a single vertexv1,2, and replace the edgeso+, e−, o−, e+ by 〈v3, v1,2〉,
〈v1,2, v4〉, 〈v1,2, v5〉, 〈v6, v1,2〉. For easier notation, we still writeo+, e−, o−, e+ for the
corresponding new edges. The resulting 4-regular planar digraphD hasm/2 vertices,
m edges, andm/2+ 2 faces, which can be identified with the faces ofD. (See Fig. 5; a
graphD to D is shown in Fig. 6(a).)

(b) For this step, we make use of a particular way of representing a planar graph
in the Euclidean plane: in arectilinear planar layout, every vertex is represented by a
horizontal line segment, every edge is represented by a vertical line segment. Two vertices
are connected by an edge if and only if the corresponding horizontal line segments have
nonempty intersection with the vertical line segment representing the edge. (See Fig. 7(b)
for a planar rectilinear layout for the graph shown in Fig. 5.)
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Fig. 5. A cubic planar digraphD.

Rosenstiehl and Tarjan have described in [24] how every planar graph can be repre-
sented by such a layout. Their method uses a so-calledbipolar labelingof a bridgeless
planar graph: this is a vertex labeling (from 1 tom/2 in the case ofD), such that orienting
each edge from lower to higher label produces a digraph with a unique source 1 and a
unique sinkm/2, and there is an edgee∗ from source to sink. (Without loss of generality
we may assume thate∗ is mandatory.) This labeling induces an edge labeling from 1 to
m by labelinge∗ with m and using the lexicographic order of vertex labels for all other
edges. Furthermore, the bipolar vertex labeling also induces a bipolar order of the dual
graph. See Fig. 6(b) for a bipolar orientationD∗ of the graphD. (The bipolar labeling
of the dual is indicated by the alphabetic order of the letter labels; note that the oriented
edges in the dual cross the edges in the primal from left to right, with the exception ofe∗.)
Once a labeling is obtained (which is possible in linear time), we get a planar rectilinear
layout: letv be a vertex with vertex labely(v), and let min(v) and max(v) be the lowest
and highest edge labels of edges incident tov. Thenv is represented by the horizontal
line segment from(min(v), y(v)) to (max(v), y(v)). Any edgee = 〈vi , vj 〉 with edge
labelx(e) is represented by a vertical line segment from(x(e), y(vi )) to (x(e), y(vj )).
(A proof that this is indeed a feasible rectilinear layout uses the dual bipolar orientation
and can be found in [24].)

In this representation ofD∗, we can orient all edges appropriately to get a planar
rectilinear layout ofD; clearly, no two segments are collinear. Note that the edgee∗

is represented by the segment [(m,1), (m,m/2)], marking the rightmost edge of the
bounding box of the layout.

Fig. 6. (a) A 4-regular planar digraphD; (b) a bipolar orientationD∗ for D.
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Fig. 7. A planar rectilinear layout for (a)D∗ and (b)D.

(c) Now we use the planar rectilinear layout to get an embedding ofD. For easier
notation, we identify vertices and edges with the line segments or points representing
them, and we continue to identify the edgeso+, o−, e+, e− in D with the corresponding
edges inD.

For an intuitive idea of this step, see Fig. 8.
Every vertex segmentv has two edge segments adjacent to it that correspond to

optional edges, an edgeo+ coming in and an edgeo− going out. Similarly, every vertex
segment is adjacent to one incoming mandatory edge segmente+ and one outgoing
mandatory edge segmente−.

Let 〈v1, v2〉 be the directed optional edge inD that was contracted tov. In D, the two
edgeso+ ande− bound a facef that corresponds to a facef in D, which must still be
bounded byo+ ande−. Similarly, o− ande+ must bound the same faceg in D andD.

For all vertex segmentsv, v1 is placed on the vertex segmentv between(x(o−), y(v))
and(x(o+), y(v)), at a distance of18 from (x(o−), y(v)); let x(v1) be the corresponding
x-coordinate. Placev2 on the edge segmento+ = 〈u, v〉 between(x(o+), y(v)) and

Fig. 8. Replacing vertex segments by pairs of edges and rerouting the edges.
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(x(o+), y(u)), at a distance of14 from (x(o−), y(v)); let y(v2) be the corresponding
x-coordinate. Now we reroute the edgeso+, o−, e+, e− around any vertex segmentv to
get a feasible drawing.

The optional edge fromv1 to v2 is represented by the path〈v1, (x(o+), y(v)), v2〉.
Like v2, the vertexv5 in the edgeo− = 〈v1, v5〉 has been placed at a vertical distance of
1
4 from the end ofo−; then the edgeo− is represented by the path〈v1, (x(o−), y(v)), v5〉.
Like v1, the vertexv3 in the edgeo+ = 〈v3, v2〉 has been placed at a horizontal distance
of 1

8 from the end ofo+, at y-coordinatey(v3); then the edgeo+ is represented by the
path〈v3, (x(o+), y(v3)), v2〉. Because these paths use pieces of the edges of the planar
drawing, and none of them more than once, this is a feasible routing.

Now consider the edgee− = 〈v2, v4〉 in D (see Fig. 8(a1), (b1)). Without loss of
generality assume thate− reaches the vertex segmentv from below. Sinceo+ ande−
bound the same facef of D and f has width at least 1 in each direction, there is an axis-
parallel path fromv2 to p = (x(e−), y(v)− 3

8) that does not leavef ; more precisely, we
can move fromv2 in thex-parallel direction until we have reached a horizontal distance
of 1

4 from the boundary off , then trace the boundary off at a distance of14 by moving
parallel too+, v, e−, until reaching a horizontal distance of1

4 from p, from where the
path connects horizontally tov2. This path consists of at most five line segments (with
the extreme case shown in Fig. 8(b2)), and since it stays withinf , it does not inter-
sect any line segments of other paths. Moreover, it keeps a distance of1

4 to the vertex
segmentv.

Finally, consider the edgee+ = 〈v6, v1〉 in D (again, see Fig. 8). Ifv1 lies on the
boundary of the faceg incident toe+ ando− (this case is not shown in the figure), we
can proceed as in the previous paragraph and trace the boundary ofg at a distance of
1
8. This path consists of at most five line segments, and since it stays withing, it does
not intersect any line segments of other paths. Therefore, it remains to deal with the
case wherev1 does not lie on the boundary ofg, implying that the edge segmento−
is closer to the edge segmente+ than the edge segmento+. Edge segmento− reaches
the vertex segmentv from above (shown in Fig. 8(a1)), or from below (Fig. 8(b1)).
In case (a), letq = (x(e+), y(v) − 1

8), in case (b), considerq = (x(e+), y(v) + 1
8).

Then 〈q, (x(v1), y(v) ∓ 1
8), (x(v1), y(v)), v1〉 is a rectilinear path fromq to v1. By

construction,q is the only point on the boundary ofg encountered by this path, soo−
cannot be intersected. Since the path stays within distance1

8 from the edge segmentv,
it cannot intersect the path fore− that was described in the preceding paragraph. Since
it always remains closer to the edge segmento− than to the edge segmento+, it cannot
intersect the path foro+.

As a result, we get a drawing ofD where every optional edge is represented by a
rectilinear path of two line segments, every mandatory edge is represented by a rectilinear
path of at most eleven line segments, and all coordinates determining line segments are
multiples of 1

8, in the range between 0 andm. It is easy to check that step (c) does not
introduce any new collinearities.

This proves the lemma.

We noted above that the edge segment for the mandatory edgee∗ = 〈va, vz〉 is
given by [(m,1), (m,m/2)]. If we replace the edge〈va, vz〉 by the two edges〈s, vz〉 and
〈va, t〉, we get a digraphD′ that has a Hamiltonian path froms to t if and only if D
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Fig. 9. A rectilinear drawing ofD′, and a Hamiltonian path.

has a Hamiltonian cycle. (For reasons that become clear in Section 4 on maximal area,
we make the position oft extremal by movingt to (m+ 1, ty), thereby extending the
adjacent line segment by 1.) (See Fig. 9 for a drawing ofD′, with a Hamiltonian path
indicated by marked arcs.) Clearly, the described embedding forD implies a similar
embedding forD′.

3.3. Replacing Nodes by Point Sets

We proceed to construct a point setPD that will serve as an input for GRID-EMPTY.
In the following, ajoint is a point in the embedding that separates two straight line
segments. So a joint either represents a vertex ofD′, or it is a point where two line
segments meet that belong to the representation of the same edge ofD′. We let M
denote the set of joints, andm the number of joints. It is not hard to see thatm ≤
12m.

In order to have integer coordinates and sufficient space for the following construction,
we start by multiplying all the coordinates in the embedding by a factor of 8N8, where
N := (13m)39m. The number of bits to describeN is polynomial inm, so the resulting
input for GRID-EMPTY is still polynomial inm.

At each joint, we place an appropriate set of points that form a connected subset of
the integer grid—called acluster. We use four different types of clusters:

• terminal clusters for the end verticess andt ,
• bend clustersfor the (at most ten) bends in a path representing a mandatory edge,
• link clusters for the (unique) link in a path representing an optional edge,
• switch clustersfor the degree 3 vertices ofD′.

The joints corresponding tos and t are replaced byterminal clustersas shown in
Fig. 10. The circled positions correspond to the location of the joints, and the underlying
grid is spaced at distance 1. (With respect to later usage in the following section on
maximum area, we make sure that the pointst1 andt2 of the clusters fort are extremal
in the horizontal direction. Note thatt can be moved horizontally as far to the right as
necessary.)
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Fig. 10. The terminal cluster for (a)s and (b)t .

The joints at bends in the paths representing mandatory edges are replaced by one
of four types ofbend clustersas shown in Fig. 11. Again, they are positioned such that
the circled point is placed on the joint and the two line segments for the mandatory
edge run as indicated. The particular choice of type is done as follows. Running through
any mandatory edgee from its start to its end vertex, we encounter a sequence of up
to ten joints. The first has an odd parity bit, the second even, etc. The turn bit is 1 at
a left-hand turn, and 0 at a right-hand turn. Note that this implies that the points of
an odd bend cluster are always to the right of the mandatory edge. The only function
of the combination of a parity bit and a turn bit is to allow a feasible connection of
successive bend clusters along a mandatory edge. (See Fig. 15 for the overall situa-
tion.)

Every joint corresponding to the unique link in the path representing an optional edge
is represented by one of two types oflink clusters—see Fig. 12. The circled point denotes
the location of the joint, the underlying lines indicate the path representing the optional
edge. (In (b), the vertical line runs either above or below the node, depending on the
case shown in Fig. 14.) The indicated triple of points (called atab) inhibits the choice of
an additional tab triple in the switch cluster that is adjacent in the shown direction—see
below. The choice of link cluster depends on the configuration of the optional edge and
the two adjacent mandatory edges. There are four different cases (shown in Fig. 14) that
will be discussed further below.

Fig. 11. Bend clusters.
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Fig. 12. The two types of link clusters.

Every joint corresponding to a vertex of degree 3 inD′ is replaced by aswitch
cluster, consisting of seven, ten, or thirteen points as shown in Figure 13. Out-vertices
(represented by joints with both optional edges leaving horizontally) are replaced by
a horizontal switch cluster, in-vertices (with optional edges entering vertically) by a
vertical switch. In addition to the seven basic points (shown solid in the figure), we add
a tab triple at the dotted location, iff the adjacent link cluster in the indicated direction
does not have an inhibiting tab triple. Each switch cluster has two special points called
pivot points; as it turns out, they prevent any grid-empty polygon from containing a path
from the points of a switch cluster to the points of more than two of the three adjacent
switch clusters. (This idea is illustrated in Figs. 18 and 19 and will be formalized and
proven by a series of lemmas.)

Finally, we specify the specific choice of link cluster for a link` in the drawing ofD′.
Any optional edgeo= 〈u, v〉 in D′ forms a path of length 3 with an incoming mandatory
edgee+ and an outgoing mandatory edge. It has orthogonal turns at the locations foru,
`, andv. We only describe the situation of a right-hand turn atu—the situation for a
left-hand turn is symmetric. There are four different cases—see Fig. 14(a)–(d):

(a) The turn at̀ is right-hand, the turn atv is left-hand.
(b) The turn at̀ is right-hand, the turn atv is right-hand.
(c) The turn at̀ is left-hand, the turn atv is right-hand.
(d) The turn at̀ is left-hand, the turn atv is left-hand.

The grid points in all these clusters form a point setP. A straightforward estimate yields
n := |P| ≤ 13m.

Fig. 13. Horizontal and vertical switch.
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Fig. 14. How to choose the clusters for an optional edge.
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3.4. Perturbing the Point Set

As noted in the Introduction, excluding stray connections is an important issue. We
preempt these unwanted connections inP by a suitable perturbation of the point set.

We think ofx-coordinates as coordinates in the horizontal direction andy-coordinates
as coordinates in the vertical direction. Now partition the clusters intohorizontal classes.
Two clusters belong to the same horizontal class if their corresponding joint locations
(circled in the figures) have identicaly-coordinates. Since the original drawing given
by Lemma 3.2 does not have any collinear line segments, each class consists of two or
three joints, where three joints occur in the case of an out-vertex with the two adjacent
joints representing the bends of the two adjacent optional edges. This implies that there
are less thanm/2 vertical classes. We shift all points in thei th horizontal class by the
vector(0, N2n2i ).

Similarly, define vertical classes and shift the points in thei th horizontal class by the
vector(N4n2i ,0). We denote byPD the point set resulting from both sets of shiftings.
(See Fig. 15. Note that shiftings have been simplified in the drawing to save space.)

These perturbations have a very useful consequence:

Lemma 3.3. Let1 = (p,q, r ) be a triangle with p, q, r ∈ PD and AR(1) = 1
2.

Then p,q, r are from the same cluster, or 1 has an edge of length1 whose altitude has
length1.

Fig. 15. The point setPD .
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Proof. Let p = (p1, p2), q = (q1,q2), andr = (r1, r2). By our choice of coordinates
and shiftings we know that the position of the joint ofp’s cluster can be written asc(p) =
(xc(p), yc(p)) = N8(c1, c2)+ (N4n2i1, N2n2i2); similarly, we getc(q) = (xc(q), yc(q)) =
N8(c3, c4)+(N4n2i3, N2n2i4), andc(r ) = (xc(r ), yc(r )) = N8(c5, c6)+(N4n2i1, N2n2i2).
For the vectord(p) = (d1,d2) = p− c(p) from p to c(p), we know by construction
of the clusters that|di | ≤ 3, and the same holds ford(q) = (d3,d4) = q − c(q) and
d(r ) = (d5,d6) = r − c(r ).

Thus,

p = N8(c1, c2)+ (N4n2i1, N2n2i2)+ (d1,d2),

q = N8(c3, c4)+ (N4n2i3, N2n2i4)+ (d3,d4),

r = N8(c5, c6)+ (N4n2i5, N2n2i6)+ (d5,d6).

Now

1
2 = AR(1) = 1

2 |(q1− p1)(r2− p2)− (r1− p1)(q2− p2)|
= 1

2

∣∣(N8(c3− c1)+ N4(n2i3 − n2i1)+ (d3− d1)
)

× (N8(c6− c2)+ N2(n2i6 − n2i2)+ (d6− d2)
)

− (N8(c5− c1)+ N4(n2i5 − n2i1)+ (d5− d1)
)

× (N8(c4− c2)+ N2(n2i4 − n2i2)+ (d4− d2)
)∣∣

= 1
2

∣∣N16((c3− c1)(c6− c2)− (c5− c1)(c4− c2))

+ N12((c6− c2)(n
2i3 − n2i1)− (c4− c2)(n

2i5 − n2i1))

+ N10((c3− c1)(n
2i6 − n2i2)− (c5− c1)(n

2i4 − n2i2))

+ N8((c3− c1)(d6− d2)− (c5− c1)(d4− d2))

+ N6((n2i3 − n2i1)(n2i6 − n2i2)− (n2i5 − n2i1)(n2i4 − n2i2))

+ N4((n2i3 − n2i1)(d6− d2)− (n2i5 − n2i1)(d4− d2))

+ N2((n2i6 − n2i2)(d3− d1)− (n2i4 − n2i2)(d5− d1))

+ ((d3− d1)(d6− d2)− (d5− d1)(d4− d2))
∣∣ .

SinceN ≥ n3n, this implies the following equations:

(c3− c1)(c6− c2) = (c5− c1)(c4− c2), (1)

(c6− c2)(n
2i3 − n2i1) = (c4− c2)(n

2i5 − n2i1), (2)

(c3− c1)(n
2i6 − n2i2) = (c5− c1)(n

2i4 − n2i2), (3)

(c3− c1)(d6− d2) = (c5− c1)(d4− d2), (4)

(n2i3 − n2i1)(n2i6 − n2i2) = (n2i5 − n2i1)(n2i4 − n2i2), (5)

(n2i3 − n2i1)(d6− d2) = (n2i5 − n2i1)(d4− d2), (6)

(n2i6 − n2i2)(d3− d1) = (n2i4 − n2i2)(d5− d1), (7)

(d3− d1)(d6− d2) = (d5− d1)(d4− d2)+ 1. (8)

Notei j = i` ⇔ cj = c` and consider the ways to satisfy (2): if both sides disappear, we
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get the cases

(A) c6 = c2 ∧ c4 = c2⇒ p,q, r are from the same horizontal class.
(B) i3 = i1 ∧ c4 = c2⇒ p,q are from the same cluster.
(C) c6 = c2 ∧ i5 = i1⇒ p, r are from the same cluster.
(D) i3 = i1 ∧ i5 = i1⇒ p,q, r are from the same vertical class.

If neither side of (2) disappears, theni5 6= i3 andci ≤ n imply a contradiction, hence it
follows that

(E) i3 = i5 ∧ c4 = c6⇒ q, r are from the same cluster.

Without loss of generality consider cases (A) and (B). In both cases, consider (6).
Because of (8),d6 = d2 and d4 = d2 cannot both be true. In case (A), we get the
subcases

(A1) i3 = i1⇒ p,q are from the same cluster,
(A2) i5 = i1⇒ p, r are from the same cluster,

if both sides of (6) disappear, otherwise the subcase

(A3) i5 = i3 ∨ d6 = d4⇒ q, r are from the same cluster.

In case (B), (6) implies the two subcases

(B1) i5 = i1⇒ p,q, r are from the same vertical class,
(B2) d4 = d2. Note that the left side of (7) must disappear. Sinced3 = d1 implies

the contradictionp = q, we concludei6 = i2 ⇒ p,q, r are from the same
horizontal class.

Thus, we may consider without loss of generality that

(X) p,q are from the same cluster,p,q, r are from the same horizontal class.

Since the right side of (6) must disappear, we get the cases

(X1) i5 = i1⇒ p,q, r are from the same cluster.
(X2) d4 = d2. From (8), it follows that|d3 − d1| = 1 (meaning thatp andq form

a horizontal edge of length 1) and|d6 − d2| = 1 (meaning that the vertical
distance ofr from this edge is 1).

This concludes the proof.

As an immediate implication, we get

Corollary 3.4. Let e= (p,q) with p = (x1, y1) and q = (x2, y2) be an edge of a
grid-empty polygonizationP of PD, with p, q from different clusters. Then|x1− x2| = 1
or |y1− y2| = 1.

Proof. In a triangulation ofP, e must be an edge of some triangle. Since all these
triangles are empty, they must have area1

2, so the claim follows from Lemma 3.3.
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For later use when analyzing connections between different clusters, we note another
easy consequence:

Corollary 3.5. Let e= (p1, p2) be an edge between different clusters C1 and C2. Then
there must be a point p3 at distance1 from p1 or p2, such that AR(p1, p2, p3) = 1

2.

In light of this, we call abridgeheadfrom a clusterC1 to a different clusterC2 a pair
of pointsp1, p3 in C1 that has distance 1, if there is at least one pointp2 in C2, such that
p2 has distance 1 from the line throughp1 and p3.

3.5. A Hamiltonian Path Induces an Empty Polygon

Now we show the following:

Lemma 3.6. Suppose that D′ has a Hamiltonian path H from s to t. Then PD has
a simple polygonalizationP that does not encounter any grid points not in PD, so
AR(P) = n/2− 1.

Proof. Let the Hamiltonian pathH be given as a sequence of verticess= vi0, vi1, . . . ,

vin, vin+1 = t . s and t are represented by the terminal clustersT0 andTn+1 in PD, any
other vertexvi corresponds to a switch clusterWi . We constructP as a pairP1, P2 of
disjoint polygonal paths fromT0 via W1, . . . ,Wn to Tn+1—see Fig. 16 for the overall
picture in our running example.P1 has the interior ofP to its right, P2 to its left.

As shown in Fig. 17, bothP1 andP2 follow the bend clusters along a mandatory edge
〈vi , vj 〉 from switch clusterWi to switch clusterWj , collecting all points of these bends
along the way, while avoiding any grid points not inPD. (The indicated edgeei is the
unit edge between the last points ofP1 andP2 in Wi , andej is the unit edge between the
first points ofP1 andP2 in Wj ; the shaded polygonal region bounded byei , P1, P2, and
ej does not contain any grid points not inPD.)

An optional edge〈vi , vk〉 in H is followed by both pathsP1 and P2 as shown in
Fig. 18. (Shown are cases (a) and (b) from Fig. 14—cases (c) and (d) are symmetric to
case (b). The curved parts of the layout are symbolic for the detour pieces that are shown
in Fig. 19 for better analogy—see the description below.) We start at the unit edgeei

(formed by the first points ofP1 andP2 in Wi ) and proceed to the unit edgeek (formed
by the last points ofP1 and P2 in Wk). On the way, all points ofWi , Wk, and the link
clusterLik for the edge〈vi , vk〉 are visited, as are some subsetsSi andSk of the other
two link clusters adjacent toWi andWk. The shaded polygonal region bounded byei ,
P1, P2, andek does not contain any grid points not inPD. An optional edge〈vi , vj 〉 not
in H corresponds to a link clusterLi j . Li j is partitioned into two subsetsSi andSj ; as
shown in Fig. 19,Si and the leftover pivot pointpi of the adjacent switch clusterWi are
collected by a detour of one of the pathsP1, P2 when traversingWi .

When merging the pathsP1 andP2 for the mandatory and optional edges inH , P1 and
P2 meet after collecting all points ofPD; furthermore, merging the polygonal subregions
for all mandatory and optional edges inH at the separating unit edgesei yields a region
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Fig. 16. A Hamiltonian path inD′ and the corresponding grid-empty simple polygonalization forPD ;
mandatory edges are indicated by solid arrowheads, optional edges by hollow arrowheads.

Fig. 17. How to follow an optional edge contained inH .
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Fig. 18. How to follow an optional edge contained inH .

that does not contain any grid points not inPD. Thus, the two paths form a simple
polygonP of the claimed properties.

3.6. An Empty Polygon Induces a Hamiltonian Path

In this section we prove the converse of Lemma 3.6:

Lemma 3.7. Suppose that PD has a simple polygonalizationP that does not encounter
any grid points not in PD, so AR(P) = n/2− 1. Then D′ has a Hamiltonian path H
from s to t.

In the following we assume thatP is a grid-empty simple polygonalization ofPD.
In Section 3.6.1 we analyze the geometry of possible edges. We show with the help of
Corollary 3.4 and further analysis of the cluster structure that edges of a grid-empty
polygon may only occur between adjacent clusters. This allows us to concentrate on
connections between switch clusters in Section 3.6.2. From this we derive that in a
certain well-defined sense, the edges of a grid-empty polygon can connect the points of
a switch cluster to at most two other, adjacent switch clusters. These connections can
thus be used to construct a Hamiltonian path.

Each of the subsections progresses by a sequence of lemmas.

Fig. 19. The detours for an optional edge not contained inH .
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3.6.1. Local Connections. We say that a quadrangle5 = (p0, p1, p2, p3) is abridge
between two different clustersW1 andW2, iff p0, p1 ∈ W1, p2, p3 ∈ W2, 5 is fully
contained inP, andAR(5) = 1. A probe from clusterW1 to clusterW2 is a triangle
1 = (p1, p2, p3) fully contained inP, such thatp1, p3 ∈ W1 and p2 ∈ W2.

Lemma 3.8. Any bridge5 = (p0, p1, p2, p3) is a parallelogram, and the edges e1 =
(p0, p1) and e2 = (p0, p1) have unit length; moreover, the lines through e1 and e2 are
distance1 apart.

Proof. Both triangles11 = (p0, p1, p3) and12 = (p1, p2, p3) lie fully in P, so they
must both be grid-empty. By construction, any axis-parallel connection between points
from different clusters contains grid points not inP, so both triangles are nondegenerate.
Thus, we can apply Pick’s theorem and conclude that both triangles have area1

2. From
Lemma 3.3, we conclude that both11 and12 have base and altitude of size 1; since
they share the edge(p1, p3), they must be congruent, and the claim follows.

Lemma 3.9. Let e1 = (p1, p2) be an edge inP, and suppose p1 and p2 are from two
different clusters C1 and C2. Then there is either a probe or a bridge that contains e1 as
an edge.

Proof. See Fig. 20. Lete0 = (p0, p1) ande2 = (p2, p3) be the edges adjacent toe1

in P. Assume thate1 is not an edge of a probe, sop0 6∈ C2, or the triangle(p0, p1, p2)

is not contained inP, or p3 6∈ C1, or the triangle(p1, p2, p3) is not contained inP.
We will show that there are two pointsp4 ∈ C1 and p5 ∈ C2, such that the quadrangle
5 = (p1, p2, p4, p5) is a bridge.

We write pi = (xi , yi ). e1 is an edge of some triangle1 = (p1, p2, p4) in a triangu-
lation ofP. By Lemma 3.3 we may assume without loss of generality thatp1 andp2 are
from the same horizontal class, and thatp4 is from the same cluster asp1. Furthermore,
Lemma 3.3 implies that|y1 − y2| = 1 and|x4 − x1| = 1; without loss of generality,
considery2 = y1+ 1 andx4 = x1− 1.

By assumption,(p1, p2, p4) is not contained in a probe, so(p2, p4)must be a diagonal
of P. Consider the two grid pointsq1 = (x1 + n, y1) andq2 = (x1 + n, y1 + 1). By
construction ofPG, the distance between different clusters is larger thann, and no two
points of the same cluster can have distancen, soq1,q2 6∈ PG. Consider the intersection
point s1 of the line f = q1q2 with the edgee1. By our assumptions on1, there is a

Fig. 20. A bridge between different clusters.
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segments1s2 of f aboves1 that belongs toP, so there must be another edge ofP that
separatess1 from q2; let e′1 = (p′1, p′2) be the lowest of these edges, i.e., the edge that
intersectsf in s2. Sinces2 lies strictly betweenq1 andq2, it follows from Corollary 3.4
that y′1 = y1 andy′2 = y1 + 1. Since1 is not contained in a probe, we know thate′1 is
disjoint frome1, and we concludex′1 < x1 andx′2 < x2.

Now consider the quadrangle5′ = (s1, p2, p′2, s2)and the pointp5 = (x2−1, y1+1).
By our minimality assumption ons2, no edge ofP crossess1s2. Furthermore, no edge of
P can cross the polygon edgess1 p2 or p′2s2, and no points ofPG are contained strictly
inside of5′. Therefore, no edge ofP can intersect the interior of5′, meaning that all
points strictly inside of5′ belong toP. Since the boundary of any open subset ofP
belongs toP, we conclude that all points of5′ belong toP. This includesp5. Similarly,
all points of the quadrangle5′′ = (p1, s1, s2, p′s) belong toP. The claim follows.

From the above proof, it is straightforward to deduce the following:

Corollary 3.10. Let5 = (p1, p2, p3, p4)with pi = (xi , yi ) be a bridge with p1, p4 ∈
C1 and p2, p3 ∈ C2.Then there are two edges e′1 = (p′1, p′2)and e′′1 = (p′′1, p′′2) inP,such
that y′1 = y′′1 = y1 and y′2 = y′′2 = y2 = y1+ 1, the quadrangle A= (p′1, p′2, p′′2, p′′1) is
fully contained inP, and5 ⊆ A.

Proof. Consider two pointss1 ands2 like in the proof of Lemma 3.9; thene′1 is the lowest
edge intersectings1s2 above the interior of5, ande′′1 is the highest edge intersecting
s1s2 below the interior of5. The rest is shown like in the proof of Lemma 3.9.

For a bridge5, the edgese′1 and e′′1 enclosing5 are called therails of the bridge.
As we noted in Corollary 3.5, connections between different clusters can only oc-
cur at bridgeheads, and bridges require a pair of bridgeheads, one in each cluster
involved.

Lemma 3.11. There cannot be a bridge between two different link clusters.

Proof. By Corollaries 3.10 and 3.4,L1 and L2 must be from the same class, say,
horizontal. LetW be the switch cluster in the same class asL1 andL2, with the joint
positioned aty = 2. Supppose that the bend clusterB adjacent toW is positioned below
y = 0.

There are three cases:

(I) W has no tab triples. Then bothL1 andL2 must be chosen as in one of cases (a)–(c)
of Fig. 14. Without loss of generality, consider case (a), as the link clusters arising from
cases (b) and (c) are merely subsets of the ones from case (a). We see from Fig. 21(I)
that any bridge5 betweenL1 andL2 must connect vertices aty = 1 andy = 2. Let p0

be the first among the (circled) points ofW at y = 2 that is reached alongP1 by an edge
e= (pi , p0). By Corollary 3.4,pi must be fromB, L1, or L2; pi cannot be fromB, as
e would intersect the rails of the bridge5. By Lemma 3.9, this means that there must
be a probe or a bridge fromL1 or L2 that containse as an edge. As noted above, this
requires a bridgehead ofL1 or L2 to a circled point. The only such bridgeheads are at
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Fig. 21. There cannot be a bridge between two different link clusters.

y = 1, as indicated in the figure by the pairs(p1, p3) and(p4, p5). Now it is easy to see
that a bounding edge of a probe or the rail of a bridge originating from either of these
bridgeheads would intersect the interior of5, which is a contradiction to5 ⊂ P.

(II) W has one tab triple. Then considerL1 chosen as in case (a) of Fig. 14, andL2 as in
case (d). (See Fig. 21(II).) Similar to the line of argument in (I), we get a contradiction.

(III) W has two tab triples. Then bothL1 andL2 must be chosen as in case (d) of Fig. 14.
As Fig. 21(III) shows, there are no corresponding bridgeheads inL1 and L2, so there
cannot be a bridge between link clusters of this type.

We know from Corollary 3.4 that a bridge can only exist between clusters from the
same horizontal or vertical class. Since Lemma 3.11 excludes bridges between different
link clusters, only the following possibilities remain:

Corollary 3.12. Any bridge from a nonswitch cluster connects a link cluster to an
adjacent switch cluster, or a bend cluster to an adjacent terminal, switch, or bend
cluster.

3.6.2. Connections between Switch Clusters. With the help of the results from the
previous section, we can proceed to establish properties of connections between switch
clusters. These are used to construct a Hamiltonian path.
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The boundary ofP can be considered a (closed) directed pathP1 starting at the
terminal clusterT0 that has the interior ofP to its right. LetW1 be the switch cluster
next toT0, and letWn be the switch cluster next toTn+1.

Definition 3.13. With Vψ = {T0,W1, . . . ,Wn, Tn+1}, we define a digraph9 =
(Vψ, Aψ) on the set of terminal and switch clusters by its arc set. Fori, j ∈ {1, . . . ,n},
we have〈Wi ,Wj 〉 ∈ Aψ iff Wi is the last switch cluster encountered byP1 before hitting
Wj for the first time. Furthermore, the only arc incident toT0 is 〈T0,W1〉, and the only
arc incident toTn+1 is 〈Wn, Tn+1〉.

For anyWi , let P(i )
1 be the subpath ofP1 that starts atT0 and ends at the first point

of Wi .
With Vγ = M andi ∈ {0, . . . ,n+ 1} we describe a digraph0i = (Vγ , Ai

γ ) on the

setM of clusters by its set of arcs:〈Ci ,Cj 〉 ∈ Ai
γ iff there is an edge ofe ∈ P(i )

1 from

Ci to Cj that does not form a probe with another edgef ∈ P(i )
1 .

Clearly,9 is a spanning arborescence rooted atT0, andTn+1 is a leaf. We will show
that9 is a directed path fromW0 to Wn+1 running through all vertices. For this purpose,
it suffices that there is no vertex of out-degree 2. The graph0 will help us to analyze the
connections between switch clusters.

Lemma 3.14. For i ∈ {1, . . . ,n}, let 〈Wi ,Wj 〉 ∈ Aψ . Then there must be a path
a0, . . . ,ak from Wi to Wj in 0 j , with a0, . . . ,ak−1 corresponding to rails of bridges
in P.

Proof. By definition, any consecutive pair of edges bounding a probe returns to the
same cluster. Recall that, by Corollary 3.4, there cannot be an edge directly fromWi

to Wj . This means that after removing all consecutive pairs of edges inP( j )
1 that form

a probe, there must still be a set of edgesè , ` = 1, . . . , k, in P( j )
1 connectingWi to a

nonswitch clusterC(1)
i j , connectingC(1)

i j to a nonswitch clusterC(2)
i j , etc., and connecting

nonswitch clusterC(k−1)
i j , to Wj . By definition, this means that there is a path fromWi

to Wj in 0 j . Since none of the edgesè , ` = 1, . . . , k − 1, is contained in a probe, we
know from Lemma 3.9 that they must be rails of bridges.

Furthermore, we get

Corollary 3.15. Let 〈Wi ,Wj 〉 ∈ Aψ with i, j ∈ {1, . . . ,n}. Then Wi and Wj corre-
spond to vertices of D that are adjacent.

Proof. By the previous lemma, there is a path fromWi to Wj in0 j , with all but possibly
the last arc corresponding to bridges between nonswitch clusters. Then the claim follows
from Corollary 3.12.
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This allows us to identify arcs in9 with edges inD. Clearly, this implies the following:

Corollary 3.16. Let Wi ∈ Vψ with i ∈ {1, . . . ,n}, and let L1, L2, B be the clusters
adjacent to the switch cluster Wi . If Wi has out-degree2 in9, then there must be bridges
from Wi to L1, L2, B.

Lemma 3.17. Let Wi ∈ Vψ with i ∈ {1, . . . ,n}, and let L1, L2, B be the clusters
adjacent to the switch cluster Wi . Let Wi have out-degree2 in 9, and let e1,e′1 be the
rails of the bridge between Wi and L1, let e2,e′2 be the rails of the bridge between Wi

and L2, and let e3,e′3 be the rails of the bridge between Wi and B. Then for k= 1,2,3,
ek and e′k cannot be connected by edges of P1 that stay within Wi .

Proof. Let Wj be the switch cluster with〈Wj ,Wi 〉 ∈ Aψ , and letW′i , W′′i be the switch
clusters with〈Wi ,W′i 〉 ∈ Aψ , 〈Wi ,W′′i 〉 ∈ Aψ . It is easy to check in Fig. 22 that no
switch cluster can have more than three bridges. If there were a connection betweenek

ande′k within Wi , P1 would enter and leaveW1 through the same bridge, and return to
the same switch cluster it came from. By definition, this cannot be one of the clusters
W′i or W′′i ; on the other hand, it cannot beWj , since thenP1 cannot return toWi to visit
W′i or W′′i without visiting either one of them.

Lemma 3.18. Let W have out-degree2 in 9. Then there must be a probe from an
adjacent link cluster to W.

Fig. 22. Three bridges to a switch cluster: (left) basic setup; (right) resulting connections
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Proof. See Fig. 22. As in the proof of Lemma 3.11, we distinguish cases according to
the number of tab triples ofW, which depends on the choice of nearby link clusters;
since the bridgehead to the next bend cluster is assymetric, we distinguish cases (IIa)
and (IIb). As before, we may consider without loss of generality link clusters of type (a)
when we have to deal with type (a), (b), or (c).

We analyze the possible other edgesP that are incident toW; at each step, we use
that

(i) we must not intersect any edges that have already been deduced,
(ii) no point in PG can be incident to more than two edges,

(iii) by Corollary 3.4, edges to points outside of the cluster can only occur at bridge-
heads,

(iv) by Lemma 3.17, we must not create a connection between rails of the same
bridge, and

(v) no edge must contain grid points outside ofPD.

(I) W does not have any tab triples. Refer to Fig. 22(I). Since the only bridgehead to a
bend clusterB is formed by vertices 5 and 7, the rails of the bridge fromB must end at
these vertices. Since no rail fromL2 may intersect the rail to 5, the rails fromL2 must
end at 5 and 6. This leaves 3 and 4 as the only endpoints of rails fromL1, and we get the
situation as shown in the left figure.

As the only bridgehead involving 7 is already used, it follows from (iii) that 7 must
be connected to a point inW. By (i), it must be 4 or 5, by (ii), it cannot be 5, leaving 4.
Because of (v) and (ii), the only connections of 1 and 2 inW is to 3 or 4. If one of them
is connected to 3 and 4, the other must be connected to two points outside ofW; since
it is not part of a bridgehead, it must be contained in a probe from the outside, i.e., from
an adjacent link cluster.

(IIa) W has one tab triple close to the bridgehead to the bend cluster. Refer to Fig. 22(IIa).
As in case (I), the rails of the bridge fromB must end at 5 and 7, and the rails fromL1

must end at 3 and 4. This leaves only 8 and 9 for the bridge fromL2, and we have the
situation as shown on the left of the figure.

As in (I), 7 must be connected to 4. Similarly, 9 must be connected to 11. Point 11 is
not part of a bridgehead, so it must be connected to a point inW. By (i), it can only be
connected to 5 or 8, by (iv), 8 is excluded, leaving 5. As the only bridgehead involving
8 has already been used, then by (i) and (ii), 8 must be connected to 6. Again, we con-
clude that one of the points 1 or 2 must be contained in a probe from an adjacent link
cluster.

(IIb) W has one tab triple away from the bridgehead to the bend cluster. Refer to
Fig. 22(IIb). As in case (I), the rails of the bridge toB must end at 5 and 7, and the rails
from L2 must end at 5 and 6. This leaves only 7 and 8 for the bridge fromL1, and we
have the situation as shown on the left of the figure.

As 9 to 10 in (IIa), 7 must be connected to 10. By (iii), 10 must be connected in-
side of W, and, by (i), it must be to one of 8, 4, 5, 9. Point 8 is ruled out by (iv),
5 by (ii), and a connection to 9 would imply that the grid point between 8 and 9
that is not inPD would be enclosed byP; so 10 is connected to 4. With the known
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arguments, we conclude that 8 is connected to 3, and 9 to 4. Again, we conclude
that one of the points 1 or 2 must be contained in a probe from an adjacent link
cluster.

(III) W has two tab triples. Refer to Fig. 22(III). As in case (I), the rails of the bridge
to B must end at 5 and 9, and the rails fromL2 must end at 10 and 11. Points 7 and 8
form the only bridgehead toL1, and we have the situation as shown on the left of the
figure.

Like in case (IIa), we conclude that 11 is connected to 13, 13 to 5, and 10 to 6. Like
in case (IIb), we conclude that 7 is connected to 12, 12 to 4, 9 to 4, and 8 to 3. Again,
we conclude that one of the points 1 or 2 must be contained in a probe an adjacent link
cluster.

This concludes the proof.

Lemma 3.19. There cannot be a switch W with out-degree2 in 9.

Proof. See Fig. 23. We assume the samey-coordinates as in the previous lemma. By
the preceding discussion, we know that both adjacent link clustersL1 andL2 must have
a bridge to switch clusterW, and a probe or an edge to the other adjacent switch clusters
W1 andW2. This uses a bridgehead from either link cluster to both their adjacent switch
clusters. Furthermore, we know by Lemma 3.18 that, from one of them, there must be

Fig. 23. Two connections for a link cluster.
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a probe toW to one of the two points ofW at y = 3. Without loss of generality, we
assume that this point is 0 and that it is contained in a probe fromL2.

As before, we analyze the possible other edgesP that are incident toW. At each step,
we use that

(i) we must not intersect any edges that have already been deduced,
(ii) no point in PG can be incident to more than two edges,
(iii) by Corollary 3.4, edges to points outside of the cluster can only occur at bridge-

heads,
(iv) we must not create a connection withinL2 between rails of the same bridge in

order to guarantee a path fromW to W2 via L2, and we must not create a second
path between the endpoints of a probe, and

(v) no edge must contain grid points outside ofPD.

Now distinguish cases according to the type of link cluster:
(a) Refer to Fig. 23(a). The only bridge fromW to L2 uses points 6 and 7. Since an

edge between 1 andW2 (located belowL2 in the figure) would separate 4, 5, and 8 from
W, the bridgehead fromL2 to W2 must be 4 and 8, and we have the situation as in the
left part of the figure.

Since the only possible connection of 6 outside ofL2 is already used, it follows from
(i) and (iv) that 6 must be connected to 9. By (i) and (iv), 8 can only be connected to 5.
Again by (i) and (iv), 5 can only be connected to 0 or 1; since an edge to 0 would separate
1 from all other points, it must be to 1. Now an edge between 4 and 0 separates 1 from
all feasible neighbors for a second connection. This leaves only the bridgehead 2 and 3
to collect 0 by a probe fromL2. Then, by (i), 2 must be connected to 7. By (iv), 3 cannot
be connected to 9, and connecting it to 4 separates 1 from any feasible neighbors, 3 must
be connected to 1. This leaves 4 and 9 as the only potential neighbors. Their connection
runs over the grid pointz 6∈ PD, and we have a contradiction.

(b) Refer to Fig. 23(b). The only bridge fromW to L2 uses points 5 and 6, the only
bridgehead fromL2 to W2 (located belowL2 in the figure) is 1 and 4, and we have the
situation as in the left part of the figure.

Similar to the previous case, it follows that 5 must be connected to 7. An edge between
1 and 0 separates 1 from all feasible neighbors, so the probe fromL2 to 0 must use the
bridgehead 2 and 3. By (i), 2 must be connected to 6. By (iv), 3 cannot be connected to 7.
An edge between 3 and 4 separates 1 from all feasible neighbors, so 3 must be connected
to 1. This leaves 4 and 9 as the only potential neighbors. Their connection runs over the
grid pointz 6∈ PD, and we have again a contradiction.

(c) Refer to Fig. 23(c). The argument is the same as in case (b).
(d) Refer to Fig. 23(d). The only bridge fromW to L2 uses points 6 and 7, the only

bridgehead fromL2 to W2 (located aboveL2 in the figure) is 1 and 3, and we have the
situation as in the left part of the figure.

Since the only possible connection of 1 outside ofL2 is already used, it follows from
(i) and (iv) that 1 must be connected to 2. As a probe to 0 from 6 and 7 violates (iv), the
probe must be from 2, 3, 4. A probe from 2 and 3 violates (iv), a probe from 3 and 4
separates 2 from any potential neighbors, and a probe from 2 and 4 forces the connection
between 3 and 4, contradicting (iv).

This concludes the proof.
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This implies that9 is a path, and each switch clusterW has two neighbors in9.

Lemma 3.20. 9 cannot contain two consecutive arcs that correspond to optional edges
in D.

Proof. Consider a switch clusterW that is connected toW1 andW2 in9 optional edges.
If W had a bridge or a probe to its adjacent bend cluster, the proofs of Lemmas 3.18 and
3.19 still yield a contradiction, so suppose this was not the case. Then the switch cluster
W′ that shares the mandatory edge throughB with W has to be connected toB in 0n;
sinceW′ andW cannot be adjacent in9, W′ must also have two neighbors via optional
edges, so we get the same type of contradiction forW′ instead ofW.

Summarizing, we see that no vertex in the spanning arborescence9 (induced by
connections from terminal clusters and from switch clusters) has out-degree more than 2
(Lemma 3.19), so9 is a Hamiltonian path. Since the corresponding edges inD′ alternate
between optional and mandatory (Lemma 3.20), it follows that from each pair of optional
edges to a vertex, precisely one is chosen, such that we get a Hamiltonian path inD′.
This concludes the proof of Lemma 3.7, and thus Theorem 3.1.

4. Maximal Area

For some practical purposes, one might be more interested in simple polygons with a
large enclosed area than in those with a small area. As we will see, the relation between
the problems MAX-AREA and MIN-AREA is very close, which allows for a simple proof
of NP-hardness. More precisely, we can use our results on GRID-EMPTY to show that
GRID-FULL is NP-hard.

Theorem 4.1. GRID-FULL POLYGON is NP-hard.

Proof. See Fig. 24. Consider the point setP in the NP-hardness proof of GRID-EMPTY.
Note that in any simple polygon with vertex setP of arean/2− 1, the pointst1 :=
(tx, ty−1) andt2 := t1− (0,1) in the terminal box fort are connected to each other. By
construction, all other grid points lie to the left of the vertical line throught1 andt2. (Note
that we made sure of this in the previous section in order to guarantee this property.)
Then add the points

p1 := t2 −(0, N10),

p2 := t1 +(0, N10),

p3 := p1 −(2N10+ 1,0),
p4 := p2 −(2N10+ 1,0)

to P to get the setP. It is straightforward to see that there is a simple polygonP on
the verticesP that satisfies GRID-EMPTY if and only if there is a simple polygonP on
the verticesP that satisfies Pick’s bound for GRID-FULL. (The polygonP is simply the
complement ofP in the square with verticesp1, p2, p3, p4.)
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Fig. 24. GRID-FULL solves GRID-EMPTY: turning a small polygon inside out.

5. Higher Dimensions

In this section we study several higher-dimensional generalizations. We show that in any
fixed dimensionsk andd, finding a simpled-dimensional polyhedron with a given set
of vertices that has minimal volume of itsk-dimensional faces is NP-hard. This answers
and generalizes a question stated by O’Rourke [17], [16].

We start by defining the polyhedral objects that will be considered:

Definition 5.1. A d-dimensional polyhedronP is calledsimpleif it is homotopic (topo-
logically equivalent) to ad-dimensional sphere.

It is feasiblefor a given vertex setP if every vertex ofP belongs toP and every point
in P is contained in at leastd − 1 different faces ofP.

The generalization from the two-dimensional situation is clear: any point inP is
required to be contained in an edge ofP.

5.1. Minimizing Surface Area

The following problem arises in optimal surface design and has been proposed by
O’Rourke [16]:

Minimum Surface Polyhedron (SURF). Given a finite setP of points in three-
dimensional Euclidean space. Among all simple polyhedra that are feasible for a vertex
setP, find the one with the smallest surface area.
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This is a special case of the following problem:

Minimum Face Polyhedron (FACE). Let 2≤ d and 1≤ k ≤ d. Given a finite set P of
points ind-dimensional Euclidean space. Among all simple polyhedra that are feasible
for vertex setP, find the one with the smallest volume of itsk-dimensional faces.

It turns out that FACE is NP-hard for any choice ofd and k. We first show that
the special case SURF is NP-hard by giving a reduction of the problem HAMILTONIAN

CYCLE IN GRID GRAPHS (HCCG), which was shown to be NP-complete by Itai et al.
[10]. A grid graph Gis given by a setPG of n grid points in the plane, with two vertices
adjacent iff the corresponding points have distance 1. In this geometric representation,
any Hamiltonian path inG corresponds to a TSP tour of lengthn for PG; clearly, such a
tour induces an orthogonal simple polygon. If on the other hand, there is no tour ofPG

that uses only unit length edges, it has to use an edge of length at least
√

2, so a shortest
TSP tour must have length at leastn− 1+√2.

Theorem 5.2. SURFis NP-hard.

Proof. Take any instance of HCGG, i.e., a grid graphG with n vertices. Any point
(xi , yi ) ∈ PG is represented by the point(xi , yi ,0) in R3, yielding the setP′G. Let
g = (xg, yg,0) be the center of mass of the points inP′G and p∗ = (xg, yg, H), where
H = 2n3. (See Fig. 25.)

We show that for the setP := P′G ∪ {p∗}, there is a polyhedron with the required
properties of surface arean4+ n2+ 1

8 or lessif and only if there is a (Euclidean) tour of
lengthn or less inP, i.e., a Hamiltonian cycle in the grid graph.

If there is a tour of lengthn, it induces a polyhedron with a surface area of

A+
n∑

i=1

√
H2+ d2

i

2
,

whereA is the area enclosed by the tour anddi is the distance of(xg, yg,0) from thei th
tour edge. Clearly, we haveA ≤ n2 anddi < n. Thus we get the surface area to be at

Fig. 25. Extending a planar tour into a cone in 3-space.



104 S. P. Fekete

most

n2+
n∑

i=1

√
H2+ n2

2
.

Now sinceH = 2n3 and

H2+ n2 <

(
H + n2

2H

)2

,

we have √
H2+ n2 < H + 1

4n
,

so the surface area is at most

n2+ n

(
H

2
+ 1

8n

)
= n4+ n2+ 1

8.

To see the converse, assume that there is no tour of lengthn. First note that for every
simple polyhedronP on P, the domainP2 = P ∩ E2 must be a simple two-dimensional
polygon. (Each vertex inP′G must be close to interior points ofP; furthermore, the set
of inner points ofP close top∗ has to be simply connected and nonempty.) This implies
that the edges ofP2 must form a tour. LetA be the enclosed area of this tour. Discounting
this face ofP, we can partition the surface ofP into a set of triangles by connectingp∗

to all other vertices inP.
If there is no tour of lengthn, the length of the shortest tour must be at leastn+√2−1>

n+ 1
3 and the surface area

A+
n∑

i=1

si

√
H2+ d2

i

2

(wheresi is the length of thei th edge) is at least

0+ H(n+ 1
3)

2
= n4+ n3

3
.

This is bigger thann4+ n2+ 1
8 as soon asn exceeds 3.

5.2. Minimizing Face Volume

We conclude this section by proving the NP-hardness of FACE: the idea is to add a set
of (d − 2) points at a large distance to an instance of a two-dimensional problem to
transform it into ad-dimensional one. We use the following easy lemma:

Lemma 5.3. Let 1 ≤ k and P= {e1, . . . ,ek+1}, where ei denotes the ith unit vector.
Then the k-dimensional regular simplex Sk spanned by P has k-dimensional volume

VOLk(Sk) =
√

k+ 1

k!
.
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Theorem 5.4. FACE is NP-hard.

Proof. We distinguish the following three cases:

(A) k = d.
(B) k = 1.
(C) 1≤ k < d.

For all these cases we use the following:
Let PG be a set ofn points in the planeE2 = {(x1, x2,0, . . . ,0) | x1, x2 ∈ R}

that either represents an instance of MIN-AREA (case (A)) or a grid graphG (cases
(B) and (C)). Letg be the center of mass of the points inPG and pi = g + H · ei

for i = 3, . . . ,d, where H = 9d2n3 and ei denotes thei th unit vector. We write
Pj := ⋃ j

i=3{pi } ∪ PG and Ej := {(x1, . . . , xd) ∈ Rd | xj+1, . . . , xd = 0}. For any
d-dimensional simple polyhedronPd feasible for the vertex setPd, the corresponding
j -dimensional subpolyhedron induced onPj is denoted byPj := Pd ∩ Ej .

As in the previous proof, we may assume thatP2 = P ∩ E2 is a simple polygon.
Furthermore note thatPj is simple if and only ifPj−1 is simple. Finally, each of the
points pi is connected to any other vertex by an edge ofPd.

Now consider case (A).
By Theorem 3.1, it is NP-complete to decide whether a given set ofn grid points

allows a simple polygon of arean/2−1. By Pick’s theorem, we may assume that if there
is no such polygon, there is none of area less than(n− 1)/2.

We claim that there is a simple polyhedron feasible for the verticesPd of volume at
most

VOLd = 2

d!
Hd−2

(
n

2
− 1

)
if and only if there is a simple polygon on the verticesPG with area at mostn/2− 1.

This claim follows by induction overj : consider the (j -dimensional) volumeVOLj (Pj )

and note that

VOLj (Pj ) := VOLj−1(Pj−1)
H

j
, so

VOLj (Pj ) = 2

j !
H j−2

(
n

2
− 1

)
.

Next consider case (B).
We show that there is a simple polyhedronPd that is feasible for the vertex setPd

with sum of edge lengthsLEN(Pd) not exceeding

n+ (d − 2)(d − 3)

2
H
√

2+ (d − 2)nH + n3(d − 2)

2H

if and only if there is a (Euclidean) tour of lengthn or less inPG, i.e., a Hamiltonian
cycle in the grid graph.
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If there is a tour of lengthn, it induces a polyhedronP, such that the sum of edge
lengths inPd−k satisfies

LEN(Pj ) = LEN(Pj−1)+
j−1∑
i=3

dist(pj , pi )+
∑
q∈PG

dist(pj ,q).

Now

dist(pj , pi ) = H
√

2

and, forq ∈ PG,

dist(pj ,q) =
√

H2+ s2
q,

wheresq = dist(q, g) ≤ n, and(
H + n2

2H

)2

> H2+ n2,

thus ∑
q∈PG

dist(pj ,q) < nH + n3

2H
.

Using these relations, we get

LEN(Pd) < n+ (d − 2)(d − 3)

2
H
√

2+ (d − 2)nH + n3(d − 2)

2H
.

Now assume that there is no tour of lengthn in PG. Then it follows from the previous
estimates that

LEN(Pd) ≥ n+
√

2− 1+
d∑

i=3

((i − 2)H + nH) , so

LEN(Pd) ≥ n+
√

2− 1+ (d − 2)(d − 3)

2
H
√

2+ (d − 2)nH.

Since
√

2− 1> (d − 2)n3/2H , the claim holds.
Finally, consider case (C).
For a simple polygonPd on Pd, let FACEk(Pd) denote the sum of volumes of its

k-dimensional faces. For easier notation, we write

Vk+1 =
(

d − 2
k+ 1

) √
k+ 1

k!
Hk,

Vk =
(

d − 2
k

)(
nH + n3

2H

) √
k

(k− 1)!
Hk−1,

Vk−1 =
(

d − 2
k− 1

)
n

(
1+ n2

2H2

)√
k− 1

k!
Hk−1,

Vk−2 =
(

d − 2
k− 2

)
2

(k− 2)!
Hk−2n2.
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We show that there is a simple polyhedronPd feasible for the vertex setPd with

FACEk(Pd) < Vk+1+ Vk + Vk−1+ Vk−2

if and only if there is a (Euclidean) tour of lengthn or less inPG, i.e., a Hamiltonian
cycle in the grid graph.

Consider thek-dimensional facesf of Pd. There are four cases:

Case1: f is determined by a set of k+1 of the d−2 points pi . In this casef is a regular
k-dimensional simplex and we get

VOLk( f ) =
√

k+ 1

k!
Hk.

There are
(d−2

k+1

)
faces of this form, for a total volume ofVk+1.

Case2: f is determined by a set of k of the d− 2 points pi and one of the points in PG.
In this casef consists of a regular(k − 1)-dimensional simplex and a single point at
distance at most √

n2+ H2 < H + n2

2H
.

We get
√

k

(k− 1)!
Hk ≤ VOLk( f ) <

(
1+ n2

2H2

) √
k

(k− 1)!
Hk.

There aren
(d−2

k

)
faces of this form, so the total volume of the upper bound isVk.

Case3: f is determined by a set of k− 1 of the d− 2 points pi and an edge inP2.
Let (q1,q2) be the edge of lengthsi and l1 = dist(q1, g). The volume of the (k − 1)
dimensional simplexS(q1)

k−2 formed byq1 and thek− 1 pointspi is

VOLk−1(S
(q1)

k−2) =
√

l 2
1 + H2

k− 1
VOLk−2(Sk−2).

The distance ofq2 from S(q1)

k−2 lies betweensi (1− k/H) andsi . Since

H ≤
√

l 2
1 + H2 < H + n2

2H
,

we get

si

(
1− k

H

)√
k− 1

k!
Hk−1 ≤ VOLk( f ) < si

(
1+ n2

2H2

)√
k− 1

k!
Hk−1.

There are
(d−2

k−1

)
faces of this form for each edge ofP2.

If we sum this over all (tour) edges for a fixed simplexSk−2, we get a lower bound of

s(T)

(
1− k

H

)√
k− 1

k!
Hk−1
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and an upper bound of

s(T)

(
1+ n2

2H2

)√
k− 1

k!
Hk−1,

wheres(T) is the length of the tour. For all the simplices, this yields a total upper bound
of Vk−1.

Case4: f is determined by a set of k− 2 of the d− 2 points pi and the simple polygon
P2. In this case we get

VOLk( f ) = VOLk(Pk)

and therefore (see Case (A))

VOLj ( f ) = 2

(k− 2)!
Hk−2A,

whereA is the area enclosed byP2; since 0< A < n2, we get

0< VOLk( f ) <
2

(k− 2)!
Hk−2n2.

There are
(d−2

k−2

)
faces of this form, for a total upper bound ofVk−2.

Now assume there is a tour of lengthn. Using the above estimates, we see that this
tour induces a polyhedronPd, such that

FACEk(Pd) < Vk+1+ Vk + Vk−1+ Vk−2.

For the converse assume that there is no tour of lengthn. As noted before, this implies
s(T) ≥ n+√2− 1. From our above lower bounds, we get

FACEk(Pd) > Vk+1+
(

d − 2
k

)
nH

√
k

(k− 1)!
Hk−1

+
(

d − 2
k− 1

)
(n+
√

2− 1)

(
1− k

H

) √
k− 1

k!
Hk−1

= Vk+1+ Vk + Vk−1+ Vk−2+
(√

2− 1
)(d − 2

k− 1

) √
k− 1

k!
Hk−1

−
(

d − 2
k

)(
n3

2

) √
k

(k− 1)!
Hk−2

+
(

d − 2
k− 1

)(
n3

2

) √
k− 1

k!
Hk−3

+
(

d − 2
k− 1

)
(n+
√

2− 1)k

√
k− 1

k!
Hk−2

+
(

d − 2
k− 2

)
2

(k− 2)!
Hk−2n2.
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By multiplying both sides of the easy inequality

(d−2)

√
k√

k− 1

n3

2
+ n3

2H
+(n+

√
2−1)k+2(k− 1)2kn2

√
k− 1

< 9(
√

2−1)d2n3 = (
√

2−1)H

with (((d − 2)!
√

k− 1)/((k− 1)! k!))Hk−2, we conclude that the inequality(
d − 2

k

)(
n3

2

) √
k

(k− 1)!
Hk−2+

(
d − 2
k− 1

)(
n3

2

) √
k− 1

k!
Hk−3

+
(

d − 2
k− 1

)
(n+
√

2− 1)k

√
k− 1

k!
Hk−2+

(
d − 2
k− 2

)
2

(k− 2)!
Hk−2n2

<
(√

2− 1
)(d − 2

k− 1

) √
k− 1

k!
Hk−1

holds. Thus, it follows thatFACEk(Pd) > Vk+1 + Vk + Vk−1 + Vk−2, concluding the
proof.

6. Conclusion

In this paper we show that various problems of optimal volume are NP-hard. By means
of Pick’s theorem, these problems are closely related to problems about inclusion of grid
points. Therefore, our proof techniques have consequences for other problems, where
the objective is to find a simple closed polygonal curve with few edges that separates
two finite sets of points. Complexity of this problem was stated as an open problem by
Mitchell [13], and Mitchell and Suri [14]. Using a construction similar to the one in
Section 3, it is possible to show hardness of this problem. Details will be described in a
future paper.

Since the above problems are NP-hard, it is natural to consider approximation algo-
rithms. Some upper and lower bounds on possible factors for the problem MAX-AREA

can be found in [7].
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