
Tree Spanners in Planar Graphs
(Extended Abstract)

Sándor P. Fekete1 and Jana Kremer2

1 Center for Parallel Computing, Universität zu Köln
D–50923 Köln, GERMANY
sandor@zpr.uni-koeln.de

2 Lehrstuhl für Volkswirtschaftslehre
Otto-Friedrich Universität Bamberg

D–96045 Bamberg
GERMANY

jana.kremer@sowi.uni-bamberg.de

Abstract. A tree t-spanner of a graph G is a spanning subtree T of G in
which the distance between every pair of vertices is at most t times their
distance in G. Spanner problems have received some attention, mostly
in the context of communication networks. It is known that for general
unweighted graphs, the problem of deciding the existence of a tree t-
spanner can be solved in polynomial time for t = 2, while it is NP-hard
for any t ≥ 4; the case t = 3 is open, but has been conjectured to be
hard.
In this paper, we consider tree spanners in planar graphs. We show that
even for planar unweighted graphs, it is NP-hard to determine the mi-
nimum t for which a tree t-spanner exists. On the other hand, we give a
polynomial algorithm for any fixed t that decides for planar unweighted
graphs with bounded face length whether there is a tree t-spanner. Fur-
thermore, we prove that it can be decided in polynomial time whether a
planar unweighted graph has a tree t-spanner for t = 3.

1 Introduction

A t-spanner of a graph G is a spanning subgraph H of G in which the distance
between every pair of vertices is at most t times their distance in G. We can think
of the “stretch factor” t as the relative price increase that may incur for individual
connections after replacing the network G by a cheaper subnetwork H. Spanners
were first considered in the context of practical motivations from communication
networks (see Peleg and Ullman [20], who introduced spanners to synchronize
asynchronous networks). They have also been used for simplifying geometric data
structures – see Chew [11], Dobkin, Friedman, and Supowit [12], and Arikati et
al. [2]. Surveys of results on the existence and efficient constructibility can be
found in [19] and [23].

Depending on the objective for choosing a subnetwork, various kinds of span-
ners have been considered – see the list of references for a selection of variants.

J. Hromkovič, O. Sýkora (Eds.): WG’98, LNCS 1517, pp. 298–309, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Tree Spanners in Planar Graphs 299

Since the main motivation is to obtain a network of small total weight, particu-
lar attention has focused on tree spanners, where the subnetwork H is minimal
with respect to edge removal. As Cai [8], and Cai and Corneil [10] showed, the
problem of deciding the existence of a tree t-spanner in an unweighted graph G
can be solved in polynomial time for t = 2; on the other hand, the problem is
NP-complete for any t ≥ 4. The case t = 3 is still open, but it was conjectured
in [10] to be NP-complete.

As noted above, spanners have been considered in the context of geometric
distance queries – see [11,12,2]. Since planar graphs form a particularly well-
understood class of sparse graphs with a number of structural and algorithmic
properties that make them interesting as spanners, the focus of those works has
been on planar spanners, where the spanning graph H is required to be planar.
Also, see Brandes and Handke [7] for a proof that it is NP-hard to determine a
minimum weight planar t-spanner in a graph. They also showed that determining
a minimum weight t-spanner in a planar graph is an NP-hard problem.

Between considering tree spanners in general graphs and planar spanners in
general graphs, it is natural to consider tree spanners in planar graphs. Not
only does this allow a better understanding of the properties of graph spanners,
but results on the stretch factors of tree spanners in planar graphs combine
with bounds on the stretch factors of planar spanners in general graphs to yield
estimates on tree spanners in general graphs.

In this paper, we show that deciding the existence of a tree t-spanner in a
graph G is NP-complete, if t is part of the input, even when restricted to the
situation where G is planar and unweighted. On the other hand, we prove that
this problem can be solved in polynomial time for planar unweighted graphs
with bounded face length and fixed t.

For some purposes, not all pairs of connections have the same importance.
This motivates the concept of s, t-spanners: For a partition of E(G) into two
given sets of edges E1 and E2, a tree s, t-spanner consists of edges in E1, and
it replaces any edge (v1, v2) ∈ E1 by a path of at most s times its length, and
any edge (v1, v2) ∈ E2 by a path of at most t times its length. We show that for
fixed s and t, the existence of a tree s, t-spanner in planar unweighted graphs
with bounded face length can be checked in polynomial time. By a detailed
analysis of the neighborhood structures of planar graphs with tree 3-spanners,
we are able to show that a planar graph has a tree 3-spanner, iff it is a subgraph
of a planar graph with bounded face length that has a tree 3,12-spanner. This
implies a polynomial algorithm for deciding whether a planar graph G has a tree
3-spanner.

The rest of this paper is organized as follows: In Section 2, we introduce some
basic concepts. Section 3 sketches the NP-completeness of deciding the existence
of a tree t-spanner in a planar graph. In Section 4, we describe the polynomial
algorithm for deciding whether a planar graph with bounded face length has a
tree s, t-spanner. Section 5 gives an overview of the polynomial algorithm for
deciding whether a planar graph has a tree 3-spanner. In Section 6 we conclude
with some open problems.

300 S.P. Fekete and J. Kremer

2 Preliminaries

Throughout this paper, we use the terminology of Bondy and Murty [5]. A graph
G has edge set E(G) and vertex set V (G); we may simply write E and V when
the meaning is clear. If H is a subgraph of G, then G − H denotes the graph
obtained by deleting from G all edges of H. For a pair of vertices v1 and v2 in
a connected graph G, we denote the length of a shortest path from v1 to v2 by
dG(v1, v2). We will concentrate on the case of unweighted graphs without loops,
so for any edge (v1, v2) ∈ E(G), we have dG(v1, v2) = 1. For a planar graph G,
we write G∗ for the dual graph. For S ⊂ V , the number of the edges leaving
S in the graph G is denoted by δG(S). For S ⊂ V , we denote by N(S) the set
of neighbors of S, i. e., the set of vertices v ∈ V \ S with a w ∈ S, such that
(v, w) ∈ E. For a set of vertices S ⊆ V , the subgraph induced by S is denoted
by G[S].

For a real number t ≥ 1, a subgraph H of a connected graph G is a t-spanner
if dH(v1, v2) ≤ t · dG(v1, v2) for all v1, v2 ∈ E(G). A tree t-spanner is a t-spanner
that is a tree. The parameter t is called the stretch factor; the smallest value t
for which a graph G has a tree t-spanner is called the tree stretch index of G,
denoted by σT (G). It was shown in [10] that the following holds:

Lemma 1 A subgraph H of a connected graph G is a t-spanner, iff for all edges
(v1, v2) ∈ E(G) − E(H), we have dH(v1, v2) ≤ t

This allows us to consider only integer stretch factors for unweighted graphs.
If the condition dH(v1, v2) ≤ t is satisfied for a particular edge e = (v1, v2) ∈
E(G)−E(H), we say that e has a short detour in H; for the case of tree spanners
T , there is a unique corresponding shortest path, denoted by pT (e).

3 An NP-Completeness Result

It was shown in [10] that it is NP-complete to decide whether σT (G) ≤ t for a
general unweighted graph, as long as t ≥ 4. In this section, we sketch our proof
that it is NP-complete to decide σT (G) ≤ t for a planar unweighted graph, where
t is part of the input. Our reduction is from a special subclass of 3-SAT instances,
called Planar 3SAT, which was shown to be NP-complete by Lichtenstein [16].

A 3SAT instance I is said to be an instance of Planar 3SAT, if the following
bipartite graph GI is planar: Every variable and every clause in I is represented
by a vertex in GI ; two vertices are connected, if and only if one of them represents
a variable that appears in the clause that is represented by the other vertex. See
Figure 1 (a) for an example.

In the following, we sketch the necessary gadgets for our hardness proof.
Details are contained in the full version of the paper, see also [15].

3.1 The Basic Setup

In a first step, the graph GI is transformed into a graph G′
I . As shown in Figure 1,

each set of three edges adjacent to the same clause vertex is replaced by three

Tree Spanners in Planar Graphs 301

1

3v v 5

v 4v

2v

v 1

3 v 5

v 4

v 2

v

c

d

e

d

e

c

(b)(a)

Fig. 1. (a) The graph GI representing the Planar 3SAT instance (x1 ∨ x3 ∨
x4) ∧ (x̄1 ∨ x̄2 ∨ x4) ∧ (x̄3 ∨ x4 ∨ x̄5); (b) The transformed graph G′

I

paths of length 4. From this graph G′
I , any spanning tree T ′ is chosen. This

spanning tree has a certain stretch factor t′, which is polynomially bounded by
the size of I.

For the second step, we add edges and vertices to G′
I to get a graph G′′

I . In
particular, we use the gadgets shown in Figure 2 to make sure that for t = t′ +1,
all the edges of T ′ must be contained in a potential tree t-spanner of G′′

I , if there
is one.

The gadget shown in (a) has been used extensively in the proofs of [10]
and [7]. It is easy to see that any tree 5-spanner of the graph G shown in the
figure must contain the edge e. In the following, edges forced in this way are
indicated by bold drawing.

e1

e

e2

(b)(a)

e

Fig. 2. (a) A forced edge; (b) a forced pair

302 S.P. Fekete and J. Kremer

Figure 2 (b) shows another gadget that can be used for forcing one out of
two edges: Any tree 3-spanner must contain e and precisely one of the two edges
e1 and e2.

In a third step, components for clauses and variables are added to G′′
I . The

following two subsections give a rough description of their design and properties.

3.2 Gadgets for Variables

Figure 3 shows the gadget Gvar for representing variables. It consists of a central
“variable” vertex v, connected to “literal” vertices v1, v1, . . ., vs, vs. vi and vi

are connected by an edge w(i) that is forced by two paths of length t. vi and
vi+1 (indices modulo s) are connected by a path of length t − 2, containing the
vertices vi, w

(i,i+1)
1 , . . . , w

(i,i+1)
t−3 , vi+1. The edge fi = (vi, w

(i,i+1)
1) is not forced,

all other edges of the path are. Connections to the outside, i. e., to the rest of
the graph, are at the literal vertices.

Furthermore, no two literal vertices are adjacent and there is no outside
vertex that is connected for all 1 ≤ i ≤ s to at least one af the vertices vi, v̄i.

1

v
2

v

v

v
1
f

v

t-3
(1,2)

e

w

e
1

1

v

v

2

3

3 1

w
1
(1,2)

w(1)

Fig. 3. Variable component Gvar

Using straightforward induction, it is not hard to prove the following:

Lemma 2 A tree t-spanner of a graph containing Gvar cannot contain any of
the edges fi and must contain precisely one of the edges ei, ei. Furthermore, e1
is contained iff all ei are contained.

Containment of ei or ei corresponds to a truth assignment of the represented
variable.

Tree Spanners in Planar Graphs 303

3.3 Gadgets for Clauses

Due to space limitations, we cannot give full technical details of the clause gad-
gets, but the basic idea is shown in Figure 4 (a). Figure 4 (b) shows the general
layout for combining clauses and variables.

c

d

e

P
1

P

3

2

1

v2

x2

x1

x x

x 2

x

v
3

P

3v
c

31

(b)(a)

Fig. 4. (a) Idea of the clause component, shown for (x1∨x2∨x3); (b) combination
of clause gadgets (triangles) with variable gadgets (circles)

Around a central node c, we group three forced paths of appropriate length,
starting with edges (c, u1), (c, u2), (c, u3). These paths connect to literal nodes
of the corresponding variables. The choice of path lengths, forced edges, forced
pairs and connections to variable components is done in a way that forces c to
be a leaf of a tree t-spanner, if there is one. Furthermore, the existence of a tree
t-spanner hinges on the existence of short detours pT (c, ui), pT (c, uj) for the two
edges (c, ui), (c, uj) adjacent to c that are not contained in a spanner T .

Each non-true literal forces an extra edge into a potential short detour
pT (c, ui). The path lengths are set up in a way that allows one extra edge,
but not two of them. This forces at least one satisfying literal to be in each
clause. Conversely, if there is a truth assignment, we can keep c connected to
the path that leads directly to the satisfying literal, making sure that there can
be at most one extra edge for the detours pT (c, ui), pT (c, uj).

We summarize:

Theorem 3. It is NP-complete to decide σT (G) ≤ t for planar unweighted gra-
phs G and integers t.

304 S.P. Fekete and J. Kremer

4 Planar Graphs with Bounded Face Length

In this section, we show that deciding the existence of a tree t-spanner in a
planar graph with all faces of bounded length can be performed in polynomial
time.

For this purpose, we introduce the notion of a c-cut tree in a graph:

Definition 4 Let T be a spanning tree in a graph G. Removing any edge e ∈ T
splits T into two connected components, inducing a partition of the vertex set
into PT (e) = (VT (e), V ′

T (e)). We say that T is a c-cut tree in G, if for all e ∈ T ,
|δG(VT (e))| ≤ c.

It is straightforward to show that the following holds:

Lemma 5 A planar graph G has a tree t-spanner, iff G∗ has a (t + 1)-cut tree.

Furthermore, we can establish the following constructive characterization of
c-cut trees:

Lemma 6 A planar graph G has a c-cut tree, iff there is a “rooted nested family”
F ⊆ 2V × V with the following properties:

1. (V, r) ∈ F for an r ∈ V
2. r ∈ S for all (S, r) ∈ F ,
3. |δG(S)| ≤ c for all (S, r) ∈ F ,
4. for all (S1, r1), (S2, r2) ∈ F we have S1 ⊆ S2 or S1 ⊆ V \ S2,
5. for all (S, r) ∈ F there are l ≥ 1 and (Si, ri) ∈ F , 1 ≤ i ≤ l, with S \ {r} =

∪̇Si and (r, ri) ∈ E.

The vertex sets S correspond to the subsets of a partition induced by the
removal of an edge e ∈ T from T , while r ∈ S is the vertex adjacent to e. The
proof is straightforward and omitted.

Using the characterization from Lemma 6, we get the following result:

Theorem 7. For fixed t, it can be decided in polynomial time for planar un-
weighted graphs G with bounded face length whether σT (G) ≤ t.

Sketch: Consider the existence of a rooted nested family F of G∗ as descri-
bed in Lemma 6. Since t is fixed, there are only polynomially many possible cuts
in G∗ of size not larger than t + 1, implying we only have to consider polynomi-
ally many sets (S, r) that can be used for F . Since all faces in G have bounded
length, the dual graph G∗ has bounded degree, so there is a polynomial number
of possible partitions for any (S, r). Using dynamic programming and proceeding
by increasing size of S, we can decide the existence of a rooted nested family as
described in Lemma 6 in polynomial time.

ut
As described in the introduction, the concept of tree t-spanners can be gene-

ralized:

Tree Spanners in Planar Graphs 305

Definition 8 Let G be a graph with E(G) = E1∪̇E2. Then a spanning tree T
of G is a tree s, t-spanner for G = (V, E1∪̇E2), iff T is a subgraph of (V, E1),
and for all edges (v1, v2) ∈ E1 − T , we have dT (v1, v2) ≤ s, and for all edges
(v1, v2) ∈ E2 − T , we have dT (v1, v2) ≤ t.

With an analogous approach to the one for tree t-spanners, we can establish
the following result for tree s, t-spanners:

Theorem 9. For fixed s and t, it can be decided in polynomial time for planar
unweighted graphs G = (V, E1∪̇E2) of bounded face length, possibly with multi-
edges, whether there is a tree s, t-spanner.

5 Deciding the Existence of Tree 3-Spanners in Planar
Graphs

In this section, we sketch the polynomial algorithm for deciding whether a planar
unweighted graph G has a 3-spanner. The key idea is to add a set of edges E′ to
obtain a graph G≤4 with face length bounded by 4, such that G≤4 = (V, E∪̇E′)
has a tree 3, 12-spanner, iff G has a tree 3-spanner. The existence of a 3, 12-
spanner in G≤4 can be decided in polynomial time by the algorithm from the
previous section.

If there is no face of length more than 4, we are done, so consider a face
bounded by the chordless cycle C = v1, . . . , vs with |C| ≥ 5. Now assume there
is a tree 3-spanner in G. Since |C| ≥ 5, for any edge e = (vi, vi+1) in C − T ,
there must be a path in T that is not longer than 3 and not fully contained in
C. The different possibilities for such a path are shown in Figure 5.

vi+1

vi-1 vi+2

v
i vi+1

v
i

vi+1

v
i

C C C

Fig. 5. Different possibilities for a short detour pT (vi, vi+1) of an edge (vi, vi+1)
in C − T

Now we can analyze the structure of T in the neighborhood of C: consider
the edges in pT (vi, vi+1) − C. It is not hard to see that each of these edges must
be contained in pT (vj , vj+1) for an edge (vj , vj+1) ∈ ((C − T) − (vi, vi+1)), since
T cannot contain a cycle. Because pT (vj , vj+1) contains at most three edges,
(vj , vj+1) is adjacent to (vi, vi+1) or both are adjacent to the same edge in C.

From this, we can derive the following lemma:

306 S.P. Fekete and J. Kremer

Lemma 10 Let G be a planar graph with a tree 3-spanner T . If C is a chordless
cycle in G, |C| ≥ 5, then there is a “semi-dominating” tree TC in T , such that

1. C is “weakly dominated” by V (TC), i. e., for any vertex vi ∈ C, vi is adjacent
to TC , or both its neighbors vi−1 and vi+1 are.

2. If a vertex v ∈ C is not adjacent to TC , then both of its neighbors are adjacent
to the same vertex of TC .

Furthermore, for a given cycle C that bounds a face F of G, the semi-dominating
tree is uniquely determined.

An example is shown in Figure 6. Bold lines show the semi-dominating tree.

u

F

Fig. 6. A long chordless cycle C in G and a semi-dominating tree TC

Now consider a vertex u ∈ TC as shown in Figure 7. If u does not weakly
dominate C (which would imply u = T), then it induces a subdivision (called
the u-subdivision) of C as follows. Let Di be a maximal path weakly dominated
by u. The first vertex of Di is denoted by dh

i , the last by dt
i. Between any two

Di and Di+1, there is a path Pi, consisting of vertices that are non-adjacent to
u. Clearly, any Pi must contain at least two vertices. For any i, let P 1

i be the
path (dt

i, Pi, d
h
i+1), while P 2

i is the path (Di+1, Pi+1, . . . , Pi−1, Di).
Now we insert a set E′(u) of new edges as follows. For any i, insert the edge

(dt
i, d

h
i+1) – shown by broken lines in Figure 7. This yields a face F (u) that is

dominated by u. This face is then triangulated by further new edges. Using the
structure of the semi-dominating tree, we can show that the face bounded by C
is subdivided into faces of length at most 4. Furthermore, the end vertices of the

Tree Spanners in Planar Graphs 307

1
P

u

1

2

3

4

h

t

h t

h

t

h
td

d

d

d

dd

d

4P

F(u)

2

3

2

3

d

4

P

P

1

D2

D3
D1

4D

Fig. 7. A vertex u in a semi-dominating tree TC , its u-partition, and the subface
F (u)

new edges are connected by paths with at most 12 edges in a tree 3-spanner T of
G. Note that in the process of introducing new edges, we may create multi-edges.

After inserting a new chord for any chord of a face, this subdivision is carried
out for every face that is bounded by a chordless cycle C with more than four
edges and for all vertices of the semi-dominating tree TC of C. Eventually we
get the planar supergraph G≤4 with the desired properties.

Conversely, any tree 3, 12-spanner in the expanded graph (V, E(G)∪̇E′) in-
duces a tree 3-spanner in G. (Full details can be found in [15].)

The following definition and Lemma 12 show how to find a semi-dominating
tree of a cycle in polynomial time. Once the semi-dominating trees are found,
the procedure of inserting the edges, and testing for the existence of a tree 3, 12-
spanner yields a polynomial algorithm – recall Theorem 9.

Definition 11 Let u ∈ N(C) be a vertex that does not weakly dominate the
cycle C. Let D1, P1, . . . , Dr, Pr be the u-subdivision of C.

A vertex w ∈ N(C) is an independent C-neighbor of u, if it is adjacent to u
in G and if there is an index 1 ≤ i ≤ r such that the following conditions hold:

1. There is a path of at most two edges in G that connects w with a vertex of
Pi, and

2. there are vertices wh
i , wt

i from P 1
i that are adjacent to w in G and vertices

uh
i , ut

i from P 2
i that are adjacent to u in G, such that wh

i , wt
i , uh

i , and ut
i

are pairwise disjoint and uh
i wt

i , wh
i ut

i ∈ E(C) holds.

(Note that the path does not contain vertex u, since u is not adjacent to any
vertex in Pi.)

308 S.P. Fekete and J. Kremer

The set of all independent C-neighbors is denoted by N(C, u). A vertex w ∈
N(C) is a C-successor of u, if there is a path (w0, w1, . . . , wk with w0 = u,
wk = w, such that for any 1 ≤ i ≤ k, the vertex wi is an independent C-neighbor
of wi−1. The set of all C-successors is denoted by D(C, u).

Lemma 12 Let C be a cycle in a planar graph G, and let u be adjacent to a
vertex in C.

If C has a semi-dominating tree TC containing u, then

TC = G[D(C, u)] − {(v, w) : w 6∈ N(C, v)}.

Summarizing, we get

Theorem 13. We can decide in polynomial time whether a planar unweighted
graph G has a tree 3-spanner.

6 Conclusion

In this paper, we have shown that for planar graphs, it is possible to decide
the existence of a tree 3-spanner in polynomial time. Our method makes strong
use of planarity, yet the resulting algorithm is rather complicated. It has been
conjectured that deciding the existence of a tree 3-spanner is an NP-complete
problem, and our impression from the experience with planar graphs seems to
support this belief.

On the other hand, we could prove that deciding the existence of a tree
t-spanner is NP-complete, as long as t is part of the input. The complexity
for fixed t is unclear, but there may be a polynomial method of deciding the
question, possibly using a combination of dynamic programming and an analysis
of neighborhood structures, as we did for the case t = 3. Unfortunately, this
analysis appears to become rather tedious even for t = 4.

Acknowledgment

We would like to thank Dorothea Wagner, Ulrik Brandes, and Dagmar Handke
for helpful discussions.

References

1. I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of
weighted graphs. Discrete and Computational Geometry, 9 (1993), pp. 81–100.

2. S. Arikati, D. Z. Chen, L. P. Chew, G. Das, M. Smid, and D. Zaroliagis. Planar
spanners and approximate shortest path queries among obstacles in the plane.. In:
J. Diaz, ed., Algorithms - ESA ’96, Springer Lecture Notes in Computer Science
#1136, 1996, pp. 514–528.

Tree Spanners in Planar Graphs 309

3. B. Awerbuch, A. Baratz, and D. Peleg. Efficient broadcast and light-weight span-
ners. Manuscript, 1992.

4. S. Bhatt, F. Chung, F. Leighton, and A. Rosenberg. Optimal simulations of tree
machines. In Proceedings of the 27th IEEE Symposium on Foundations of Computer
Science (FOCS 1986), pp. 274-282.

5. J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. North-Holland,
New York, 1976.

6. K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval
graphs, and planarity using PQ-tree algorithms. Journal of Computer and System
Sciences, 13 (1976), pp. 335–379.

7. U. Brandes and D. Handke. NP-completeness results for minimum planar spanners.
In Proceedings of the 23th Workshop on Graph-Theoretic Concepts in Computer
Science (WG ’97), Springer Lecture Notes in Computer Science # 1335, 1997,
pp. 85-99.

8. L. Cai. Tree spanners: spanning trees that approximate distances. Ph.D. the-
sis, University of Toronto, Toronto, Canada, 1992. Available as Technical Report
260/92, Department of Computer Science, University of Toronto.

9. L. Cai. NP-completeness of minimum spanner problems, Discrete Applied Mathe-
matics, 48 (1994), pp. 187–194.

10. L. Cai and D. G. Corneil. Tree spanners. SIAM Journal of Discrete Mathematics,
8 (1995), pp. 359-387.

11. L. P. Chew. There is a planar graph almost as good as the complete graph. In
Proceedings of the 2nd ACM Symposium on Computational Geometry, pp. 169-
177, 1986.

12. D. P. Dobkin, S. J. Friedman, and K. J. Supowit. Delaunay graphs are almost as
good as complete graphs. Discrete and Computational Geometry, 5 (1990), pp. 399–
407.

13. J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of the ACM,
21, (1974), 549–568.

14. G. Kortsarz and D. Peleg. Generating sparse 2-spanners. In: Proceedings of the
Third Scandinavian Workshop on Algorithm Theory (SWAT 1992).

15. J. Kremer. Baumspanner in planaren Graphen. Diploma thesis, Mathematisches
Institut, Universität zu Köln, 1997.

16. D. Lichtenstein. Planar formulae and their uses. SIAM Journal of Computing, 11
(1982), pp. 329–343.

17. A. L. Liestman and T. Shermer. Grid spanners. Networks, 23 (1993), pp. 123–133.
18. A. Mansfield. Determining the thickness of graphs is NP-hard. Mathematical Pro-

ceedings of the Cambridge Philosophical Society, 93 (1983), pp. 9–23.
19. D. Peleg and A. A. Schäffer. Graph spanners. Journal of Graph Theory, 13 (1989),

pp. 99–116.
20. D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. In Procee-

dings of the 6th ACM Symposium on Principles of Distributed Computing, 1987,
pp. 77–85.

21. D. Peleg and E. Upfal. A tradeoff between space and efficiency for routing tables.
In Proceedings of the 20th ACM Symposium on the Theory of Computing, (STOC
1988), pp. 43–52.

22. D. Richards and A. L. Liestman. Degree-constrained pyramid spanners. Parallel
and Distributed Computing, 25 (1995), pp. 1–6.

23. J. Soares. Graph spanners: a survey. Congressus Numerantium, 89 (1992),pp. 225–
238.

	Introduction
	Preliminaries
	An NP-Completeness Result
	The Basic Setup
	Gadgets for Variables
	Gadgets for Clauses

	Planar Graphs with Bounded Face Length
	Deciding the Existence of Tree 3-Spanners in Planar Graphs
	Conclusion

