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Abstract 

We consider the problem of traveling the contour of the set of all points that are within distance 1 of a connected planar curve 

arrangement P, forming an embedding of the graph G. We show that if the overall length of P is L, there is a closed roundtrip 

that visits all points of the contour and has length no longer than 2L + 2n. This result carries over in a more general setting: 

if R is a compact convex shape with interior points and boundary length e, we can travel the boundary of the Minkowski sum 

P @ R on a closed roundtrip no longer than 2L + e. 0 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

When planning the motion of a robot, we are 

confronted with the problem of moving an object 
while avoiding collision with a set of obstacles. For the 

case of translational motion, this means considering 

Minkowski sums of the form P @ R, where P is the 
set of positions of a reference point and R is the shape 

of the robot itself. P is a set of feasible positions 

if and only if P @ R does not contain any part of 
an obstacle. In this context, Minkowski sums have 

been considered in [2,6-&IO-13,15,16], sometimes 
under the name of “configuration space obstacles”. 

Computing the unbounded face of the Minkowski sum 

of two simple polygons was considered in [ 151. 

In many cases, it is of particular importance to 
protect the boundary of a Minkowski sum: if a mobile 
obstacle (e.g., a person) enters the set of points that 
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can be met by an industrial robot, we may have to 

stop the robot in order to avoid a serious accident. 

(A special case arises when a minimal distance r from 

a set of stationary machinery has to be maintained. 
In this situation, R is a ball of radius r.) This makes 

it interesting to find short closed roundtrips that visit 

all points of the boundary of a Minkowski sum; such 
a tour could then be followed by a laser or other 

scanning device. 

In this paper, we establish that all boundary points 

of the Minkowski sum P @ R of a connected arrange- 

ment P of planar curves with total length L and a 
convex planar shape R of perimeter e can be trav- 

eled along a closed roundtrip of length no more than 

2L + e, even if the boundary of P @ R is disconnected. 
This result is also of importance in the more general 

situation where we have to search a polygonal area 
A with a scanning device of shape R. This so- 
called “lawn mowing problem” is NP-hard and was 

considered in [9,1]. As it was shown in [l], our 
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inequality allows the construction of approximation 
algorithms with small approximation factors. 

2. The inequality 

We will make use of the following proposition, 
following from Cauchy’s formula-see [3-5,141. 

Proposition 2.1 (Cauchy, 1841). Let Cl and C2 be 

closed convex curves of length el and &, such that 

Cl is contained in the interior of C2. Then fJ.2 3 el. 

Now we proceed to the main theorem. We start with 

the special case where P consists of a finite number 
of line segments, i.e., where P can be considered a 
plane drawing of a graph G. For easier notation we 
write ScR) := S @ R for any set S, and 6ScR) for the 
boundary points of this set. (See Fig. 1.) 

Theorem 2.2. Let P be a connected planar arrange- 

ment of edges and let R be a closed convex curve of 

length 8. If L is the overall length of the edges in P, 

there is a closed roundtrip of length at most 2L + e 

that visits all points of 6PcR). 

Proof. As a first step, replace G by a tree Gr in the 
following way: As long as there are cycles in the 
graph, pick a vertex v contained in a cycle where it 
has neighbors v, and Vb. Replace v by the vertices vr 

and ~2, where vr is adjacent to va and Vb is adjacent 
to all other neighbors of v. Note that geometrically, VI 

and v2 will be identical. 

Fig. 1. The set 6GcR). 

Now we proceed by induction over the number of 
edges of Gt. The claim is trivial if G (and hence 
Gt) is a point. Let e be an edge of length l(e) in 
Gt that is adjacent to a leaf of Gt. Let Q be the 
edge arrangement of length 1 (Q) left after removing 
e, let Ft be the tree obtained from Gt by removing 
e, and let TQ be a tour of length at most 21(Q) + e 
that visits all points in 6 QcR). We assume as part of 
the induction hypothesis that the set of points where 
TQ does not self-intersect can be decomposed into 
a finite number of (open) intervals Zi. This implies 
that there is only a finite number of boundary points 
of these intervals, called the set P of critical self- 

intersection points. These points subdivide & into a 
finite number of paths. (Note that a path is counted 
with a multiplicity according to the number of times 
that it is traveled by TQ .) Clearly, each point in P has 
an even number of sections adjacent to it. Furthermore, 
we assume that the family C of connected components 
of Iw2 \ TQ has a finite number of members, and 
that for each of them, TQ has a well-defined finite 
(counterclockwise) winding number. Let C, (CO) be 
the set of components for which TQ has an even (odd) 
winding number. We say that an orientation of a path 
P separating a component in CO from a component 
in C, is positive, if the odd component lies to the left 
when traveling the oriented path; otherwise we follow 
a negative orientation. 

Next assign orientations to all paths: for paths with 
even multiplicity, orient half of these identical paths 
in each direction; for paths with odd multiplicity, ori- 
ent one more in a positive than in a negative way. 
As a result, when going around a point in P, incom- 
ing and outgoing paths will alternate. It is straightfor- 

Fig. 2. Constructing the tour Tp 
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ward to see that following a “left-first” strategy (i.e., 
at each point in P, choose the unused path that forms 
the smallest counterclockwise angle with the previous 
path), we get a set of closed (sub)tours that are nei- 
ther self-crossing nor do they cross each other. Fur- 

thermore, these subtours can be merged into one non- 
crossing tour that visits all points in IR* the same num- 
ber of times as Z’Q. In the following assume without 
loss of generality that TQ is such a noncrossing tour. 

If 6 Q(R) = 6P(R), we are done, so assume that there 
is a point of ecR) which is not contained in QcR), 
implying that 6 QcR) and &CR) intersect. 

6ecR) has a simple tour T, of length precisely 
21(e) + e. Let p be the endpoint of e that is also a 
point of &; in particular, the set p @ R is contained in 
ecR) fl QcR) = C. Let C, be the connected component 
of C that contains p. Since the length l(dc~nv(C~)) of 
the boundary of the convex hull of C, is not longer 
than I(S(C,)), the length of the boundary of C,, we 
conclude by Proposition 2.1 that we have 1(6C,) 3 e. 
Now consider the union TQU, of the tours TQ and T,: 
By assumption, 6QcR) and 6ecR) intersect, so TQ”, 
can be traversed as one connected tour that visits each 

point of c!SP(~) and each point of 6C,. Furthermore, 

points of SC, that are also points of S Qi”’ are visited 
by both TQ and Te, hence visited twice by TQ”,. 

Now consider the (finite) set B of critical inter- 
section points of Ty and TQ, i.e., boundary points of 
intervals where T, is disjoint from TQ. Let (bo, bt, 
. . . , b2k = bo] = B’ C B be a set of critical intersec- 
tion points on the boundary of C,, such that for any 
i E (0, . . . , k - l), the piece of SC, from b2i to bzi+l 
belongs to TQ, while the piece of SC, from b2i+l to 
b2i+2 belongs to T,. For any bi with i odd, let b,(i) be 
the first bj encountered by TQ after running through 
the piece of C, from bi_1 to bi . Since Te is simple 
and TQ noncrossing, the tour formed by the section of 
TQ from bi to b,(i) and of the section of SC, from 
bx(i) to bi is noncrossing and the section of 6C, from 
bi to b,(i) is contained in it. Therefore, the section of 
SC, from bi to b,(i) cannot contain any other points 
in B’, so b,(i) = bi+l . This means that we can decom- 
pose TQ”~ into 6C, and a remaining tour T?, con- 
sisting of the section of T, from b2i to b2i+l and of 
the section of TQ from b2i+l to b2i+2. By construc- 
tion, Tp visits all points of 6PcR) at least once and 
has length at most 22(Q) + e +22(e) + e - 1(SC,) < 
21(Q) + 21(e) + e = 2L + e. From its construction it 

follows that Tp satisfies the additional induction hy- 
potheses on self-intersection, subdivision of the plane, 
and well-defined finite winding number. q 

It should be noted that for arrangements P of 
straight edges, the given bound holds with equality if 
and only if P consists of one straight edge of length 
L; it follows from the above proof that there will be 
some slack as soon as 6C, is not a unit circle, which 
is forced in any other case. 

Similarly, we get the same result for more general 
arrangements of curves: 

Corollary 2.3. Let P be a connectedplanar arrange- 

ment of piecewise diflerentiable curves. Let C be a 

compact convex shape with interior points. If L is the 

overall length of the curves, and 1 is the length of the 

boundary of C, there is a closed roundtrip of length at 

most 2L + 1 that visits allpoints of i3(P @ C). 

The proof follows from considering series of edge 
arrangements that converges towards the individual 
curves. The upper bound on the length of a tour of 
6PcR) carries over in the limit. 
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