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Abstract. We discuss the problem of finding a simple polygonalization for a given set of
verticesP that has optimal area. We show that these problems are very closely related to
problems of optimizing the number of points from a &ein a simple polygon with vertex

setP and prove that it is NP-complete to find a minimum weight polygon or a maximum
weight polygon for a given vertex set, resulting in a proof of NP-completeness for the
corresponding area optimization problems. This answers a generalization of a question
stated by Suri in 1989. Finally, we turn to higher dimensions, where we prove that, for
1<k <d, 2<d,itis NP-hard to determine the smallest possible total volume of the
k-dimensional faces of d-dimensional simple nondegenerate polyhedron with a given
vertex set, answering a generalization of a question stated by O’Rourke in 1980.

1. Introduction

While the classical geometric Travelling Salesman Problemis to find a (simple) polygon
with a given set of vertices that has shortest perimeter, it is natural to look for a simple
polygon with a given set of vertices that minimizes another basic geometric measure:
the enclosed area.

Minimum Area Polygonalization (MIN-AREA). Given a finite seP of points in the
Euclidean plane. Among all the simple polygons with vertex?sdind one with minimal
enclosed area.

The related problem ahaximizingthe enclosed area of a polygonalization is called
MAX-AREA.

* A preliminary version of this paper, titled “Minimum Area Polygons,” was presented at the 1993 ACM
Symposium on Computational Geometry.
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Problems of the type M-AREA and Max-AREA arise in the context of like pattern
recognition, image reconstruction, and clustering; higher-dimensional variants play a
role in the modeling of technical objects, as well as optimal surface design.

The complexity of these problems has been open for a while. In 1980 O’Rourke
[16] considered the complexity of a three-dimensional variant, where a given set of ver-
tices has to be covered with a simple polyhedralization of small surface area. At the
first Canadian Conference on Computational Geometry in 1989, Suri posed the com-
plexity of MIN-AREA as an open problem. In addition, there has been some research
on optimal polygonalizations of a given vertex set (see [2], [4], [5], and [25]) that
focussed on finding subpolygons with certain special properties, e.g., convexity. Typi-
cally, the results are fairly general and “area” is only one special case of a measure of
simple polygons for which an algorithm works—“perimeter” usually being among the
others.

One particularly nice aspect of the area of a simple polygon is provideRidkys
theoremt states that the areeR(P) of any simple polygorP with integral vertices can
be expressed as a simple linear function of the number of grid point®taatounters.

This yields strong connections to problems dealing with the separation of point sets,
and it yields an easy lower bound for the area, which is met iff no new grid points are
encountered. As a consequence, we get a close connection to problems arising from
the separation of point sets by means of polygonal curves which have been considered
by Mitchell and Suri [14], Mitchell [13], Mata and Mitchell [12], and Aggarwal and
Suri [1].

When dealing with structures of small area, one encounters specific difficulties. Most
notably, edges in a polygon with small area need not be short. This makes it difficult
to restrict potential neighbors of a point in a good polygonalization, inhibiting local
search methods for efficient algorithms on one hand, but also straightforward compo-
nent design for a proof of NP-hardness on the other. (See Fig. 1 for an illustrative
example.)

The main result of this paper is to resolve the open questions by O’Rourke and Suri by
giving proofs of NP-completeness for their respective problems. There are consequences
for related problems.

The rest of the paper is organized as follows:

In Section 2 we give a description of Pick’s theorem. We note that Pick’s theorem
yields easy upper and lower bounds for the area of a simple polygon on a given vertex
set.

Section 3 contains an NP-completeness proof for the problem-EvPTY: Is there
a simple polygon that connects a given set of grid points and does not contain any other
grid points on its boundary or in its interior? Since this question is a strong version of
MIN-AREA, the result implies NP-completeness ofN\VAREA.

In Section 4 we shift our attention to the problemnMAREA of finding a simple
polygonalization of a given point set with maximal area. We show how a similar NP-
completeness result of Mk-AREA follows directly from the result for &D-EMPTY.

In Section 5 we consider related problems in higher dimensions. We show that for
fixed dimension&k andd, finding a simpled-dimensional polyhedron with a given set
of vertices that has minimal volume of ksdimensional faces is NP-hard. This answers
and generalizes a question stated by O’Rourke [16].



On Simple Polygonalizations with Optimal Area 75

(b)

Fig. 1. Two horizontally convex sets, with and without a grid-empty polygonalization.

The concluding Section 6 gives a brief discussion of connections to other problems.

2. Pick’s Theorem

Let P be a polygon, given by a set of vertices and a set of edges. W& csilhple
if any vertex is only contained in two edges and nonadjacent edges do not intersect.
Now consider a simple polygdR with grid points as vertices. What is its enclosed area
AR(P)?

Algorithmically, this problem can be solved quite efficiently, e.g., see [18]. A
surprising and elegant answer of a different type is provided by Pick’s theorem (see
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Fig. 2. Pick’s theorem.

Fig. 2):

Theorem 2.1[19]. LetP be a simple polygon with integer verticdst i (P) be the
number of grid points contained in the interior’Bf and let P) be the number of grid
points on the boundary ¢?. Then

ARP) = b(P) +i(P) — L

An elegant proof can be found in [3]. For a discussion of alternative approaches see
the article by Niven and Zuckermann [15]. There are numerous generalizations to other
than the orthogonal grid, e.g., by Ren and Reay [23]; see [22] for a generalization to
higher dimensions.

Pick’'s theorem yields a combinatorial interpretation for finding a polygon with
minimal or maximal possible area. (See Fig. 3.) Any grid point that is contained in
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Fig. 3. A et of grid vertices with a grid-empty polygonaliztion and a grid-full polygonalization.
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the boundary contribute% to the area of the polygon, any grid point in the inte-
rior contributes 1. The best we can do when minimizing the area is to avoid includ-
ing any grid points other than the givenvertices, thus getting a polygon of area
n/2—1.

If we want tomaximizethe area, we have to include as many additional grid points
as possible into the polygon, in a way that each of them contributes as much as pos-
sible. Since no grid point on the boundary of the convex hull of the given vertex set
can be contained in the interior, they can at most contril%uneny other grid point
that is not given as a vertex will contribute 1 when contained in the interior of the

polygon.
We summarize this upper and lower bound:

Theorem 2.2. Let P be a set of n points in the plane that all have integer coordinates
Let h(P) denote the number of points of the integer grid that are not contained in P and
strictly inside the convex hyland let h,(P) be the number of grid points not in P that
are on the boundary of the convex hidlhen for any simple polygdh on the vertex set

P, we have

n n  hy(P)
E_lfAR(P)SEJ“ >

+hi(P) — 1.

These bounds suggest the following questions that are closely relatad tAR#A and
MAX-AREA:

Grid-Empty Polygonalization (GRID-EMPTY).  Givenn grid points in the plane. Is
there a simple polygon on this vertex set that does not contain any other grid points on
its boundary or in its interior, which is equivalent to having an¢a — 1?

Grid-Full Polygonalization (GRID-FuLL). Givenn grid points in the plane. Is there a

simple polygon on this vertex set that contains as many additional grid points as well as
possible, which is equivalent to having are® + hy(P)/2 + hj(P) — 1?

We show in the following section that these problems are NP-complete. This implies
that MIN-AREA or MAX-AREA cannot be solved in polynomial time, unless-mP.
3. The Complexity of Minimum Area Polygonization
In this section we give a proof of our main result:
Theorem 3.1. GRID-EMPTY is NP-complete
It is clear that the problem is in NP. To show that it is NP-hard, we give a reduction of
HAMILTONIAN CYCLE IN CuBIC PLANAR DIRECTED GRAPHS which was shown to be

NP-complete by Plesk [21]. That is, for a given cubic planar digrajth we construct
a point setPp in polynomial time, such tha®Pp can be described in polynomial space,
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and Pp admits a @ID-EMPTY POLYGONALIZATION if and only if D has a Hamiltonian
cycle.

The idea for this construction is as follows:

After some minor rearrangements of the cubic planar directed graph, it is suitably
embedded in the plane, such that all edges are rectilinear sets of line segments. Then the
embedding is suitably scaled up. The endpoints of line segments are replaced by suitable
sets of grid points (“clusters”). The resulting point set is perturbed, in order to guarantee
that there are no collinearities between nonadjacent endpoints of line segments. It turns
out that a Hamiltonian path in the graph corresponds to a very narrow polygonization
of Pp that does not encounter any other grid points. Each set of points corresponding to
an edge that is used in a Hamiltonian path is collected in one connected “branch” of the
polygon, while the clusters corresponding to an edge that is not used by the path are split
into two sets that are contained in two separate branches ofthe polygon. (This is somewhat
similar to the idea contained in the NP-hardness proof famiHroNiaAN CYCLE IN GRID
GRrAPHsdescribed in [10], [11], and [20]. See [8] and [9] for related techniques.)

The layout of the points is chosen in a way that these branches can only be put together
in a certain way without including any extra grid points.

As pointed out in the Introduction, dealing with areas instead of distances makes it
hard to localize neighbors in a set of points. We achieve the desired localization by the
perturbation mentioned above.

3.1. Basic Observations on Cubic Planar Digraphs

Throughout, we use the notatign, v) to denote a directed arc fromto v in a digraph;
a directed path fromv; to v,, consisting of edgesvy, vo), (v2, v3), ..., (Un_1, Un), IS
denoted by(vy, ..., vn).

Now consider any cubic planar digrafih There are a few easy assumptions that
we can make about the digrafthwhen we want to test it for Hamiltonicity: iD has
a vertex with in-degree 3 or out-degree 3, there can be no Hamiltonian Circuit, so all
vertices must have either in-degree 2 or out-degree 2. Let the first type of vertices be
calledin-vertices the secondut-verticesAn edge isnandatoryfor a vertex, if and only
if it is the only incoming or outgoing edge; otherwise itdptional for the vertex. So
optional edges for a vertex come in incoming or outgoing pairs.

Assume there was an edge that was mandatory for one of its endpgiois optional
for its other endpoini,. We could delete the other optional edgevgfvithout changing
the Hamiltonicity of the graph. The resulting vertices of degree 2 and their two adjacent
edges can be replaced by a single edge. We can continue this process until all edges are
either mandatory or optional for both their vertices. (See Fig. 4.)

So we may assume that any edge is either mandatory or optional for both its vertices.
This implies thatD is bipartite, since any mandatory edge goes from an in-vertex to
an out-vertex and any optional edge goes from an out-vertex to an in-verteX. het
the set of vertices oD, and|V| = m; sinceD is cubic, it has &/2 edges; as a planar
graph, it hasn/2+ 2 faces. Consider the undirected gr&phvith vertex set, obtained
by replacing all arcs oD with edges. Then the optional edgesbfinduce a set of
vertex-disjoint cycles irG.
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' Y

A A

Fig. 4. Making all edges mandatory or optional for both their vertices.

3.2. Embedding the Cubic Planar Digraph

In this section we show the following lemma:

Lemma 3.2. Let D be a cubic planar digraph with in-degrdeor 2 for each vertex
and each edge optional or mandatory for both its end verti¢éen D can be drawn

in the plane such that all edges are represented by rectilinear pathith precisely two
line segments for the optional edgaad at most eleven line segments for the mandatory
edges Furthermore all endpoints of line segment§oints” ) have coordinates which
are multiples o% in the range betwee@and m and no two line segments are collinear

Proof. We use three intermediate steps to produce the required embedding of

(@) Contract a perfect matching bfto get a 4-regular planar digrajih
(b) Represenb by a planar drawing.
(c) Use the drawing oD to get a drawing oD with the required properties.

(a) We start by identifying the cycles formed by the optional edges. As noted above,
they are vertex-disjoint and even, so we can easily choose one (of two possible) perfect
matchings in each cycle. For an edge (vq, vp) inachosen matching, let. = (vs, v;)
be the optional edge adjacentig lete_ = (vy, v4) be the mandatory edge adjacent
to vy, leto_ = (v, vs) be the optional edge adjacentig and lete, = (ve, v1) be
the mandatory edge adjacentig Now all selected edges are contracted: replace
v1 and v, by a single vertex », and replace the edges, e_, o_, e; by (vs, v12),

(v1.2, v4), (v1.2, Us), {Ve, v1,2). FOr easier notation, we still write, , e_, o_, e, for the

corresponding new edges. The resulting 4-regular planar digbapasm/2 vertices,
m edges, andh/2 + 2 faces, which can be identified with the facedof(See Fig. 5; a
graphD to D is shown in Fig. 6(a).)

(b) For this step, we make use of a particular way of representing a planar graph
in the Euclidean plane: in mectilinear planar layout every vertex is represented by a
horizontal line segment, every edge is represented by a vertical line segment. Two vertices
are connected by an edge if and only if the corresponding horizontal line segments have
nonempty intersection with the vertical line segment representing the edge. (See Fig. 7(b)
for a planar rectilinear layout for the graph shown in Fig. 5.)
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Fig. 5. A cubic planar digraplb.

Rosenstiehl and Tarjan have described in [24] how every planar graph can be repre-
sented by such a layout. Their method uses a so-chipedar labelingof a bridgeless
planar graph: this is a vertex labeling (from Inmg2 in the case ob), such that orienting
each edge from lower to higher label produces a digraph with a unigue source 1 and a
unique sinkm/2, and there is an ed@# from source to sink. (Without loss of generality
we may assume that is mandatory.) This labeling induces an edge labeling from 1 to
m by labelinge* with m and using the lexicographic order of vertex labels for all other
edges. Furthermore, the bipolar vertex labeling also induces a bipolar order of the dual
graph. See Fig. 6(b) for a bipolar orientatiri of the graphD. (The bipolar labeling
of the dual is indicated by the alphabetic order of the letter labels; note that the oriented
edges in the dual cross the edges in the primal from left to right, with the exceptbdi of
Once a labeling is obtained (which is possible in linear time), we get a planar rectilinear
layout: letv be a vertex with vertex labgl(v), and let mirjv) and maxv) be the lowest
and highest edge labels of edges incident.t®henv is represented by the horizontal
line segment fron{min(v), y(v)) to (max(v), y(v)). Any edgee = (v, vj) with edge
labelx(e) is represented by a vertical line segment frome), y(vi)) to (x(e), y(vj)).

(A proof that this is indeed a feasible rectilinear layout uses the dual bipolar orientation
and can be found in [24].)

In this representation ob*, we can orient all edges appropriately to get a planar
rectilinear layout ofD; clearly, no two segments are collinear. Note that the ezige
is represented by the segmefm[ 1), (m, m/2)], marking the rightmost edge of the
bounding box of the layout.

(b)

Fig. 6. (a) A 4-regular planar digrapB; (b) a bipolar orientatioD* for D.
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Fig. 7. A planar rectilinear layout for (alp* and (b)D.

(c) Now we use the planar rectilinear layout to get an embedding.dfor easier
notation, we identify vertices and edges with the line segments or points representing
them, and we continue to identify the edges o_, e,, e_ in D with the corresponding
edges inD.

For an intuitive idea of this step, see Fig. 8.

Every vertex segment has two edge segments adjacent to it that correspond to
optional edges, an edge coming in and an edge_ going out. Similarly, every vertex
segment is adjacent to one incoming mandatory edge segmesmhid one outgoing
mandatory edge segmeaat.

Let (v1, vo) be the directed optional edge ihthat was contracted ta In D, the two
edges, ande_ bound a facef that corresponds to a fadein D, which must still be
bounded by, ande_. Similarly,o_ ande, must bound the same fagen D andD.

For all vertex segments v, is placed on the vertex segmertbetweenx(o_), y(v))
and(x(oy), y(v)), at a distance og from (x(0_), y(v)); let x(vy) be the corresponding
x-coordinate. Place, on the edge segment. = (u, v) between(x(oy), y(v)) and

& V1 VZ
1 p
e+ e
(al)
2 f Y
p
g
e e, 0
(b1) (b2)

Fig. 8. Replacing vertex segments by pairs of edges and rerouting the edges.
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(x(0y), y(u)), at a distance oﬁ from (x(0_), y(v)); let y(vy) be the corresponding
x-coordinate. Now we reroute the edges o_, e, , e_ around any vertex segmento
get a feasible drawing.

The optional edge frone; to v, is represented by the paths, (x(0,), y(v)), va).

Like vy, the vertexvs in the edgeo_ = (vy, vs) has been placed at a vertical distance of

;11 from the end ob_; then the edge_ is represented by the pathy, (X(0_), y(v)), vs).

Like vq, the vertexvs in the edgeo, = (v3, v2) has been placed at a horizontal distance
of % from the end ofo,, at y-coordinatey(vz); then the edge, is represented by the
path(vs, (X(0y), Y(v3)), v2). Because these paths use pieces of the edges of the planar
drawing, and none of them more than once, this is a feasible routing.

Now consider the edge. = (v, v4) in D (see Fig. 8(al), (bl)). Without loss of
generality assume that reaches the vertex segmanfrom below. Sinceo, ande_
bound the same fackof D and f has width at least 1 in each direction, there is an axis-
parallel path from, to p = (x(e_), y(v) — g) that does not leavé; more precisely, we
can move fromv, in thex-parallel direction until we have reached a horizontal distance
of ;11 from the boundary of , then trace the boundary dfat a distance oﬁ by moving
parallel too,, v, e_, until reaching a horizontal distance g)ffrom p, from where the
path connects horizontally . This path consists of at most five line segments (with
the extreme case shown in Fig. 8(b2)), and since it stays withiit does not inter-
sect any line segments of other paths. Moreover, it keeps a distar%ctoahe vertex
segmenb.

Finally, consider the edge, = (ve, v1) in D (again, see Fig. 8). If; lies on the
boundary of the facg incident toe, ando_ (this case is not shown in the figure), we
can proceed as in the previous paragraph and trace the boundgat af distance of
%. This path consists of at most five line segments, and since it stays witftidoes
not intersect any line segments of other paths. Therefore, it remains to deal with the
case where; does not lie on the boundary g¢f implying that the edge segmeat
is closer to the edge segmemt than the edge segmeant. Edge segment_ reaches
the vertex segment from above (shown in Fig. 8(al)), or from below (Fig. 8(b1)).
In case (a), leg = (x(e}), y(v) — %), in case (b), considey = (x(ey), y(v) + %).
Then (g, (X(v1), Y(v) F %), (X(v1), Y(v)), v1) is a rectilinear path frong to v;. By
constructiong is the only point on the boundary gfencountered by this path, sa
cannot be intersected. Since the path stays within distérﬁrm“n the edge segment
it cannot intersect the path fer that was described in the preceding paragraph. Since
it always remains closer to the edge segntenthan to the edge segmemt, it cannot
intersect the path fao, .

As a result, we get a drawing @ where every optional edge is represented by a
rectilinear path of two line segments, every mandatory edge is represented by a rectilinear
path of at most eleven line segments, and all coordinates determining line segments are
multiples of £, in the range between 0 amdl It is easy to check that step (c) does not
introduce any new collinearities.

This proves the lemma. O

We noted above that the edge segment for the mandatory efdge (v,, v;) is
given by [(m, 1), (m, m/2)]. If we replace the edgé&,, v;) by the two edgess, v,) and
(va, t), we get a digraptD’ that has a Hamiltonian path fromto t if and only if D
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Fig. 9. A rectilinear drawing ofD’, and a Hamiltonian path.

has a Hamiltonian cycle. (For reasons that become clear in Section 4 on maximal area,
we make the position df extremal by moving to (m + 1, ty), thereby extending the
adjacent line segment by 1.) (See Fig. 9 for a drawin@®gfwith a Hamiltonian path
indicated by marked arcs.) Clearly, the described embeddin@ fonplies a similar
embedding foD’.

3.3. Replacing Nodes by Point Sets

We proceed to construct a point dep that will serve as an input for GD-EMPTY.
In the following, ajoint is a point in the embedding that separates two straight line
segments. So a joint either represents a verte®'ofor it is a point where two line
segments meet that belong to the representation of the same edje \6k let M
denote the set of joints, ari the number of joints. It is not hard to see thmt <
12m.

Inorder to have integer coordinates and sufficient space for the following construction,
we start by multiplying all the coordinates in the embedding by a factoNSf 8vhere
N := (13m)39". The number of bits to descriti¢ is polynomial inm, so the resulting
input for GRID-EMPTY s still polynomial inm.

At each joint, we place an appropriate set of points that form a connected subset of
the integer grid—called eluster. We use four different types of clusters:

e terminal clusters for the end vertices andt,

e bend clustersfor the (at most ten) bends in a path representing a mandatory edge,
o link clusters for the (unique) link in a path representing an optional edge,

o switch clustersfor the degree 3 vertices &'.

The joints corresponding te andt are replaced byerminal clustersas shown in
Fig. 10. The circled positions correspond to the location of the joints, and the underlying
grid is spaced at distance 1. (With respect to later usage in the following section on
maximum area, we make sure that the potp@ndt, of the clusters fot are extremal
in the horizontal direction. Note thatcan be moved horizontally as far to the right as
necessary.)



84 S. P. Fekete

—eo —o
( N J
®

() (

Fig. 10. The terminal cluster for (a§ and (b)t.

The joints at bends in the paths representing mandatory edges are replaced by one
of four types ofbend clusterss shown in Fig. 11. Again, they are positioned such that
the circled point is placed on the joint and the two line segments for the mandatory
edge run as indicated. The particular choice of type is done as follows. Running through
any mandatory edge from its start to its end vertex, we encounter a sequence of up
to ten joints. The first has an odd parity bit, the second even, etc. The turn bit is 1 at
a left-hand turn, and O at a right-hand turn. Note that this implies that the points of
an odd bend cluster are always to the right of the mandatory edge. The only function
of the combination of a parity bit and a turn bit is to allow a feasible connection of
successive bend clusters along a mandatory edge. (See Fig. 15 for the overall situa-
tion.)

Every joint corresponding to the unique link in the path representing an optional edge
is represented by one of two typediok clusters—see Fig. 12. The circled point denotes
the location of the joint, the underlying lines indicate the path representing the optional
edge. (In (b), the vertical line runs either above or below the node, depending on the
case shown in Fig. 14.) The indicated triple of points (calléabjinhibits the choice of
an additional tab triple in the switch cluster that is adjacent in the shown direction—see
below. The choice of link cluster depends on the configuration of the optional edge and
the two adjacent mandatory edges. There are four different cases (shown in Fig. 14) that
will be discussed further below.

Turn bit 1 0
Parity bit °®
L N
I °
o
0

Fig. 11. Bend clusters.
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(&) (b)

Fig. 12. The two types of link clusters.

Every joint corresponding to a vertex of degree 3Dhis replaced by awitch
cluster, consisting of seven, ten, or thirteen points as shown in Figure 13. Out-vertices
(represented by joints with both optional edges leaving horizontally) are replaced by
a horizontal switch cluster, in-vertices (with optional edges entering vertically) by a
vertical switch. In addition to the seven basic points (shown solid in the figure), we add
a tab triple at the dotted location, iff the adjacent link cluster in the indicated direction
does not have an inhibiting tab triple. Each switch cluster has two special points called
pivot points as it turns out, they prevent any grid-empty polygon from containing a path
from the points of a switch cluster to the points of more than two of the three adjacent
switch clusters. (This idea is illustrated in Figs. 18 and 19 and will be formalized and
proven by a series of lemmas.)

Finally, we specify the specific choice of link cluster for a lihik the drawing ofD’.

Any optional edg® = (u, v) in D’ forms a path of length 3 with an incoming mandatory
edgee, and an outgoing mandatory edge. It has orthogonal turns at the locatians for
¢, andv. We only describe the situation of a right-hand turruatthe situation for a
left-hand turn is symmetric. There are four different cases—see Fig. 14(a)—(d):

(a) The turn at is right-hand, the turn at is left-hand.
(b) The turn at is right-hand, the turn at is right-hand.
(c) The turn at is left-hand, the turn at is right-hand.
(d) The turn at is left-hand, the turn at is left-hand.

The grid points in all these clusters form a point BefA straightforward estimate yields
n:=|P| < 13m.

pivot points

() (b)

Fig. 13. Horizontal and vertical switch.
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.14. How to choose the clusters for an optional edge.



On Simple Polygonalizations with Optimal Area 87

3.4. Perturbing the Point Set

As noted in the Introduction, excluding stray connections is an important issue. We
preempt these unwanted connection®iby a suitable perturbation of the point set.

We think ofx-coordinates as coordinates in the horizontal directionyaodordinates
as coordinates in the vertical direction. Now partition the clusterdiotzontal classes
Two clusters belong to the same horizontal class if their corresponding joint locations
(circled in the figures) have identicgtcoordinates. Since the original drawing given
by Lemma 3.2 does not have any collinear line segments, each class consists of two or
three joints, where three joints occur in the case of an out-vertex with the two adjacent
joints representing the bends of the two adjacent optional edges. This implies that there
are less thaim/2 vertical classes. We shift all points in thia horizontal class by the
vector(0, N2n?).

Similarly, define vertical classes and shift the points initheéhorizontal class by the
vector(N*n? | 0). We denote byPp the point set resulting from both sets of shiftings.
(See Fig. 15. Note that shiftings have been simplified in the drawing to save space.)

These perturbations have a very useful consequence:

Lemma3.3. LetA = (p,q,r) be a triangle with pg,r € Pp and ARA) = %
Then pq, r are from the same clustasr A has an edge of lengthwhose altitude has
length1.

.&p ————————————————————————————————— )
|
s A %
| b
: ) :
I | @'"""."_"—T‘T
| | ]
| i . :
ki | o |
e et - |
| : : ! :
I FooTmooo R |
I | R
| R
| |
b e 4

Fig. 15. The point sefp.
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Proof. Letp = (p1, pP2),q = (41, 02), andr = (ry, rp). By our choice of coordinates
and shiftings we know that the position of the joint$ cluster can be written agp) =
Xe(p)» Yem) = NB(c1, €2) 4+ (N*n?t, N2n?2); similarly, we gete(q) = (Xe)» Ye() =
N®(cs, ca)+(N*n?2, N2n?¢), andc(r) = (Xe()» Yer)) = N3(Cs, Co) +(N*n?t, N2n?2).
For the vectod(p) = (di, d2) = p — c(p) from p to c(p), we know by construction
of the clusters thafdi| < 3, and the same holds fdiq) = (d3, d4) = q — ¢(q) and
d(r) = (ds,dg) =r —c(r).

Thus,
p = N8(cy, ¢o) + (N*n?1, N2n?2) 4 (dy, dy),
q = N&(cs, cg) + (N*n?2, N2n?4) 4 (dg, dy),
r = N8(cs, cs) + (N*n?s, N?n?e) 4 (ds, dg).
Now
2 = ARA) = Z (01 — pO)(r2 — P2) — (' — P)(G — P2)

= 2](N8(cs — cp) + N*(n** — n?1) + (d3 — dy))
x (N3(ce — C2) + N2(n?s — n??) + (dg — db))
— (N8(cs — c1) + N*(n?s — n?") + (ds — dy))
x (N3(cq — €2) + N*(n?* — n?2) + (dy — dp)) |

= 3 |N™((cs — c1)(Cs — C2) — (C5 — C1)(Cs — C2))
+ N*2((cs — €)(n?? — n?1) — (Cq — C)(n?s — n?1))
+ N¥((c3 — c1)(n?e — n?¥2) — (cs — c1)(n?* — n?2))
+ N8((c3 — €1)(ds — d2) — (G5 — C1)(ds — )
+ NG((n2i3 _ nzil)(nZie _ n2i2) _ (n2i5 _ nzil)(n2i4 _ n2i2))
+ N4 (0 — n?1)(dg — dp) — (N?® — n?*)(ds — b))
+ N2((n?s — n??)(ds — dy) — (n?* — n??)(ds — dy))
+ ((d3 — dp)(ds — dp) — (ds — dy)(ds — dp))| .

SinceN > n®", this implies the following equations:

(€3 —C1)(Cs — C2) = (G5 — C1)(Cs — C2), 1)

(Cs — C)(N?* —n?Y) = (cs — ) (N — n?), )
(cs — c)(n?® —n??) = (cs — c)(n?* — n?2), ©)
(Cz3 — C1)(ds — dp) = (C5 — C1)(ds — ), 4)

(n2i3 _ n2i1)(n2i5 _ n2i2) — (n2i5 _ n2i1)(n2i4 _ n2i2)’ (5)
(n?* —n?1)(dg — dp) = (N?* —n?1)(ds — dp), (6)
(N —n?2)(dg — dy) = (n?* —n?2)(ds — dy), (7)
(d3 —dy)(dg —dp) = (ds —dy)(ds — ) + 1. 8)

Notei; =i, < ¢j = ¢, and consider the ways to satisfy (2): if both sides disappear, we
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get the cases

(A) cg=CrACy=Co = P, q,r are from the same horizontal class.
(B) iz =11 ACq4=Cp = p,q are from the same cluster.

(C) cg=cC A5 =11 = p,r are from the same cluster.

(D) i3=i1Ais=1i1= p,q,r are from the same vertical class.

If neither side of (2) disappears, they~ is andc; < nimply a contradiction, hence it
follows that

(E) i3=1is5ACq4 =Cs = Q,r are from the same cluster.

Without loss of generality consider cases (A) and (B). In both cases, consider (6).
Because of (8)ds = d, andd; = d, cannot both be true. In case (A), we get the
subcases

(Al) i3 =i1 = p, qare from the same cluster,
(A2) is =iy = p,r are from the same cluster,

if both sides of (6) disappear, otherwise the subcase
(A3) i5 =i3V ds =ds = q,r are from the same cluster.
In case (B), (6) implies the two subcases

(B1) is = i1 = p, q,r are from the same vertical class,

(B2) d; = dy. Note that the left side of (7) must disappear. Sidge= d; implies
the contradictionp = g, we concluddg = i, = p, q,r are from the same
horizontal class.

Thus, we may consider without loss of generality that
(X) p, q are from the same clustep, g, r are from the same horizontal class.
Since the right side of (6) must disappear, we get the cases

(X1) is=i1 = p,q,r are from the same cluster.

(X2) d4 = dy. From (8), it follows thatds — d;| = 1 (meaning thap andqg form
a horizontal edge of length 1) anids — d>| = 1 (meaning that the vertical
distance of from this edge is 1).

This concludes the proof. O

As an immediate implication, we get

Corollary 3.4. Lete= (p,q) with p = (xg, y1) and g = (X2, y») be an edge of a
grid-empty polygonizatiof® of Py, with p, g from different clustersThen|x; —x;| = 1
orly1 — Yo/ = 1.

Proof. In a triangulation ofP, e must be an edge of some triangle. Since all these
triangles are empty, they must have a%eao the claim follows from Lemma 3.3. O
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For later use when analyzing connections between different clusters, we note another
easy conseguence:

Corollary 3.5. Lete= (p1, p2) be an edge between different clustefsa@d G. Then
there must be a pointzmt distancel from p or py, such that ARps, p2, p3) = %

In light of this, we call éridgeheadrom a clusteiC; to a different cluste€, a pair
of pointspy, ps in C; that has distance 1, if there is at least one ppjin C,, such that
p2 has distance 1 from the line through and ps.

3.5. A Hamiltonian Path Induces an Empty Polygon

Now we show the following:

Lemma 3.6. Suppose that Dhas a Hamiltonian path H from s ta Then B has
a simple polygonalizatiorP that does not encounter any grid points not ig,Ro
AR(P) =n/2-1.

Proof. Let the Hamiltonian patii be given as a sequence of vertices vj,, vi,, .. .,
vi,, Vi,,, = t. sandt are represented by the terminal clust&sand Tn;1 in Pp, any
other vertexv; corresponds to a switch clustéf,. We construc® as a pairP;, P, of
disjoint polygonal paths fronTy via Wy, ..., W, to T,,1;—see Fig. 16 for the overall
picture in our running examplé has the interior of to its right, P, to its left.

As shown in Fig. 17, botl®; and P, follow the bend clusters along a mandatory edge
(vi, vj) from switch clustei to switch clusteiV;, collecting all points of these bends
along the way, while avoiding any grid points nothg. (The indicated edge is the
unit edge between the last points®fandP, in W;, ande; is the unit edge between the
first points of P, and P, in W;; the shaded polygonal region boundedeayP;, P,, and
g does not contain any grid points noti.)

An optional edge(v;, vk) in H is followed by both pathd?;, and P, as shown in
Fig. 18. (Shown are cases (a) and (b) from Fig. 14—cases (c) and (d) are symmetric to
case (b). The curved parts of the layout are symbolic for the detour pieces that are shown
in Fig. 19 for better analogy—see the description below.) We start at the uniteedge
(formed by the first points oP; and P, in W;) and proceed to the unit edge (formed
by the last points ofP; and P, in W). On the way, all points ofVj, W, and the link
clusterLix for the edg€(vi, vi) are visited, as are some subsgt@and S, of the other
two link clusters adjacent td andW. The shaded polygonal region boundedepy
P., P>, ande, does not contain any grid points notf. An optional edg€uv;, vj) not
in H corresponds to a link clustér;. L;; is partitioned into two subse® andS; as
shown in Fig. 195 and the leftover pivot poinp; of the adjacent switch clust®y, are
collected by a detour of one of the patRg P, when traversing\i.

When merging the patH3, andP, for the mandatory and optional edgedinP; and
P, meet after collecting all points é¢¥y; furthermore, merging the polygonal subregions
for all mandatory and optional edgeshkhat the separating unit edgesyields a region
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Fig. 16. A Hamiltonian path inD’ and the corresponding grid-empty simple polygonalization Rgr,
mandatory edges are indicated by solid arrowheads, optional edges by hollow arrowheads.

Fig. 17. How to follow an optional edge contained k.

91
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53

i
(@) %/{;7’ Pk

Fig. 18. How to follow an optional edge contained .

that does not contain any grid points notRy. Thus, the two paths form a simple
polygonP of the claimed properties. O

3.6. An Empty Polygon Induces a Hamiltonian Path
In this section we prove the converse of Lemma 3.6:

Lemma 3.7. Suppose that f°has a simple polygonalizatidh that does not encounter
any grid points not in B, so ARP) = n/2 — 1. Then D has a Hamiltonian path H
fromstot

In the following we assume th&® is a grid-empty simple polygonalization &%.
In Section 3.6.1 we analyze the geometry of possible edges. We show with the help of
Corollary 3.4 and further analysis of the cluster structure that edges of a grid-empty
polygon may only occur between adjacent clusters. This allows us to concentrate on
connections between switch clusters in Section 3.6.2. From this we derive that in a
certain well-defined sense, the edges of a grid-empty polygon can connect the points of
a switch cluster to at most two other, adjacent switch clusters. These connections can
thus be used to construct a Hamiltonian path.

Each of the subsections progresses by a sequence of lemmas.

(a) (b)

Fig. 19. The detours for an optional edge not containeéiin
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3.6.1. Local Connections We say that a quadranglé = (po, p1, P2, p3) is abridge
between two different clusteid/, andWs, iff pg, p1 € Wi, p2, ps € Wo, IT is fully
contained inP, andAR(IT) = 1. A probefrom clusterW; to clusterW, is a triangle
A = (p1, p2, p3) fully contained inP, such thatp;, ps € Wy andp, € Ws.

Lemma 3.8. Any bridgell = (po, p1, P2, P3) is a parallelogramand the edges,e=
(po, p1) and & = (po, p1) have unit lengthmoreoverthe lines through gand e are
distancel apart

Proof. Both trianglesA; = (po, p1, P3) andAz = (p1, P2, p3) lie fully in P, so they

must both be grid-empty. By construction, any axis-parallel connection between points
from different clusters contains grid points nofnso both triangles are nondegenerate.
Thus, we can apply Pick’s theorem and conclude that both triangles havé.a?ﬂ.‘an
Lemma 3.3, we conclude that botty and A, have base and altitude of size 1; since
they share the edgep;, p3), they must be congruent, and the claim follows. O

Lemma 3.9. Lete = (p1, p2) be an edge irP, and suppose jpand  are from two
different clusters €and G. Then there is either a probe or a bridge that containae
an edge

Proof. See Fig. 20. Lety = (po, p1) andex = (P2, p3) be the edges adjacent ¢p
in P. Assume thag; is not an edge of a probe, §8 ¢ C,, or the triangle(po, pP1, P2)

is not contained inP, or ps ¢ Cy, or the triangle(py, p2, p3) is not contained inP.
We will show that there are two poinfs € C; and ps € C,, such that the quadrangle
IT = (P1. P2, Pa, Ps) is a bridge.

We write pj = (X, ;). € is an edge of some triangle = (p1, p2, ps) in a triangu-
lation of P. By Lemma 3.3 we may assume without loss of generality phaind p, are
from the same horizontal class, and tpais from the same cluster a&. Furthermore,
Lemma 3.3 implies thaty; — y»| = 1 and|x4 — X1| = 1; without loss of generality,
considery, = y; + 1 andxs = x; — 1.

By assumptionps, p2, ps) is notcontained in a probe, $p, p4) must be a diagonal
of P. Consider the two grid pointg; = (X1 + n, y1) andgz = (X1 + n, y; + 1). By
construction ofPg, the distance between different clusters is larger thiaand no two
points of the same cluster can have distamc®q;, g, & Ps. Consider the intersection
points; of the line f = giz with the edgee;. By our assumptions on, there is a

R R O ,,A,yy‘:,,.;,:,,’,,,,.;/‘

'
1 |
i . ' i
i ; -

; ; J !
| + e o= i !
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e S | |
B R O L e e
S 4, ol

Fig. 20. A bridge between different clusters.
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segment;s; of f aboves; that belongs tdP, so there must be another edgefothat
separates, from qp; let €, = (p;, p,) be the lowest of these edges, i.e., the edge that
intersectsf in s,. Sinces; lies strictly betweeny; anday, it follows from Corollary 3.4
thaty; = y; andy, = y; + 1. SinceA is not contained in a probe, we know thetis
disjoint frome;, and we conclude; < x; andxj; < Xo.

Now consider the quadrandl® = (s;, p2, p,, S2) andthe poinps = (xo—1, y1+1).
By our minimality assumption os, no edge ofP crosse&s;. Furthermore, no edge of
P can cross the polygon edg&d; or p,s,, and no points oPg are contained strictly
inside of IT". Therefore, no edge @ can intersect the interior dii’, meaning that all
points strictly inside oflT’ belong toP. Since the boundary of any open subsefrof
belongs taP, we conclude that all points @1’ belong taP. This includesps. Similarly,
all points of the quadranglH” = (pi1, s1, S, py) belong toP. The claim follows. O

From the above proof, it is straightforward to deduce the following:

Corollary 3.10. LetIT = (p1, P2, P3, Pa) With p = (X, ;) be a bridge with p, ps €
Ciand p, p3 € Co. Thenthere are two edges e (p;, p,) and g = (p;, py)inP,such
thaty, = y; = y1and y, = y; = y» = y1 + 1, the quadrangle A= (p;, p5, P, P;) is
fully contained inP, andIl C A.

Proof. Considertwo points; ands; like in the proof of Lemma 3.9; thes] is the lowest
edge intersecting;s, above the interior of1, and€/ is the highest edge intersecting
51, below the interior off1. The rest is shown like in the proof of Lemma 3.9. O

For a bridgell, the edges] and €] enclosingIl are called theails of the bridge.

As we noted in Corollary 3.5, connections between different clusters can only oc-
cur at bridgeheads, and bridges require a pair of bridgeheads, one in each cluster
involved.

Lemma 3.11. There cannot be a bridge between two different link clusters

Proof. By Corollaries 3.10 and 3.4,; and L, must be from the same class, say,
horizontal. LetW be the switch cluster in the same clasd.asand L ,, with the joint
positioned ay = 2. Supppose that the bend clusBeadjacent toV is positioned below
y=0.

There are three cases:

() W has no tab triplesThen bothL; andL, must be chosen as in one of cases (a)—(c)

of Fig. 14. Without loss of generality, consider case (a), as the link clusters arising from
cases (b) and (c) are merely subsets of the ones from case (a). We see from Fig. 21(l)
that any bridgdT betweerlL; andL, must connect vertices gt= 1 andy = 2. Let pg

be the first among the (circled) points\WWfaty = 2 that is reached alonig; by an edge

e = (pi, po). By Corollary 3.4,p; must be fromB, L1, or L; p; cannot be fronB, as

e would intersect the rails of the briddé. By Lemma 3.9, this means that there must

be a probe or a bridge from; or L, that containge as an edge. As noted above, this
requires a bridgehead &f; or L, to a circled point. The only such bridgeheads are at
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Fig. 21. There cannot be a bridge between two different link clusters.

y = 1, as indicated in the figure by the pairs, ps3) and(ps, ps). Now it is easy to see
that a bounding edge of a probe or the rail of a bridge originating from either of these
bridgeheads would intersect the interiorldf which is a contradiction tél C P.

(I W has one tab tripleThen considet ; chosen as in case (a) of Fig. 14, dngas in
case (d). (See Fig. 21(ll).) Similar to the line of argument in (1), we get a contradiction.

(11 W has two tab triplesThen both_; andL, must be chosen as in case (d) of Fig. 14.
As Fig. 21(lll) shows, there are no corresponding bridgeheads iand L ,, so there
cannot be a bridge between link clusters of this type. O

We know from Corollary 3.4 that a bridge can only exist between clusters from the
same horizontal or vertical class. Since Lemma 3.11 excludes bridges between different
link clusters, only the following possibilities remain:

Corollary 3.12. Any bridge from a nonswitch cluster connects a link cluster to an
adjacent switch clusteior a bend cluster to an adjacent terminawitch or bend
cluster

3.6.2. Connections between Switch Cluster§Vith the help of the results from the
previous section, we can proceed to establish properties of connections between switch
clusters. These are used to construct a Hamiltonian path.
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The boundary ofP can be considered a (closed) directed pBihstarting at the
terminal clusterTy that has the interior oP to its right. LetW; be the switch cluster
next to Ty, and letW, be the switch cluster next G, ;.

Definition 3.13. With V,, = {To, Wy, ..., Wy, Thy1}, we define a digraphl =
(Vy. Ay) on the set of terminal and switch clusters by its arc seti Fpe {1, ..., n},
we have{W;, W;) € Ay iff Wi is the last switch cluster encountered®ybefore hitting
W for the first time. Furthermore, the only arc incidentlpis (To, W1), and the only
arc incident toT, 11 is (Wh, Tny1).

For anyW, let Pl(') be the subpath oP; that starts affly and ends at the first point
of W,.

With V,, = M andi € {0,...,n + 1} we describe a digraph' = (V,,, A) on the
setM of clusters by its set of arc¢C;, Cj) A‘y iff there is an edge of € P,” from
Ci to C; that does not form a probe with another edge P;".

Clearly, ¥ is a spanning arborescence rooted@tandT, . is a leaf. We will show
thatW is a directed path frorip to W, 1 running through all vertices. For this purpose,
it suffices that there is no vertex of out-degree 2. The giaphil help us to analyze the
connections between switch clusters.

Lemma3.14. Fori € {1,...,n}, let (Wi, Wj) € Ay. Then there must be a path
ag, ..., a from W to W in I'!, with &, ..., a-_1 corresponding to rails of bridges
inP.

Proof. By definition, any consecutive pair of edges bounding a probe returns to the
same cluster. Recall that, by Corollary 3.4, there cannot be an edge directlyfrom

to W,. This means that after removing all consecutive pairs of edgé’éj?nthat form

a probe, there must still be a set of edggs = 1, ...,k in Pl(j) connectingW; to a
nonswitch cIusteCi(jl), Connectingli(jl) to a nonswitch cluste@i(jz), etc., and connecting
nonswitch ClusteCi(jk’l), to W;. By definition, this means that there is a path frvn
to W, in T'!. Since none of the edges, £ = 1, ...,k — 1, is contained in a probe, we
know from Lemma 3.9 that they must be rails of bridges. O

Furthermore, we get

Corollary 3.15. Let (W, W;) € A, withi, j € {1,...,n}. Then W and W corre-
spond to vertices of D that are adjacent

Proof. By the previous lemma, there is a path frévhto W; in '}, with all but possibly
the last arc corresponding to bridges between nonswitch clusters. Then the claim follows
from Corollary 3.12. |
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This allows us toidentify arcs i with edges irD. Clearly, this implies the following:

Corollary 3.16. LetW € V, withi € {1,...,n}, and let Ly, L,, B be the clusters
adjacent to the switch cluster;Wf W; has out-degre@in ¥, then there must be bridges
from W to L4, Lo, B.

Lemma3.17. Let W € V, withi € {1,...,n}, and let Ly, L,, B be the clusters
adjacent to the switch cluster;WWLet W have out-degre@ in ¥, and let g, € be the
rails of the bridge between Vnd Ly, let e, €, be the rails of the bridge between, W
and Ly, and let g, € be the rails of the bridge between hd B Then fork=1, 2, 3,
e and g cannot be connected by edges gftiat stay within W.

Proof. LetW, be the switch cluster with\V;, W) € Ay, and letW,, W be the switch
clusters with(W, W/) € Ay, (Wi, W") € A,. Itis easy to check in Fig. 22 that no
switch cluster can have more than three bridges. If there were a connection betfween
ande within W;, P; would enter and leavé/; through the same bridge, and return to
the same switch cluster it came from. By definition, this cannot be one of the clusters
W or W’; on the other hand, it cannot b, since therP; cannot return t&\; to visit

W or W without visiting either one of them. O

Lemma 3.18. Let W have out-degre2 in . Then there must be a probe from an
adjacent link cluster to W

Fig. 22. Three bridges to a switch cluster: (left) basic setup; (right) resulting connections
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Proof. See Fig. 22. As in the proof of Lemma 3.11, we distinguish cases according to
the number of tab triples diV, which depends on the choice of nearby link clusters;
since the bridgehead to the next bend cluster is assymetric, we distinguish cases (lla)
and (IIb). As before, we may consider without loss of generality link clusters of type (a)
when we have to deal with type (a), (b), or (c).

We analyze the possible other edgeshat are incident t&W; at each step, we use
that

(i) we must not intersect any edges that have already been deduced,
(i) no pointin Pg can be incident to more than two edges,
(iii) by Corollary 3.4, edges to points outside of the cluster can only occur at bridge-
heads,
(iv) by Lemma 3.17, we must not create a connection between rails of the same
bridge, and
(v) no edge must contain grid points outsideRpf.

(I) W does not have any tab tripleRefer to Fig. 22(1). Since the only bridgehead to a
bend clusteB is formed by vertices 5 and 7, the rails of the bridge frBrmust end at
these vertices. Since no rail frolrp may intersect the rail to 5, the rails frolrp must
end at 5 and 6. This leaves 3 and 4 as the only endpoints of railslfipand we get the
situation as shown in the left figure.

As the only bridgehead involving 7 is already used, it follows from (iii) that 7 must
be connected to a point W. By (i), it must be 4 or 5, by (ii), it cannot be 5, leaving 4.
Because of (v) and (ii), the only connections of 1 and ¥Mis to 3 or 4. If one of them
is connected to 3 and 4, the other must be connected to two points outddesaice
it is not part of a bridgehead, it must be contained in a probe from the outside, i.e., from
an adjacent link cluster.

(Ila) W has one tab triple close to the bridgehead to the bend cluReder to Fig. 22(11a).
As in case (1), the rails of the bridge froBimust end at 5 and 7, and the rails fram
must end at 3 and 4. This leaves only 8 and 9 for the bridge trgpand we have the
situation as shown on the left of the figure.

As in (1), 7 must be connected to 4. Similarly, 9 must be connected to 11. Point 11 is
not part of a bridgehead, so it must be connected to a poMt.iBy (i), it can only be
connected to 5 or 8, by (iv), 8 is excluded, leaving 5. As the only bridgehead involving
8 has already been used, then by (i) and (ii), 8 must be connected to 6. Again, we con-
clude that one of the points 1 or 2 must be contained in a probe from an adjacent link
cluster.

(Ilb) W has one tab triple away from the bridgehead to the bend cluRefer to
Fig. 22(lIb). As in case (1), the rails of the bridge Bomust end at 5 and 7, and the rails
from L, must end at 5 and 6. This leaves only 7 and 8 for the bridge frenand we
have the situation as shown on the left of the figure.

As 9 to 10 in (lla), 7 must be connected to 10. By (iii), 10 must be connected in-
side of W, and, by (i), it must be to one of 8, 4, 5, 9. Point 8 is ruled out by (iv),
5 by (ii), and a connection to 9 would imply that the grid point between 8 and 9
that is not inPp would be enclosed b§; so 10 is connected to 4. With the known
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arguments, we conclude that 8 is connected to 3, and 9 to 4. Again, we conclude
that one of the points 1 or 2 must be contained in a probe from an adjacent link
cluster.

(1) W has two tab triplesRefer to Fig. 22(lll). As in case (1), the rails of the bridge

to B must end at 5 and 9, and the rails frdrp must end at 10 and 11. Points 7 and 8
form the only bridgehead th;, and we have the situation as shown on the left of the
figure.

Like in case (Ila), we conclude that 11 is connected to 13, 13 to 5, and 10 to 6. Like
in case (llb), we conclude that 7 is connected to 12, 12 to 4, 9 to 4, and 8 to 3. Again,
we conclude that one of the points 1 or 2 must be contained in a probe an adjacent link
cluster.

This concludes the proof. |

Lemma 3.19. There cannot be a switch W with out-deg&ia V.

Proof. See Fig. 23. We assume the sayreoordinates as in the previous lemma. By
the preceding discussion, we know that both adjacent link clusteasidL , must have

a bridge to switch clustéd/, and a probe or an edge to the other adjacent switch clusters
W; andWs. This uses a bridgehead from either link cluster to both their adjacent switch
clusters. Furthermore, we know by Lemma 3.18 that, from one of them, there must be

Fig. 23. Two connections for a link cluster.
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a probe toW to one of the two points ofV aty = 3. Without loss of generality, we
assume that this point is 0 and that it is contained in a probe fram

As before, we analyze the possible other edgéisat are incident toV. At each step,
we use that

(i) we must not intersect any edges that have already been deduced,

(ii) no pointin Pg can be incident to more than two edges,

(iii) by Corollary 3.4, edges to points outside of the cluster can only occur at bridge-
heads,

(iv) we must not create a connection witHin between rails of the same bridge in
order to guarantee a path fraMto W, via L, and we must not create a second
path between the endpoints of a probe, and

(v) no edge must contain grid points outsideRy.

Now distinguish cases according to the type of link cluster:

(a) Refer to Fig. 23(a). The only bridge froW to L, uses points 6 and 7. Since an
edge between 1 antf, (located belowL; in the figure) would separate 4, 5, and 8 from
W, the bridgehead fron, to W, must be 4 and 8, and we have the situation as in the
left part of the figure.

Since the only possible connection of 6 outsidé pfs already used, it follows from
(i) and (iv) that 6 must be connected to 9. By (i) and (iv), 8 can only be connected to 5.
Again by (i) and (iv), 5 can only be connected to 0 or 1; since an edge to 0 would separate
1 from all other points, it must be to 1. Now an edge between 4 and 0 separates 1 from
all feasible neighbors for a second connection. This leaves only the bridgehead 2 and 3
to collect 0 by a probe frorh,. Then, by (i), 2 must be connected to 7. By (iv), 3 cannot
be connected to 9, and connecting it to 4 separates 1 from any feasible neighbors, 3 must
be connected to 1. This leaves 4 and 9 as the only potential neighbors. Their connection
runs over the grid poirg ¢ Pp, and we have a contradiction.

(b) Refer to Fig. 23(b). The only bridge frok¥ to L, uses points 5 and 6, the only
bridgehead froni, to W, (located belowL in the figure) is 1 and 4, and we have the
situation as in the left part of the figure.

Similar to the previous case, it follows that 5 must be connected to 7. An edge between
1 and 0 separates 1 from all feasible neighbors, so the probelfpaim0 must use the
bridgehead 2 and 3. By (i), 2 must be connected to 6. By (iv), 3 cannot be connected to 7.
An edge between 3 and 4 separates 1 from all feasible neighbors, so 3 must be connected
to 1. This leaves 4 and 9 as the only potential neighbors. Their connection runs over the
grid pointz ¢ Pp, and we have again a contradiction.

(c) Refer to Fig. 23(c). The argument is the same as in case (b).

(d) Refer to Fig. 23(d). The only bridge frok¥ to L, uses points 6 and 7, the only
bridgehead froni, to W, (located abové, in the figure) is 1 and 3, and we have the
situation as in the left part of the figure.

Since the only possible connection of 1 outsidé gfs already used, it follows from
() and (iv) that 1 must be connected to 2. As a probe to 0 from 6 and 7 violates (iv), the
probe must be from 2, 3, 4. A probe from 2 and 3 violates (iv), a probe from 3 and 4
separates 2 from any potential neighbors, and a probe from 2 and 4 forces the connection
between 3 and 4, contradicting (iv).

This concludes the proof. |
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This implies that¥ is a path, and each switch clustt has two neighbors .

Lemma 3.20. W cannotcontaintwo consecutive arcs that correspond to optional edges
in D.

Proof. Consider a switch clust&¥ that is connected td/; andW, in W optional edges.

If W had a bridge or a probe to its adjacent bend cluster, the proofs of Lemmas 3.18 and
3.19 still yield a contradiction, so suppose this was not the case. Then the switch cluster
W’ that shares the mandatory edge throigWith W has to be connected ®in I'";
sinceW’ andW cannot be adjacent i, W’ must also have two neighbors via optional
edges, so we get the same type of contradictioWbmstead ofW. O

Summarizing, we see that no vertex in the spanning arborescer(@@uced by
connections from terminal clusters and from switch clusters) has out-degree more than 2
(Lemma 3.19), s@ is a Hamiltonian path. Since the corresponding edg€x alternate
between optional and mandatory (Lemma 3.20), it follows that from each pair of optional
edges to a vertex, precisely one is chosen, such that we get a Hamiltonian j@th in
This concludes the proof of Lemma 3.7, and thus Theorem 3.1.

4, Maximal Area

For some practical purposes, one might be more interested in simple polygons with a
large enclosed area than in those with a small area. As we will see, the relation between
the problems Mx-AREA and MN-AREA is very close, which allows for a simple proof

of NP-hardness. More precisely, we can use our resultsmn-EmMpPTY to show that
GRID-FULL is NP-hard.

Theorem 4.1. GRID-FuLL PoLYGoN is NP-hard

Proof. See Fig. 24. Consider the point $&in the NP-hardness proof off®-EMPTY.

Note that in any simple polygon with vertex setof arean/2 — 1, the pointst; =

(tx, ty — 1) andt, := t; — (0, 1) in the terminal box fot are connected to each other. By
construction, all other grid points lie to the left of the vertical line throtygindt,. (Note

that we made sure of this in the previous section in order to guarantee this property.)
Then add the points

pr = b —(0, N10),
pp = 1 +(0, N19),
ps = p1 —(2N*+1,0),
Pps = p2 —(2N¥4+10

to P to get the seP. It is straightforward to see that there is a simple poly@oon
the verticesP that satisfies &D-EMPTY if and only if there is a simple polygoR on
the verticesP that satisfies Pick’s bound forf@®-FuULL. (The polygorP is simply the
complement ofP in the square with verticegs, p2, ps, pa.) |
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Py p2

2 Py

Fig. 24. GRID-FuLL solves QRID-EMPTY: turning a small polygon inside out.

5. Higher Dimensions

In this section we study several higher-dimensional generalizations. We show thatin any
fixed dimension&k andd, finding a simpled-dimensional polyhedron with a given set
of vertices that has minimal volume of itsdimensional faces is NP-hard. This answers
and generalizes a question stated by O’Rourke [17], [16].

We start by defining the polyhedral objects that will be considered:

Definition 5.1. A d-dimensional polyhedroR is calledsimpleif it is homotopic (topo-
logically equivalent) to al-dimensional sphere.

Itis feasiblefor a given vertex se if every vertex ofP belongs toP and every point
in P is contained in at least — 1 different faces of.

The generalization from the two-dimensional situation is clear: any poift ia
required to be contained in an edgeff

5.1. Minimizing Surface Area

The following problem arises in optimal surface design and has been proposed by
O’Rourke [16]:

Minimum Surface Polyhedron (SURF). Given a finite sef of points in three-
dimensional Euclidean space. Among all simple polyhedra that are feasible for a vertex
setP, find the one with the smallest surface area.



On Simple Polygonalizations with Optimal Area 103

This is a special case of the following problem:

Minimum Face Polyhedron (FACE). Let2< dand 1< k < d. Given afinite set P of
points ind-dimensional Euclidean space. Among all simple polyhedra that are feasible
for vertex setP, find the one with the smallest volume of kaedimensional faces.

It turns out that FACE is NP-hard for any choice @fand k. We first show that
the special case SURF is NP-hard by giving a reduction of the problemLFoNIAN
CyCLE IN GRID GRAPHS (HCCG), which was shown to be NP-complete by ltai et al.
[10]. A grid graph Gis given by a sePg of n grid points in the plane, with two vertices
adjacent iff the corresponding points have distance 1. In this geometric representation,
any Hamiltonian path i corresponds to a TSP tour of lengtffior Ps; clearly, such a
tour induces an orthogonal simple polygon. If on the other hand, there is no t&dr of
that uses only unit length edges, it has to use an edge of length a{/f2asb a shortest
TSP tour must have length at least- 1+ /2.

Theorem 5.2. SURFis NP-hard

Proof. Take any instance of HCGG, i.e., a grid gra@hwith n vertices. Any point
(Xi,¥i) € Pg is represented by the poilik;, yi, 0) in R3, yielding the setPj. Let
g = (Xg, Yg, 0) be the center of mass of the pointsRg and p* = (Xg, Yy, H), where
H = 2n%. (See Fig. 25.)

We show that for the se := Pj U {p*}, there is a polyhedron with the required
properties of surface ared + n? + % or lessif and only if there is a (Euclidean) tour of
lengthn or less inP, i.e., a Hamiltonian cycle in the grid graph.

If there is a tour of lengtim, it induces a polyhedron with a surface area of

n /H24d?
A—i—ZTI,

i=1

whereA s the area enclosed by the tour afds the distance ofxg, yg, 0) from theith
tour edge. Clearly, we hav& < n? andd; < n. Thus we get the surface area to be at

Fig. 25. Extending a planar tour into a cone in 3-space.
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most

Now sinceH = 2n2 and

2
H2+n? < H+n—2 :
2H

we have
1
vVHZ4+n2 < H+ —,
4n

so the surface area is at most

2 H 1 4 2 1
n —|—n<2 —|—8n>_n +n+ 3.
To see the converse, assume that there is no tour of lengiinst note that for every
simple polyhedrorP on P, the domairP, = P N E; must be a simple two-dimensional
polygon. (Each vertex iffg must be close to interior points &f; furthermore, the set
of inner points ofP close top* has to be simply connected and nonempty.) This implies
that the edges dP, must form a tour. LeA be the enclosed area of this tour. Discounting
this face ofP, we can partition the surface &f into a set of triangles by connectingj
to all other vertices irP.
Ifthere is no tour of length, the length of the shortest tour must be at least/2—1 >

n-+ % and the surface area
n s,/H2+d?
A Y VT

i=1 2

(wheres is the length of theéth edge) is at least

Hin+ 1) n3
04+ ——3- =n*+ —.
+ 5 + 3
This is bigger tham* + n? + % as soon as exceeds 3. O

5.2. Minimizing Face Volume

We conclude this section by proving the NP-hardness of FACE: the idea is to add a set
of (d — 2) points at a large distance to an instance of a two-dimensional problem to
transform it into ad-dimensional one. We use the following easy lemma:

Lemma5.3. Letl <kand P= {ey,..., &1}, where ¢ denotes theth unit vector
Then the k-dimensional regular simplexspanned by P has k-dimensional volume
Vk+1
VOL(S) =

ki
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Theorem 5.4. Facke is NP-hard

Proof. We distinguish the following three cases:

(A) k =d.
(B) k = 1.
(C) 1<k <d.

For all these cases we use the following:

Let P be a set ofn points in the planeE; = {(X1, X2,0,...,0) | X3, X2 € R}
that either represents an instance ofNM\REA (case (A)) or a grid grapl (cases
(B) and (C)). Letg be the center of mass of the pointsia andp, = g+ H - g
fori = 3,...,d, whereH = 9d2n® andg denotes théth unit vector. We write
P = Ul_s(p} U Ps andEj := {(X1,...,%Xq) € RY | Xj41,..., X = O}. For any
d-dimensional simple polyhedroRy feasible for the vertex sd®y, the corresponding
j-dimensional subpolyhedron induced Bnis denoted byP; := Py N E;j.

As in the previous proof, we may assume tffat= P N E; is a simple polygon.
Furthermore note th&®; is simple if and only ifP;_; is simple. Finally, each of the
points p; is connected to any other vertex by an edg@gf

Now consider case (A).

By Theorem 3.1, it is NP-complete to decide whether a given satgrid points
allows a simple polygon of areg’2 — 1. By Pick’s theorem, we may assume that if there
is no such polygon, there is none of area less timan 1)/2.

We claim that there is a simple polyhedron feasible for the vertigesf volume at
most

_2 d_2( N
VOLd_d!H (2 1)

if and only if there is a simple polygon on the vertides with area at most/2 — 1.
This claim follows by induction ovey: consider the-dimensional) volum&OL (P;)
and note that

H
VOL(P)) :=VOL1(A-) T S0

2 . ,(n
VOLi(Pj)zﬂHJ 2(5—1).

Next consider case (B).
We show that there is a simple polyhedrBg that is feasible for the vertex s&
with sum of edge lengthsEN(P4) not exceeding

(d-2)(d -3
Nt ————

né(d —2)

HV2+ (d —2)nH + oH

if and only if there is a (Euclidean) tour of lengthor less inPg, i.e., a Hamiltonian
cycle in the grid graph.
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If there is a tour of lengt, it induces a polyhedrof?, such that the sum of edge
lengths inPy_k satisfies
i-1
LEN(P;) = LEN(P;_y) + Y _dist(p;. p) + Y _ dist(p;, q).
i=3 gePs
Now
dist(p;, pi) = H~/2

dist(pj;, @) = \/H2 + 2,

wheresy = dist(g, g) < n, and

n2 \?2
(H—i——) > H?2 +n?

and, forq € Pg,

2H
thus
n3
Z dist(p;,9) < nH + —-.
2H
qePs
Using these relations, we get
d—2)(d-3 3d-2
LEN(Py) < n+ %H«/ﬁ+ (d—-2)nH + %

Now assume that there is no tour of lengtim Ps. Then it follows from the previous
estimates that

d
LEN(Pg) =n++v2-14+> (( —2H +nH), so
i=3
@-2@-3
2
Sincev2 — 1 > (d — 2)n3/2H, the claim holds.
Finally, consider case (C).

For a simple polygorPy on Py, let FACEK((Py) denote the sum of volumes of its
k-dimensional faces. For easier notation, we write

(d — 2> JKk+1
Vg1 = —_—

LEN(Pg) > n4++2 -1+ Hv2+ (d — 2)nH.

Hk

-2 n\ vk
k><nH+ﬁ>(k—1>!H ’

(d

d—2 n? \vk-1 ,,
Vi1 = k—1 n 1+W Kl H s

d

(k H*™“n=.

Vi

Vo =
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We show that there is a simple polyhedrBpfeasible for the vertex sdy with
FACE(Py) < Viy1 + Vi + Vi1 + V2

if and only if there is a (Euclidean) tour of lengthor less inPg, i.e., a Hamiltonian
cycle in the grid graph.
Consider th&k-dimensional face$ of P4. There are four cases:

Casel: f is determined by a set ofk1 of the d— 2 points p. In this casef is a regular
k-dimensional simplex and we get

Jk+1
VOL(f) = k'+ HX.
There are(},?) faces of this form, for a total volume &1

Case2: f is determined by a set of k of the-d2 points p and one of the points ind?
In this casef consists of a regulagk — 1)-dimensional simplex and a single point at
distance at most

2

n
VN2 +H2 < H+4+ —

A
We get
vk n? VKo
T SVOLk(fR(HW) o

There aren(d;Z) faces of this form, so the total volume of the upper boundis

Case3: f is determined by a set of k 1 of the d— 2 points p and an edge irP..
Let (gi1, g2) be the edge of length andl; = dist(q;, g). The volume of thel — 1)
dimensional simpleﬁiqj; formed byq; and thek — 1 pointsp; is

VOLc1(8%) =+ —

VOL_2(&-2).
The distance off, from S*) lies betweers (1 — k/H) ands . Since
n2
2 H2 n
H <124+ H2 < H+ oo
we get

H<L

3(1—5>EH"‘

2 —
N 1§VOLk(f)<s<1+ d )‘k 1

2H2) K

There arg({"?) faces of this form for each edge B.
If we sum this over all (tour) edges for a fixed simp&x ,, we get a lower bound of

s(T)(l _ 5) v kk,‘ !

H

H k—1
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and an upper bound of

n? \wvk-1 ,,
s(T)<1+2H2> K H*™,

wheres(T) is the length of the tour. For all the simplices, this yields a total upper bound
of Vk_1.

Case4:f is determined by a set ofk 2 of the d— 2 points p and the simple polygon
P». In this case we get

VOL«(f) = VOL«(Px)
and therefore (see Case (A))

2
VOL () = T H*2A,

whereA is the area enclosed I#%; since 0< A < n?, we get

0 < VOL(f) < H*2n2.

(k —2)!

There arg({"2) faces of this form, for a total upper bound\éf_,. 0

Now assume there is a tour of lengthUsing the above estimates, we see that this
tour induces a polyhedrdRy, such that

FACE((Py) < Va1 + Vi + V-1 + Vk—2.

For the converse assume that there is no tour of lemgils noted before, this implies
S(T) > n++/2 — 1. From our above lower bounds, we get

- k
FACE(Py) > Vii1+ (d K 2) nH vk Hk-1

K — 1)1
d—2 K\ vK=1, .,
+<k_1><n+f2—1)(1—ﬁ) =
— Jk—1
= Vk+l+Vk+Vk—l+Vk—2+(\/§—1) (ﬁ_i) Tkal

()G &
k 2 ) (k=1

d—2\ /n\vk—-1 ,,
#(C)(3)
+<i f)(n+«f 1)|<v —1y

d-2 2 k—2,2
+<k—2)<k—2>!
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By multiplying both sides of the easy inequality

JKk nd 2(k — 1)%kr? 23
(d— 2)J_ >t on +(n+«/— 1)k+ﬁ < 9(v2-1)d?n® = (v2—1)H

with (((d — 2)! vk —1)/((k — 1)! k)) H¥=2, we conclude that the inequality

d—2\/nm\ vk o (d—2\/m\VKk—1 ,
<k><?)<k—1)!H +<k—1)<?> ko

d-2 vk=1 o (d-2 2 k-2,,2
+<k_1)(n+x/§—l)k 7 H +(k—2)(k_2)1H n

<(v2-1) <‘|: i) */kl—lHk L

holds. Thus, it follows thaFACE((Py) > Viy1 + Vk + Vk_1 + Vk_2, concluding the
proof. O

6. Conclusion

In this paper we show that various problems of optimal volume are NP-hard. By means
of Pick’s theorem, these problems are closely related to problems about inclusion of grid
points. Therefore, our proof techniques have consequences for other problems, where
the objective is to find a simple closed polygonal curve with few edges that separates
two finite sets of points. Complexity of this problem was stated as an open problem by
Mitchell [13], and Mitchell and Suri [14]. Using a construction similar to the one in
Section 3, itis possible to show hardness of this problem. Details will be described in a
future paper.

Since the above problems are NP-hard, it is natural to consider approximation algo-
rithms. Some upper and lower bounds on possible factors for the probkemAREA
can be found in [7].
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