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Abstract 1 introduction 

We discuss properties and values of maximum matchings 
and minimum median problems for finite point sets. In 
Dar&&r. we consider “minimum stars”. which are defined 
by a cent& chosen from the given point ’ set, such that the 
total geometric distance min llStl[ to all the points in the 
set is minimized. If the center point is not required to be 
an element of the set (i. e., the center may be a Steiner 
nointj. we net a “minimum Steiner star”. of total length 
-min I[.!?tS’tll.“A s a consequence of triangle inequality, the to- 
tal length max IlMatll of any maximum matching is a lower 
bound for the length min IIStSt() of a minimum Steiner star, 
which makes the ratio -1 interesting in the context 
of optimal communication networks. The ratio also appears 
as the duality gap in an integer programming formulation 
of a location problem by Tamir and Mitchell. 

In this paper, we show that, for an even set of points 
in the plane and Euclidean distances, the ratio max,,Mat,, min llSt.Stl( 

,, ,, 
cannot exceed 2/& This proves a conjecture of Suri, who 
gave an example where this bound is achieved. For the case 
of Euclidean distances in two and three dimensions, we also 
prove upper and lower bounds for the maximal value of the 
ratios m and z~,/~~$. We give tight upper bounds 
for the case where distances are measured according to the 
Manhattan metric: we show that in three-dimensional space, 
min ll.StStll 
max lp4atII 

is bounded by 3/2, while in two-dimensional space 

min IlStStll = max IIMatJl, extending some independent ob- 
servations by Tamir and Mitchell. Finally, we show that 
,Ti;,KLy,, is bounded by 3/2 in the two-dimensional case, 

and by 5/3 in the three-dimensional case. 

On Minimum Stars, Minimum Steiner Stars, and Maximum Matchings 

The problem of finding a maximum weight matching for a 
given set of vertices in a weighted graph is to find a set of 
disjoint edges, such that the total weight of all the edges is 
maximized. Determining an optimal matching is a classi- 
cal algorithmic problem, and Edmonds’ famous polynomial 
algorithm [6] is one of the milestones of combinatorial opti- 
mization. 

On the other hand, it has been known for quite a while [9] 
that the task of &ding a minimum weight Steiner tree is an 
NP-hard problem: find a network of smallest total length 
min IIStTI( that connects all given points, while allowing ad- 
ditional “Steiner” points for connecting edges. This algo- 
rithmic intractability differs drastically from the case where 
no Steiner points are allowed, so that the connected net- 
work has to be a minimum weight spanning tree (MST) of 
weight IIMSTIJ, which can be solved very efficiently. Many 
aspects of optimal Steiner trees have been considered, see 
the book [ll] for an overview. One of the most famous 
problems related to geometric Steiner trees deals with the 
largest possible value of the ratio m. As Du and 

Hwang [53 managed to prove for the case of planar point 
sets with Euclidean distances, this ratio cannot exceed the 
value of 2/a, which is tight. 
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A special type of Steiner tree problems arises in the con- 
text of location theory: The so-called Weber problem asks 
for the location of a single center point, such that the sum of 
distances from the given points to the center is minimized. 
It was shown by Bajaj [l] that even for the simple case of 
5 points in the Euclidean plane, a solution can in general 
not be expressed by radicals. (In particular, it is impossi- 
ble to construct an optimal solution by means of ruler and 
compass). In the context of communication networks, the 
resulting tree has been called a star [S]. As in the case of 
general tree networks, we can distinguish the Steiner case 
(where the center point can be chosen anywhere) from the 
more restricted case, where the center point is required to 
be chosen from the given set,. In the following, we will speak 
of “Minimum Steiner stars” (with a total edge length de- 
noted by minIIStStl[) and “Minimum stars” (with a total 
edge length denoted by min Il.%(l). 

When dealing with algorithmically hard problems like 
the task of designing optimal communication networks, it is 
of great importance to provide good upper and lower bounds 
for an optimal solution. It has been pointed out by Finger- 
hut, Suri, and Turner [8] that maxI(Mat(l is a lower bound 
for min ((StStll, which is an upper bound for min IIStT(I. 
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This makes it interesting to consider the worst-case behav- 
ior of the ratio mln”StStll max IIMatJJ~ It was conjectured by Suri [14] 
that for the case of points in the plane with Euclidean dis- 
tances, this ratio is bounded by Z/a - the Steiner tree 
ratio. Proving this conjecture is one of the main results of 
this paper. In addition, we consider the worst-case behav- 
ior of the ratios $$$& and minl’Stll max ((Matl[ For the case of 
Euclidean distances in two and three dimensions, we prove 
upper and lower bounds for the largest possible values of 
these ratios. 

The above problems are also of interest when distances 
are not measured according to the Euclidean metric. Of 
particular relevance is the case of rectilinear (or “Manhat- 
tan”) distances, which arises in the context of VLSI layout. 
Tamir and Mitchell [15] have considered the ratio ~&ll,~~~~\ 
for the case of rectilinear distances, motivated by questions 
from cost allocation for matching games. They prove that 
in the case of points in the plane, ~~Xl(,s~“d,~ = 1, which 
implies that the core of a related matching game is non- 
empty. By establishing a tight upper bound on the ratio 
min (IStSt( L Inax pfatll ’ we can prove the largest possible value of the 
duality gap for their integer programming formulation for 
the case of Euclidean distances. In Section 5, we will prove 
that for the case of Manhattan distances, II II 

m:f,,&,, 5 % 
and ,T$,g$, 5 g, which are both tight. Section 6 deals 
with Manhattan distances in three-dimensional space. We 
show that the ratio ~~Xl/,s$~:~ has the tight upper bound $, 

a has the tight upper bound $, while the maximal 

value of m:F,llr$, lies between 2 and 2. (See Table 1 at the 

end of this paper for an overview.) 
Finally, we would like to note some further algorithmic 

implications: The result by Tamir and Mitchell [15] yields an 
O(n) time algorithm for finding a maximum weight match- 
ing for a planar point set with Manhattan distances. With 
some extra work, some of the underlying properties of mini- 
mum Steiner stars have been used by Fekete [7] to construct 
an O(n) time algorithm for finding a Traveling Salesman 
tour of maximum total length. (See the paper by Barvinok 
et al. [2] for more results on this problem.) 

The rest of this paper is organized as follows. In Sec- 
tion 2 we introduce some basic notation and some general 
results. Section 3 deals with Euclidean distances in two- 
dimensional space, while Section 4 contains results for the 
case of Euclidean distances in three-dimensional space. In 
Sections 5 and 6, we consider Manhattan distances in two- 
and three-dimensional space. The concluding Section 7 con- 
tains a discussion of remaining open problems. 

2 Preliminaries 

Let G = (V, E) be a graph with non-negative edge weights 
w(e). Throughout this paper, the vertex set V of G will 
be represented by a point set P = {po ,pi , . . . ,pn-l} from 
Euclidean space, and edge weights correspond to geometric 
distances, according to some metric. A star of P is a set 
of n - 1 edges (represented by line segments) connecting an 
element of P with all other elements of P. A Steiner star 
of P with center point c is a set of n edges (represented by 
line segments), connecting each point of P to c. A (perfect) 
matching of P is a set of n/2 edges that pair each point, 
of P with another unique point of P. In the remainder of 
this paper, any star, Steiner star or matching is assumed 

to be a star, Steiner star or matching of P, denoted by 
the symbols St, StSt and Mat. Their lengths are denoted 
by ((Stl(, ((StStll, and I(Mat](, for a specified metric ](...]I. 
Let minSt, minStSt and maxMat denote a star, Steiner 
star and matching of minimal, minimal and maximal length 
respectively. 

Before we consider various geometric instances, we note 
a general bound on ratios that holds for all weight functions 
on the edges, even if we do not have triangle inequality. 

Theorem 1 For any zueighted graph G, we haoe min IlStll 5 
2 max II Matll. 

Proof: Let matrix A be the distance matrix of the points 
in P, so A(i, j) is the distance between p, and p3. Let S be 
the sum of all entries in A. Since [IminSt(( is the minimal 
row sum of A, we have by the pigeonhole principle that 
JJmknStJI 5 S/n. The maximal matching consists of n/2 
elements of A, so again by the pigeonhole principle we have 
max IlMatll 2 S/(2n). Hence, 

min lIStI/ 2 S/n 5 2 max IIMatll. a 

In a setting where distances are not induced by the geom- 
etry of points in a space of fixed dimension, this inequality 
is tight, even if we assume triangle inequality: 

Theorem 2 For each E > 0, there is a cueighted graph for 
min llSt/ 

whwh nlax ((Matl( >2-E. 

Proof: Consider the complete graph on n vertices, with 
all edge weights being 1. Then min IlStll = (n - l), and 
maxllMatl[ = 5. 1 

Without assuming triangle inequality, the ratio &$,!&$ 
may be unbounded, as the following example shows: 

Theorem 3 For each M > 0, there is a weighted graph for 
luhich min /lStll > M min llStStll. 

Proof: Let G = (V, E) be the complete graph on n vertices, 
with each edge having weight 2M. Let E = (V U {c},F be 
the complete graph on (n+l) vertices, with all edges adja- 
cent to c having weight 1. Then min ((.%(I = 2M(n - 1) > 
Mn = Mmin(]StStl(. 1 

Assuming triangle inequality, we can give a bound for 
the ratio min 1’Stl1 min llStStll’ 

Theorem 4 For any graph E with edge weights satisfying 
triangle inequality, the inequality min I(St(( 5 2 min llStStll 
holds. 

Proof: Let c be the center of an optimal Steiner star. Let 
vo E V be a vertex closest to c, and let zu(c,ve) = d. Then 
by triangle inequality, W(VO, v,) 5 W(UO, c) + w(c, o,), so the 
star St(vo) with center vo satisfies min llSt]l 5 IlSt(vo)ll 5 
(n - 1)d + min IlStStll 5 2 min ((StStll. m 

Again, this estimate is tight: 

Theorem 5 For each e > 0, there is a graph with edge 
weights satisfying triangle inequality, such that ,$,gL!,, > 
2-E. 
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Proof: Let G be the complete graph on nvertices, with all 
edge weights being 2. Let G = (V u (c}, E be a complete 
graph on (n+l) vertices, with all edges adjacent to c having 
weight 1. Then min l\Stll = 2(n - l), and min llStSt\l = n. 
I 

In a geometric setting, distances in an arrangement of 
points are far more restricted, so the above ratios may no 
longer be best possible. It is the main purpose of this paper 
is to provide tight estimates for geometric scenarios. 

3 Euclidean Distances in Two-dimensional Space 

Throughout this and the following section, we will consider 
arrangements of points in two- and three-dimensional space, 
with distances measured according to the Euclidean met- 
ric. At several occasions, we make use of the following well- 
known theorem: 

Proposition 6 (Cosine Theorem) Given a triangle with 
edge lengths a, b, c. If y is the angle opposite c, then 

c2=az+b2 -2abcosy. 

3.1 Minimum Steiner Stars and Maximum Matchings 

In this subsection, we give a proof of Suri’s conjecture [14]. 
Throughout the section, distances are measured according 
to the Euclidean metric. 

Lemma 7 Given a triangle with edge lengths a, b and c,’ 
where the angle oppositec is 2 2~1.3, we have a+b 5 2/&c. 

Proof: Without loss of generality assume that 1 = a < b. 
Then Proposition 6 implies that c2 1 l+b2+b. Now consider 

w 5 $$-& = 1 + b2+b6+, . Since b2 - 2b + 1 2 0 e 

b2+t+l < l/3, we get a minimal value of 4/3, from which 
the claim follows. Equality holds for y = 2x/3 and b = 1. m 

Let 1 be a directed line in the plane. We say that 1 splits 
P if at most half of the points of P are to the right 1 and at 
most half of the points of P are to the left of 1. 

Lemma 8 For any set of points P in two-dimensional space 
we can find three directed lines lo, II and 1s such that the 
three lines intersect in a common point, all three lines split 
P and the smallest angle between any two lines is ~13. 

Proof: 
The collection of splitting lines for a given direction cy 

form a directed closed strip which we call S,. Consider the 
strips SO, ST/s and Szn,s. If these three strips have a point 
in common we are done. Therefore assume without loss of 
generality that So r) Sn,s lies to the left of Ss,,s. It follows 
that S, n S&p lies to the right of &is. 

We now consider the strips S,, S,+,/s and Sa+sa/sr 
where o increases from o = 0 to cr = A. The three strips 
move in a continuous manner. Suppose that for no value of LY 
the three strips have a point in common. Then S, n Sp+x,s 
stays to the left of Sol+sX/sr which contradicts the fact that 
ST f-7 &,,s lies to the right of S’s,,,. Therefore there is a 
value of cy for which the three strips S,, Sa+=,s and S,+s,/s 
have a point in common, which proves the lemma. m 

Theorem 9 For any set of points P in two-dimensional 
space with Euclidean distances and n even, we have the in- 
equality min jJStSt(l 5 2/& ’ max J(Matll. 

Proof: Find three lines 20, 21 and la such that the three 
lines intersect in a common point, all three lines split P and 
the smallest angle between any two lines is n/3. These lines 
divide P into six sets AO, AI, AZ, Bo, BI and Bz, where A, 
lies opposite B; for all i, as shown in Figure 1. By assigning 
the points of P on the three lines to only one of the sets it 
belongs to, we can assume that (As\ + (A,( + (A21 = 5 = 
IBol+ l&l -I- I&l, as well as lAoI + IAll + lB2l = 5 = lBol+ 
~B~I+IA~(,~~~~Ao~+~B~I+~B~~=~=IBo~+~A~I+I~z~. 

This implies JA,J = J&J for all i. 
Let 0 be the intersection of lo, 11 and 12. Construct a 

Steiner Star StSt with 0 as its center. Construct a matching 
Mat by matching points in Ai with points in Bi for all i. 

We know from Lemma 7 that for each edge (p, q) in blat, 

we have ((p-O((+((O--911 5 2/8~lI~-qll. So min(lStStl! 2 
IlStStll 5 Z/J”;. /Matll < 2/&i. max IIMatll. m 

S Cl+1113 

Figure 1: Finding a small Steiner Star and a large Matching 

The inequality in Theorem 9 is tight: 

Theorem 10 (Suri) There is a set of points P in two- 
dimensional space with Euclidean distances for which the 
equality min IlStStll = 2/&. max IlMatll holds. 

Proof: Suppose n is divisible by 6. Place n/3 points on 
each corner of an equilateral triangle with sides of length 
2& Then min IlStStll = 2 n and max IlMatll = n&. m 

3.2 Minimum Stars and Minimum Steiner Stars 

In this subsection, we discuss the possible values of the ratio 

+-5 mm llststl Clearly, this ratio is bounded from below by 1; 
in order to get upper bounds, we assume without loss of 
generality that the star center c of an optimal Steiner star 
minStSt is not an element of P. 

Let the line segments, or rays, of a Steiner star be r,, 
and denote their lengths by a,. Let oi be the angle between 
the positive x-axis and ray r,. 
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Lemma 11 For the angles at of minStSt, we have 

n-1 n-1 

c coscr; = c 
sine; = 0. 

i=O i=O 

Proof: Consider ray r starting at the origin and ending 
in (po,pY). Let a be the angle between the positive z-axis 
and the line segment from (z,O) to (pz,py). Let f(z) be 
the distance from the point (z,O) to (pz,pY). So f(x) = 

l/G-x, 2 +pz and 

So from Lemma 12 we have 

n-1 7X-l 

min IlStll I IlStll = C ai 5 Cat - na0 + na0v5 

I=0 *=O 

5 min IlStStll + min IlStStll(A - 1) 

= fi. min IlStStll. 1 

dfo= -(Ps -x) 
dz J(pz-x)2+p; = -coscY 

If c is not an element of the set P, then at c the derivative 
of the sum of the lengths of all rays should be zero in all 
directions, so for all 0 we have 

n-1 

c 
COS(cYi + e) = 0, 

from which the lemma follows. I 

Lemma 12 Let StSt be a Steiner star of P and let ai, r, 
and CY~ be defined as above. Let bi be the distance between 
po and pi. If a0 = a; for all i and if 

n-1 n-1 n-1 

c 
coscr; = 

c 
sin@; = 0 then 

c 
b; 5 aenfi. 

i=O t=o t=O 

Proof: We have ~~~ol cos(cr, + 6)) = 0 for all 0, so without 
loss of generality we. can assume that P is rotated around 
the origin so that po = (a0 , 0). We have 

bi = 2aosin(o;/2) = ood2(1 - cosoi) 

(see also Figure 2). The function f(a) = v’w, where 
0 5 o < 27r, is a concave function of COSCX. By Jensen’s 
inequality [13] we have 

from which the result follows. I 

Now we can prove the following upper bound: 

Theorem 13 For any set of points P in two-dimensional 
space with Euclidean distances we have min llStll 5 fi. 
min IlStStll. 

Proof: If the center of minStSt is an element of P, the 
lemma holds, so assume that the center of the minStSt is 
not an element of P. Without loss of generality assume that 
the center of minStSt is the origin, that rs is a shortest ray 
and that rs runs along the positive z-axis, as shown in Figure 
2. 

Consider the star St centered around the end-point of ro. 
Denote the rays of St by r: and their length by u:. Using 
triangle inequality we have 

a: 2 (a, - ao) + 2Qo sin(oi/2) 

Figure 2: Length of a chord in a circle 

As a lower bound, we get the following: 

Theorem 14 For cany E > 0, there is a set of points P in 
two-dimensional space with Euclidean distances for which 
min l/Stll > 4/ir . min llStStll - e. 

Proof: Let P be a set of points spaced evenly on the unit 
circle. Assume that P includes the point (x, y) = (0, -1). 
The center of the minStSt is the center of the circle, so 
min((StSt(( = n. Consider the star St centered around 
(0, -1). Denote the rays of St by rt and their lengths by 
oi. Let oi be the angle between the positive z-axis and ray 
rl . We have 

CL; = 2sinff, 

Therefore the average ray length in the limit, is 1 s n/2 - 
ir 0 

4sinoda = 4/n, 

from which the theorem follows. I 

3.3 Minimum Stars and Maximum Matchings 

It is not hard to derive upper and lower.bounds for the 
largest possible value of ~~~,/~~‘~,, by using the previous 
results of this section: 
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Theorem 15 For any set of points P in two-dimensional 
space with Euclidean distances and n even, we have the in- 
equality min I/St/( 5 ZJz/& + max IIA4atll. 

Proof: This follows immediately from Theorems 9 and 13. 
I 

Theorem 16 There is a set ojpoints P in two-dimensional 
space with Euclidean distances for which min llStl[ = 413 . 
max IlMatll. 

Proof: Suppose n is divisible by 6. Place n/3 points on 
each corner of an equilateral triangle with sides of length 6. 
Then min JJStlJ = 4n and max JIMatJJ = 3n. # 

4 Euclidean Distances in Three-dimensional Space 

4.1 Minimum Steiner Stars and Maximum Matchings 

Following an idea similar to the one from Section 3.1, we 
show that there always exist three orthogonal planes that 
partition P into 8 octants such that opposite octants contain 
the same number of points. 

Let p be a plane. We say that p splits P if at most half 
of the points of P are on one one side of p and at most half 
of the points of P are on the other side of p. 

Let po, p1 and pz be three orthogonal planes, each of 
which splits P. Each plane pi divides P into points above 
p,, on p; and below pi. Let Q6 be the points in P below pi 
and Q; be the,points in P above pt. We assign the points on 
p, to either.Qh and Q; in such a way that IQ01 = IQ;I. We 
will call IQ&l and IQ: I the set of points below and above pi 
respectively, even though,some of these points may in fact 
lie on p,. We define for i, j, k E (0, 1): 

For example, Qiio is the set of points in P above pz, above p1 
and below po. Since IQ; I = IQ; 1, we can derive the following 
equalities: 

IQoool + IQool I = IQnol + lQm I 
IQIOOI + IQIOI I = IQolol + IQ0111 
IQoool + IQolol = IQIOII + lQ111l 
IQooll + lQo11l = lQ~ool + IQuol 
IQoool + IQlool = IQ0111 + 191111 
IQool I + IQ101 I = lQo101 + IQnol 

We show that we can always find three orthogonal planes 
such that opposite octants, i.e. QIfk and Q[l-;)(i--J)(i-k) 
have the same cardinality. 

Lemma 17 For any set of points P in three-dimensional 
space, we can find three orthogonal planes such that the bal- 
ancedness condition /Q13kl = ~Q~1-t)CI--3)(1-k)l holds for 
all i, j,k. 

Proof: Notice that it suffices to find three orthogonal planes 
such that [Qoool = IQiii 1, since this implies the equality 
IQijk( = (Qti--i)(i-J)(i-k) 1 for all i, j, k. We first assume 
that the points are in general position, in the sense that if 
we project all points in P onto the (2 = 0) plane, then no 
three points are collinear and no line through two points 
is perpendicular to another line through two points. Let 
p2 be a splitting plane parallel to the (z = 0) plane. We 
map all points from P onto the (z = 0) plane, and call the 

projected points from Q: and Qg the black and white points 
respectively. 

The problem is now a two-dimensional one. Orthogonal 
splitting planes po and p1 will become splitting lines 10 and 
11 in the projection. Let a directed line 1 be a splitting line 
if at most half of the black and white points are to the left 
of 1 and at most half lie to the right of 1. Because of the 
non-degeneracy assumption there are at most two points on 
a splitting line 1. The collection of splitting lines for a given 
direction (Y form a directed closed strip which we call S, . Let 
1, be the splitting line in the middle of S,. Consider the 
strips S, and Sa+a,P. The corresponding lines 1, and I,+,,, 
divide the points into 4 subsets QiJ for i, j E (0, l}, where 
Q,j is the projection of QctJUQiij. Therefore IQool = IQli) 
and IQ011 = \QioI, as illustrated in Figure 3. 

If o increases at most one point is added to and at most 
one point is removed from Q,j at any one time. Changes 
only occur when S, or S,+,,s is a line. Because of the non- 
degeneracy assumption it is not possible that both S, and 
S a+lr,2 are lines. Either 

l the number of points in two opposite quadrants such 
as Qoe and Qii both increase or both decrease, or 

l two neighboring quadrants exchange a point. 

In the first case, lQeeol and /Qiii I either both increase, both 
decrease, or only one changes. It is not possible for IQ000 I tq 
decrease and for IQiii I to increase or vice-versa. In the latter 
case, at most one of IQooel and IQiiil changes. Therefore 
if for some value of CYO we have lQessl < IQiiil, while 
for ~1 we have IQssel > IQiiil, then there is an o with 
(YO < a < (~1 for which IQOOOI = )Qiii). 

Consider first the strips SO and S,,s. If lQsso I = IQiii I 
then we are done. Therefore suppose that.lQeeo( < IQiii I. 
It follows that for strips S, and S,,,, we have the inequality 
lQoool > [Qiiil. Therefore there is a value of 01 with 
0 < (Y < A for which IQsool = IQiiil. 

If the non-degeneracy assumption does not hold, we can 
move all points by an infinitesimal small distance, in such 
a way that the assumption does hold. The construction 
shown above gives three orthogonal splitting planes of the 
perturbed set. The same planes partition P in the correct 
way, whereby the perturbation of a point that lies on a split- 
ting plane determines to which sides of the plane this point 
should be assigned. m 

Lemma 18 Given a triangle with side lengths a, b and c, 
where the angle between a and b is 2 7r/2, we have a + b 5 
JZC. 

Proof: We proceed similar to the proof of Lemma 7. With- 
out loss of generality assume that 1 = a 5 6. Then Propo- 

sition 6 implies that cz 2 1 + b2. Now consider v 5 

$$=1++. s ince bZ - 2b + 1 2 0 N s < 1, 
this has a maximal value of 2, from which the claim follows. 
Equality holds for y = s/2 and b = 1. i 

Theorem 19 For any set of points P in three-dimensional 
space with Euclidean distances, we have min llStStll 5 fi. 
max llMatll. 

Proof: Find three orthogonal splitting planes such that 

llQ+ll = IIQ(l-j)(l--j)(l-k) 1) for all i,j, k. Let 0 be the 
intersection of these three planes. Construct a Steiner Star 
StSt with 0 as its center.- Construct a matching Mat by 
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Q, 

Figure 3: Orthogonal splitting strips 

connecting points in 
octant. 

each octant to points in the opposite 

For each edge (p, q) in Mat, the angle between the ray 
from 0 top and the ray from 0 to q is 2 7r/2, from which we 
derive by Lemma 18 that IIp - 011 + IJO - 911 5 fi. IIp - q/l. 
So min (]StSt(( 5 IlStStll 5 fi. llMatll 5 JI?. max IIMatll. 
I 

Q:: 0 

Q:: o 

s,= 1, 

Qo, 

In the following, we give the best lower bound that we 
know of: 

Theorem 20 There is a set ojpoints P in three-dimensio- 
nal space with Euclidean distances for which we have the 
equality min l[StStll = d/1/5. max I(MatlJ. 

Proof: Suppose n is divisible by 4. Place n/4 points on 
each corner of a tetrahedron with sides of length 2. Then 
min llStStll = n&/A and max llMatll = n. 1 

4.2 Minimum Stars and Minimum Steiner Stars 

In this subsection, we discuss the possible values of the ratio 
,$,~.~~~,, for points in three-dimensional space. Our upper 
bound carries over from the two-dimensional case: 

Theorem 21 For any set of points P in three-dimensional 
space with Euclidean distances we have min IlStll 5 I/?. 
min IlStStll. 

Proof: 
The proof is virtually the same as the proof for Theo- 

rem 13. Without loss of generality assume that the center 
of minStSt is the origin, that ro is a shortest ray and that 
rs runs along the positive x-axis. Let (Y; be the angle be- 
tween ri and the positive x-axis. Then we can show that 
~(coso;) = 0 similarly to the way this was shown in the 
proof of Lemma 11. Therefore the result of Theorem 13 
applies here as well. 1 

The best lower bound is not too far off: 

Theorem 22 For any E > 0, there is a set of points P in 
three-dimensional space with Euclidean distances for which 
min ((St(( > 4/3 . min ((StSt(l - e. 

Proof: Let P be a set of points evenly distributed over 
the unit sphere. Assume P includes the point (z, y, z) = 
(0, -1,O). The center of minStSt is the center of the sphere, 
so min IJStStJJ = n. Consider the star St centered around 
the points (0, -1,O). Denote the rays of St by r, and their 
lengths by a,. Let cri be the angle between the (y = O)-plane 
and ray rl. We have 

a; = 2sinff, 

The average ray length can be computed as follows. Let 
Q be the angle between a ray and the (y = 0) plane and 4 
the angle between the projection of the ray onto the (y = 
0) plane and the positive z-axis. If A0 = 01 - 00 and 
Ad = 41 - 40 are small, then the surface area covered by 
all rays with angles in this range is approximately equal to 
4 sin B cos OA4A0, so the area of the surface of the sphere is 

r/2 27r 

I s 
4 sin Bcos @ ddd9 = 4n 

0 0 

and the average ray length is 

1 
n/P Pn 

Go 0 J S (4 sin 0 cos @) (2 sin 0) d4d@ = 4/3 

from which the lemma follows. I 

4.3 Minimum Stars and Maximum Matchings 

We know from Theorem 1 that the ratio rr”~,/~~~,, cannot 
exceed 2. We conclude our discussion on Euclidean distances 
by giving a lower bound on the largest possible value of this 
ratio. 

Theorem 23 There is a set of points P for which the equal- 
ity min IlStll = 3/2 max IlMatll holds. 

Proof: Suppose n is divisible by 8. Place n/4 points on 
each corner of a tetrahedron with sides of length 4. Then 
min lIStI] = 3n and max IlMatll = 2n. 1 

5 Manhattan Distances in Two-dimensional Space 

5.1 Minimum Steiner Stars and Maximum Matchings 

Independent from our work, the following proposition was 
also noted by Tamir and Mitchell [15]. Since some of the 
steps are of importance for our further results, we give a 
sketch of the proof. 

Proposition 24 For any set ojpoint P in two-dimensional 
space with Manhattan distances and n even, we have th,e 
equality max IlMatll = min llSt.Stll. 

Sketch: It is not hard to see that the center for an optimal 
Steiner star must both be a median of the z-coordinates 
and the y-coordinates of the points in P. Assume without 
loss of generality that an optimal center is located at (0,O) 
and consider the numbers ni , n2, n3, and n4 of points in 
each of .the four quadrants, with points on the boundary 
of two quadrants assigned in a suitable way. Using ni + 
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nz=n3+n4and122+ns=n4+nl,wegetnl=nsand 
nz = n4, i.e., diagonally opposite quadrants must contain 
the same number of points. This allows us to match points 
from opposite quadrants. It is straightforward to see that to 
each edge of the matching, we have a corresponding pair of 
edges of the Steiner star with the same total length, implying 
that the total length of the matching is equal to the total 
length of the Steiner star. 1 

5.2 Minimum Stars and Minimum Steiner Stars 

In the following, we will consider the ratio $$/&!$. For 

any point p, = (x1, yi) E P, IIS’t(pi)ll is the total length of 
the star centered at p,. We denote by a, the supremum of 
the values a for point sets of cardinality n. Without 

loss of generality, we may assume that min IlStStll > 0, and 
thus min IIStSt(( = 1. Furthermore, we may assume that the 
origin is an optimal Steiner center. 

We will make use of the following lemma: 

Lemma 25 For any n, there are point sets for zuhich the 
ratio g$& attains the value CY~. 

Proof: For any fixed n, the set of point arrangements with 
min )JStStJI = 1 and optimal Steiner center 0 is a compact 
subset of R2n. Since minJjStl[ is a continuous function on 
RZn, the claim holds. 1 

Lemma 26 Let P be a set of n points with $$$$ = a,. 

Then for allp, E P, IISt(pC)II = an. 

Proof: Suppose there is a point pi that satisfies lISt( > 
min JJStJJ. For sufficiently small E, replacing pi by the point 
pi = (1 - e)pi does not turn pi into an optimal star cen- 
ter. Thus, the replacement reduces min ([StSt(l by some 
small E’, but min IlStll by not more than E’. Therefore, 

the new arrangement has a ratio of at least ~$,~$&, > 
min llStl\ 

min I(StSt(( - - cm, a contradiction. 1 

It is straightforward to see that this implies the following: 

Corollary 27 For an arrangement with m?$,!&{,, = crnr 
we cannot moue a vertex such that min ((StSt(( decreases by 
E and min )JSt)J by not more than E. 

Corollary 28 For an arrangement with ~~$~~~,, = an, 
we cannot move a vertex such that min IIStSt(( remains the 
;;;;,d~;Fta;; more of the IISt(pt)Ij increase, and none of 

Furthermore, we get: 

Corollary 29 FOF any arrangement of points in two-dimen- 
sional space with Manhattan distances and with $$@$ = 

on, there cannot be two points p1 = (x1, ~1) # p2 = (~2, yz), 
such that 

0 5 (“l,Yl) 5 (xz,Yz), OF 

0 5 (-21,YlI 5 (-ZZ,Y2), or 

0 I (a,-Yl) 5 (x2,-YZ), Of 

0 5 (-x1, -Y1) 5 (-x2, -Y2). 

Proof: In any of the four cases, it is straightforward to see 
that llSt(pl)ll < IISt(P2N I 

The next lemma shows that we may restrict our attention 
to arrangements with extreme points on the coordinate axes: 

Lemma 30 FOF any arrangement in two-dimensional space 
with Manhattan distances and with .a = an, any 
point pi = (x:i, y,) with minimal OT maximal x, among the 
points in P must have yl = 0. Conversely, minimal OF max- 
imal y, implies x; = 0. 

Proof: Without loss of generality consider a point pi with 
maximal yi and assume xz > 0. Let xk = max{xJlj # a’}. 
If Xi - xk = 6 > 0, replace pi by (xk, yi + 6); this does not 
change minI(StJl or min((StStjl, and allows us to consider 
without loss of generality the case x1 - Ek < 0. 

For sufficiently small E, replace p, by pr= pi -I- (-E, e). 
This does not change min IlL%Stll, increases IISt(pk)l(, and 
does not decrease IlSt(p,)II for any j # k, contradicting 
Corollary 28, m 

Lemma 31 FOF any n, we have CY,, 5 CXkn. 

Proof: Suppose we have an arrangement of n points with 
,~~;,!&{,, = an. Replace each point by k copies; this yields 

an arrangement of kn points with M = an. [ 

Lemma 32 FOF any arrangement in two-dimensional space 
with Manhattan distances and with m = CY,,, there 
can be at most fOUF points pi with Xi,yi # 0. 

Proof: Assume that there are at least five points not on 
coordinate axes. Then we may assume without loss of gen- 
erality that two of them (say, p1 = (x~,yl), p2 = (~2~~2)) 

are in the positive quadrant. Because of Corollary 29, we 
may assume that 0 < x2 < zl and 0 < yl < yz. Defme 

no = the number of vertices i with xl < x, 
nl = the number of vertices i # 1,2 with x1 5 xi 5 22 
n2 = the number of vertices i with xi < x2 
mo = the number of vertices i with yz < y, 
ml = the number of vertices i # 1,2 with yl 5 yi 5 y2 
m2 = the number of vertices i with yi < y1 

So n2 > no and rn2 > mo. Let E$ and cy be such that 
E~/E~ = (m2 -mo)/(nz -no). Also let E% and Ed be positive 
but smaller than the smallest non- zero difference between 
the z-coordinates and y-coordinates of any two points re- 
spectively. Now replace p1 by pi = PI + (E=, -cy) and p2 

by p; = p2 + (-E=, +E~) It is not hard to see that these 
replacements do not decrease ((St(p,)(( for any i # 1,2. Fur- 
thermore, min JJStStJJ does not change. The value IlSt(pl)II 
changes by AI =(nz +nl -no)~~+(-mz+ml +mo)a,+ 
2~~ + 2~~. So AI > (rz2 - no)c2 + (-m2 + mo)Ey = (m2 - 
m0)+ + C-m2 + mO)Ey = 0. Similarly, the value IlSt(p2)ll 
changes by (-n2+nl+no)ez+(mz+ml-mo)a,+2e1+2ey, 
which is also positive. This contradicts Corollary 28. g 

In order to analyze the limit of the sequence an, we define 
a sequence /3,,. This is the supremum of the values &~~,~~~,, 
for all arrangements of n points, such that any point lies on 
a coordinate axis. 

With the help of Corollary 29, Lemma 31, and Lemma 32, 
it is not hard to prove that for arrangements with many 
points, the bounded number of points not on coordinate 
axes becomes negligible for the worst case ratio: 
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Lemma 33 lim supndoo fxn = lim ~up~+.~ Pn. 

Proof: For any n, consider a point arrangement P,, with 
min. [[StStll = 1 and min IlStll = 0,. By Lemma 32, for any 
P,, there can be at most 4 points not on coordinate axes; 
by Corollary 29, we conclude that the points on the axes are 
positioned at pr = (dr,O), p2 = (O,dz), p3 = (-d3,0), p4 = 
(0, --&), with multiplicities nl, nz, na, n4 and cf=, n, >_ 
n - 4. 

13ecause of Lemma 31, we are done if there are only fi- 
nitely many P,, with a point not on an axis. So assume there 
are infkritely many P,, with a point pe = (~0, yo) > (0,O). 
By Corollary 29, we conclude that for any such P,,, dl > 10 
and dz > yo. If dr and cl2 tend to zero as n becomes large, 
the contribution of po to min ((StStll and min IlStll becomes 
arbitrarily small, and we are done. 

So suppose without loss of generality that the distance 
dl = max{djIj = l,... ,4} and that dr remains bounded 
from below. Since min((StSt(( = 1, this means that nl re- 
mains bounded. As n becomes large, it follows that some 
ni becomes arbitrarily large. Then min IlStStll = 1 implies 
that di tends to zero. Let St, be the star centered at p,. Us- 
ing 0 as a lower and 3dl as an upper bound for the distance 
of points not on axes to p1 and p;, respectively, we get 

lISt(p 2 n2d2 + nsds + n&r + (n2 + n3 + nr)dl 
4 4 

= 
c njd, + ( c n3 - 2nl)dl, 
j=1 j=1 

whereas 
4 4 

IlSt(Pi)II 5 12dl + C njd, + (c n3 - 2ni)d;. 
g=1 3=1 

This means that for sufficiently large n, we have 

IlSt(pl)ll-llSt(Pi)II 2 (dl-di)Cn,-2nldl+2nid,-12dl, 
3=1 

which is positive, since (dl - d,) CT=, n3 gets arbitrarily 
large for increasing n, while all other terms are bounded 
from below. This contradicts Lemma 26, and we are done. 
I 

In order to establish an upper bound of the sequence /Jn, 
we need the following lemma: 

Lemma 34 Let0 5 Xl,.. 
1. Then 

. , X2d < $, such that c;z, A, = 

2d 

Proof: Since f(z) = & is a convex function on the in- 

terval [0, i), we have from Jensen’s inequality [13] 

i=l t=1 

so 

from which the lemma follows. 1 

Now we can proceed to prove the following: 

Theorem 35 For any set of points P in two-dimensional 
space with Manhattan distances, min llSt/ 5 g min IlStStll 
holds. 

Proof: By Lemma 33, we only have to show that ,& 5 $. 
Similar to Lemma 25, we can assume that there are sets of n 
points for which m?$,K$ = S,,. By Lemma 29, these sets 

consist of nl points p1 at position (dl, 0), of nz points pz at 
position (O,dz), of ns points p3 at position (-ds,O), and of 
n4 points p4 at position (0, -d4), with di 2 0. We assume 
that 

min ((StSt(( = 2 n;di = 1. (1) 
,=l 

Furthermore, observe that IlSt(pi)ll = c,+, n,(d;+dj) = 

CC,“=, n,dj) + (C:=, nJdi) - hidi = 1 + (n - hi)&. BY 
Lemma 26, we have IISt(pi)ll = /3,,, which implies 

4 = (,“l,$ 
Equations 1 and 2 yield 

(2) 

With 2 = Xi, Lemma 34 implies & 1 2, so ,& 5 I, 
and we are done. I 

Again, we can show that this bound is best possible: 

Theorem 36 There is a set of points P in two-dimensional 
space with Manhattan distances for which we have the equal- 
ity min IlStll = $ min IlStStll. 

Proof: Suppose n is divisible by 4. Place n/4 points on 
each corner of the points (l,O), (0, l), (-l,O), (0, -1). Then 
min /St/J = 3n/2 and min JIStStlJ = n. m 

5.3 Minimum Stars and Maximum Matchings 

Together with Theorem 24, the above tight bound implies 
the following: 

Corollary 3’7 For any set of points P in two-dimensional 
space with Manhattan distances and with n even, we have 
the inequality min IlStll 5 $- max IIMatll, which is tight. 

6 Manhattan Distances in Three-dimensional Space 

6.1 Minimum Steiner Stars and Maximum Matchings 

It was noted by Tamir and Mitchell [15] that max IlMatll = 
min JJStStll may no longer be valid in three-dimensional rec- 
tilinear space: 

Proposition 38 (Tamir, Mitchell) 
For the point set P = {(l,l,l), (1,-1,-l), (-l,l, -l), 
(-1, -1, l)}, we have max llhriatll < min IlStStll. 

In fact, Proposition 38 provides an example with the ra- 
tio max IIMatll/ min IIStSt(( = $. The following result shows 
that this is a worst case example: 
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Theorem 39 For any set of point P in three-dimensional 
space with Manhattan distances and with n even, we have 
the inequality min llStStll 5 $ max IlMatll. 

Proof: Assume that 0 = (O,O, 0) is the center of an opti- 
mal Steiner tree, so l{pilZi < O}l 5 5, I{p,Jxi > O}l 5 5, 
I{PilYt < O}l 5 5, etc. Then min((StStlJ = xi lxIl + 
(yi( + Jz,I. Without loss of generality, assume that c, Iti1 5 

xi Ixil 5 Ci IYil. N ow consider the point set P’ = {p:Ili = 
1, . . . , n}, where pi = (ri, vi, 0). Because of the above condi- 
tions, 0 is the center of an optimal Steiner star minStSt’ for 
P’. We have I(minStSt’I( = xi lZi( + lyil 1 $ min IlStStll. 
By Proposition 24, P’ has a matching Mat’ of total weight 
IlminStSt’II, and the claim follows. 1 

6.2 Minimum Stars and Minimum Steiner Stars 

Using the same tools as in the two-dimensional case, we can 
show the following upper bound: 

Theorem 40 For any set of points P in three-dimensional 
rectilinear space we have min lIStll 5 5 min IlStStll. 

Proof: We proceed similarly to the proof of Theorem 35. 
Note that Lemmas 25, 26, and Corollaries 27 and 28 stay 
valid without any change, as well as Lemmas 31 and 34. It 
is straightforward to modify Corollary 29 and Lemma 30 to 
higher dimensions. Lemma 32 is replaced by the following 
three-dimensional version: 

For any arrangement with J$g$, = an, there can be 
at most eight points pi not on coordinate axes. 

This is shown as follows: Suppose there are nine points 
not on coordinate axes, then there must be at least two 
points p1 = (x1, yl,zl) and pz = (EZ,Y~,ZZ) in the same 
octant, say the positive one. By the analogue of Corol- 
lary 29, we cannot have 0 5 (II,YI,ZI) 5 (zz,y2,.22) or 
OL:(~2,yz,%2)I(21rylrz1)withpl #pi. Thisallowsusto 
consider without loss of generality 0 < ~1 < ~2, 0 < YZ < yl 
and apply the same modification to the x- and y-coordinates 
of p1 and pz as in the proof of Lemma 32. 

With the help of these lemmas, the claim of Lemma 33 
still holds. Using Lemma 34 for d = 3, we get 

6 
1 -= 

Pn - 1 

implying Pn 5 5. This concludes the proof. 1 

A matching lower bound exists: 

Theorem 41 There is a point set P in three-dimensional 
rectilinear space for which we have the equality min I(St(( = 
$ min ))StStll. 

Proof: Suppose n is divisible by 6. Place n/6 points on each 
of the points (l,O,O), (O,l,O), (O,O, l), (-l,O,O), (0, -l,O), 
(O,O, -1). Then min JlSt(l = 5n/3 and min llStStl[ = n. 1 

6.3 Minimum Stars and Maximum Matchings 

For this ratio, we have the same lower bound as in the pre- 
vious subsection: 

Theorem 42 There is a set of points P for which the equal- 
ity min llStll = 2 max IlMatll holds. 

Proof: Suppose n is divisible by 6. Place n/6 points on each 
of the points (l,O, 0), (0, l,O), (O,O, l), (-l,O, 0), (0, -l,O), 
(O,O, -1). Then min (I%(( = 5n/3 and max IjMat(( = n. 1 

At this point, our best upper bound is 2, which holds in 
general, as shown in Theorem 1. 

7 Conclusion 

We have derived a number of upper and lower bounds for the 
largest possible value of the ratios between the size of Min- 
imum stars, Minimum Steiner stars, and Maximum match- 
ings. An overview of our bounds is given in Table 1. Some 
of these bounds are not tight; in all cases, we believe that 
the lower bounds are more likely to be correct. This belief is 
strengthened by the fact that some of the tools we used for 
the case of Manhattan distances (in particular, Lemma 26) 
are true for Euclidean distances as well. We note the follow- 
ing conjectures: 

Conjecture 43 For any point set P in two-dimensional 
Euclidean space, we have min llSt/ 5 4/7r. min IlStStll. 

Conjecture 44 For any point set P in three-dimensional 
Euclidean space, we have min IJStJJ 5 4/3 . min )IStStJJ. 

Table 1: Lower and upper bounds for maximal values of 
ratios 

Dist Dim max ratio II Lower bd. I Upper bd. 

L2 2D 9 = 1.15... InkX l‘“1OL,, I, “a I “3 
mm ll.s?ll min ll.StStll 11 4 = = 77 1.27... 1 fi 1.41... 

I,^ I. 8, 
.63... 

...l^ ,I .._- “,, , 1 u 
3D min ((St.3 ( = 1.41... InBY 1 IlMatll $2 1.22... ( t/T= I 0 
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