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Abstract

The objective of this Ph.D. thesis is to explore some connections between prob-
lems arising from Combinatorial Optimization and problems from Computational

Geometry.

It deals mainly with geometric problems that are in some way related to the
Travelling Salesman Problem. The first two parts, (“Area Optimization” and
“Angle-Restricted Tours”) discuss aspects of two problems of combinatorial ge-
ometry. The other two parts (“Geometric TSP Optimality” and “Error Analysis
for the TSP”) are more closely related to particular aspécts of the TSP.

The “Minimum Area Polygon” problem (MAP) asks for a simple polygon with
a given set of vertices for which the enclosed area attains the minimum. Pick’s
theorem provides a relation between the area of a simple polygon and the number
of grid points it meets; this yields a simple combinatorial lower bound for the area of
a polygon. Considering this bound leads to the “Grid Avoiding Polygon” problem
(GAP), which asks for a simple polygon with a given set of (grid) vertices that does
not meet any additional grid points. We prove that GAP is NP-complete, implying
NP-completeness of MAP. This result answers a question stated by Suriin 1989. We
also show that the respective maximization problems are NP-complete and closely
related to MAP and GAP. We give upper and lower bounds on approximation
factors for the “Maximum Area Polygon” problem. Finally, we show that it is NP-
hard to minimize the volume of the k-dimensional faces of a simple d-dimensional
polyhedron with a given set of vertices. This answers a generalization of a question

of O'Rourke.

For a given set A of angles, the problem “Angle-Restricted Tour” (ART) is

v



to decide whether a finite set of points in the Euclidean plane allows a closed tour
where subsequent points are connected by straight lines and adjacent lines may only
subtend angles from the set A. For the angle-set A = [0, 7], we get “pseudoconvex
tours”‘. We prove that every set of at least 5 points allows a pseudoconvex tour.
We discuss the complexity of detecting angle-restricted tours for other angle sets,

most notably for A C {-%,5%,7}.

In the third part, we discuss generalized convexity and its relevance for TSP
optimality. It turns out that a generalized convex tour allows a particularly elegant

geometric proof of optimality, called a moat packing, as introduced by Jinger and

Pulleyblank.

Finally, we consider backward error analysis for the TSP. Geometrically speak-
ing, we examine the question: How far is a given set of vertices from one that forms

a generalized convex arrangement?
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Chapter 1

Introduction

Mathematicians working in the area of Combinatorial Optimization are used to
dealing with discrete objects like finite sets, permutations or graphs. This reflects
the necessities of finding algorithmic solutions for optimization problems. For a
problem that is not intrinsically discrete, it can be beneficial to transform it into a
purely combinatorial task. Probably the best known example for this approach is
the simplex method for Linear Programming: The problem of finding a point in a
polyhedron that optimizes a linear function is reduced to considering a graph that

is formed by vertices and edges of the polyhedron.

On the other hand, Geometry is the prototypical field dealing with continuous
objects: subsets of the Euclidean plane, the motion of objects, manifolds. The
classical methods of Euclidean Geometry are quite algorithmic, but the underlying

philosophy is to treat lines or circles as continuous entities.

The study of geometry has also focussed on discrete problems. But until recent

years, mathematicians interested in Discrete Geometry were usually more concerned

1
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about nonalgorithmic extremal aspects than about questions of algorithmic opti-

mization.

Since about the 1970s, the necessity to consider geometric questions in areas
as computer graphics, image processing, robotics, pattern recognition, and archi-
tecture has led to increasing interest in discrete geometric algorithms. Design and
analysis of geometric algorithms is the subject of the field of Computational Ge-

ometry.

The objective of this Ph.D. thesis is to explore some connections between ques-
tions arising from Combinatorial Optimization and problems from Computational

Geometry.

One of the best known problems of combinatorial optimization is the Travelling
Salesman Problem (TSP): For a given finite set of cities, find a closed tour that visits
them all. We deal mainly with geometric problems that are in some way related to
the Travelling Salesman Problem. Some of them (“Area Optimization”, “Pseudo-
convex Tours”) are combinatorial problems in their own right, others (“Generalized
Convexity, TSP Optimality, and Moat Packings”, “Error Analysis for the TSP”)

are more closely related to particular aspects of the TSP.

Geometrically speaking, the Travelling Salesman Problem is to construct a (sim-
ple) polygon with a given set of vertices for which the perimeter is minimal. The
“Minimum Area Polygon” problem asks for a simple polygon for which the enclosed

area attains the minimum.

In Chapter 2, we discuss the calculation of the area of a simple polygon in

the Euclidean plane. The relation between area of a simple polygon with integer
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vertices and the set of enclosed grid points, is described by Pick’s Theorem (1899):
1
AR(P) = 56(?) +(P) -1,

where b(P) and ¢(P) denote the number of grid points on the boundary and in the

interior of P.

When considering simple polygons with a given vertex set, Pick’s Theorem pro-
vides a combinatorial bound on the maximum and minimum area simple polygons.
We describe how we can optimize the enclosed area for some special cases of the
given vertex set and point out some difficulties that arise in the case of arbitrary

vertex sets.

It follows from Pick’s Theorem that every simple polygon on a given set of n
vertices with integer coordinates must have an area of at least 3 — 1. This lower
bound is met if and only if we can find a Grid Avoiding Polygon that does not

include any other grid points on its boundary or in its interior.

In Chapter 3, we prove that it is NP-complete to decide whether a given set
of vertices allows a Grid Avoiding Polygon. (The reduction is from Hamiltonian
Circuit in planar cubic directed graphs.) It follows that finding a Minimum Area
Polygon is NP-hard. This answers a generalization of a question stated by Suri in
1989. Since it takes only a short time to calculate the area of a simple polygon
and compare it to a given number, the problem is in NP, thus NP-complete. This
differs from the situation for minimizing the perimeter, where it is still unknown

whether the problem is in NP.

In Chapter 4, we extend our NP-completeness result for the maximization prob-
lem. We discuss questions of approximating a Maximum Area Polygon and show

that we can find an approximation in time O(nlogn) that comes within a factor
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of % of the optimum. We prove that coming within a constant factor of at least
% + € of the area of the convex hull is NP-complete. We conclude the chapter by
discussing how a vertex set P should be chosen inside of a convex region in order

to minimize the maximal area of a simple polygon with vertex set P.

The question of minimizing perimeter or area of a simple polygon can be gen-
eralized to higher dimensions. In Chapter 5, we prove that it is NP-hard to find
a simple d-dimensional polyhedron on a given set of vertices, for which the sum of
volumes of its k-dimensional faces is minimal. This answers a generalization of a

question of O’Rourke from 1980.

Any simple (not self-intersecting) Euclidean Travelling Salesman Tour that
makes only right-hand turns is convex and therefore optimal. If we éllow a tour
to be self-intersecting while only making right-hand turns, we get the notion of a
Pseudoconver Tour. The example of three points surrounding a fourth point shows
that not every finite set allows a pseudoconvex tour. In Chapter 6, we prove that

every set of at least 5 points has a pseudoconvex tour.

The question of existence of pseudoconvex tours can be generalized as follows:
For a given set A of angles, the problem “Angle-Restricted Tour” (ART) is to
decide whether a finite set of points in the Euclidean plane allows a closed tour
where subsequent points are connected by straight lines and adjacent lines may
only subtend angles from the set A. This means that we are restricted in the
way we can change direction relative to the orientation on a previous edge. As
pointed out by Wood, our notion of restricted relative orientations is an interesting

alternative to restricted orientations that are fized in space.
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In Chapter 7, we give complete solutions for all subcases of “Orthogonal Tours”,
where the feasible angle set is a subset of {+3,—%,7}: For the full set, the problem
is NP-complete. (The reduction is from Hamiltonian Circuit in grid graphs.) For
the subset {4+%,—2}, the problem is polynomial with a complexity of O(n?logn).
For the subset {+7, 7}, the problem is NP-complete. (The reduction is from HC in
cubic directed graphs.) We also present some results and open questions concerning
“Acute Tours” (where all turns have to be at least as sharp as 7) and “Obtuse

Paths” (where all turns have to be not sharper than a specific lower bound).

Chapter 8 considers a geometric interpretation of the subtour constraints of the

Travelling Salesman Problem and some related questions.

For a given set of vertices in the plane, a moatis a simply closed strip of constant
width that separates two nonempty complementary subsets of the vertices. A moat
packing is a collection of moats with pairwise disjoint interior. Any tour of the
vertices has to cross any given moat at least twice, so twice the sum of moat widths
in a moat packing is a lower bound for the length of a tour. This makes it interesting
to find a tight moat packing for which this value is as large as possible. In some
cases, we may be able to prove optimality of a tour by displaying a moat packing

where the lower bound is met.

The question for an optimal moat packing can be formulated as the dual of
the problem of optimizing over the subtour polytope. It can also be interpreted
geometrically if the distances between points are given by shortest paths for some

metric of R?.

The notion of a convex tour for the Euclidean TSP has been useful in several

contexts. There are practical cases of geometric Travelling Salesman Problems
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where the distances are not described by the Euclidean norm, but by some other
metric d of R%. This makes it interesting to generalize convexity for these metrics.
We can do this for a metric d by requiring any two points in a convex set to be
connected by a d-shortest path that does not leave the set. In this sense, a d-convex
tour allows us to connect any two tour vertices by a path that runs inside the region

enclosed by the tour.

We conclude Chapter 8 by showing that every d-convex tour allows a tight

packing of d-moats and is therefore optimal.

In numerical analysis, Forward Error Analysis deals with solutions of a problem
that are obtained by imprecise calculations: How far is a calculated solution from
the true solution for a given problem instance? Backward Error Analysis examines
the situation where the imprecision in the input data is of greater concern: How

far is a particular problem instance from an instance that has a known solution?

This idea of Backward Error Analysis can be applied to examine combinatorial
optimization problems for which a true solution can only be found at great expense:
Given an instance of a hard problem — how far is it from an instance for which we

can find the true solution in short time?

In Chapter 9, we examine this notion of Backward Error Analysis for the TSP.
The property that provides the optimum tour for a given set of tour vertices is
generalized convexity. Geometrically speaking, we examine the question: How far

is a given set of vertices from forming a convex arrangement?

There are two metrics involved in this question: The distance metric of the TSP

defines the particular type of convexity that we have to consider. The second metric
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describes the error bounds around the tour vertices, i.e. the distances between

corresponding vertices in the given set and a set that forms a convex arrangement.

We consider several combinations of distance metrics and error metrics. We
show that it is easy to solve the question for L; distances and L, errors and also
give a polynomial method for L, distances with L, errors. Both results can be
generalized to polygonal norms. (A polygonal norm Lp has a centrally symmetric
convex 2k-gon as its unit ball.) For Euclidean distances, we show how it can be
decided in polynomial time whether a given Lp error bound around each point is
sufficient to transform a point set into a convex arrangement. This is closely related
to the notion of convez stabbing: Does a given family of sets allow a convex curve

that intersects them all?

The notion of convex stabbing was introduced by Tamir in 1987. Goodrich
and Snoyeink have given a solution for the special case of a family of parallel line
segments. Our result on Lp norms yields a polynomial solution for the case of a

family of congruent convex polygons with a fixed number of vertices.

We conclude Chapter 9 by discussing difficulties arising from convex stabbing

of disks.



Chapter 2

The Area of Simple Polygons

2.1 Introduction

The Travelling Salesman Problem is probably the best known of all optimization
problems. It seems impossible to give an account of all the different aspects, vari-
ations and special cases that have been studied. (A good overview is provided by

the book edited by Lawler, Lenstra, Rinooy Kan and Shmoys [54].)

From a geometrical point of view, the Euclidean Travelling Salesman Problem
is to find a polygon with a given set of vertices that has shortest perimeter. Since
it is not hard to see that an optimal polygon cannot be self-intersecting (an easy
consequence of the triangle inequality), we may restrict our attention to simple

polygons that have a given set of vertices.

It seems very natural to look for a simple polygon with a given set of vertices

which minimizes another basic geometric measure: the enclosed area.

8
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MINIMUM AREA PoLycoN (MAP)

Given a finite set P of points in the Euclidean plane. Among all the simple

polygons with vertez set P, find one with minimal enclosed area.

We write MAXP for the related problem of mazimizing the enclosed area.

The problem MAP has gained some importance for questions related to pattern
recognition, which are often concerned with simple polygons. At the first Canadian

Conference on Computational Geometry in 1989, Suri asked for the complexity of

MAP.

While there has been some research on extremal polygons on a given vertex
set (see Boyce, Dobkin, Drysdale and Guibas [6] and Eppstein, Overmars, Rote
and Woeginger [27]), the main attention has focussed on finding subpolygons with
certain special properties, such as convexity. Typically, the results are fairly general
and “area” is only one special case of a measure of simple polygons for which an

algorithm works — “perimeter” usually being among the others.

In this chapter, we focus on the particularities of dealing with the area of poly-
gons. We start with a number of basic observations which make it comparatively
easy to calculate the area of a given simple polygon. It turns out that the area of
a polygon with rational vertices can be calculated in linear time. This contrasts
sharply to determining the perimeter of a given polygon (see Garey, Graham and
Johnson [33]). Since there is no efficient way known comparing the sum of a finite
number of square roots with a given rational, it is still an open problem whether

the Euclidean Travelling Salesman Problem belongs to the class NP.
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One particularly nice aspect of the area of a simple polygon is provided by Pick’s
theorem. It states that the area AR(P) of any simple polygon P with integral

vertices can be expressed by the number of grid points it encounters:
AR(P)=b(P)/2+i(P)—1,

where b(P) is the number of grid points on the boundary of P and i(P) is the
number of grid points in the interior of P. This means that we can think of
optimizing the area of a simple polygon with a given set of vertices as a problem
about grid points: How can we connect the given points by a simple polygon, such

that we encounter and enclose as few or as many other grid points as possible?

If we are given n vertices, the best that we could do is avoid having any other
additional grid point in the polygon. Since the given points have to be contained
in the boundary of the polygon, we would get an area of 3 — 1 for such a GRID-

AVOIDING PoLYGON (GAP).

On the other hand, there are geometric aspects that make it seem harder to
optimize the area enclosed by a polygon than to minimize its perimeter: We can
think of a tour as a set of line segments and of a polygonal region as a set of
triangles. But while the vertices of a short edge are necessarily at a close distance,
the same need not be true for a triangle with a small area. The points in a triangle
can be very far apart, while the enclosed area is arbitrarily small. These difficulties
were mentioned by Boyce, Dobkin, Drysdale and Guibas in [6], where it was noted
that “small perimeter implies that the vertices are well localized, but small area
does not.” Another difficulty described in [27] by Eppstein, Overmars, Rote and
Woeginger was the problem of possible self-intersection: While it automatically

does not occur in a polygon with minimal perimeter, it can be algorithmically
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problematic to maintain simplicity when building up a polygon from triangles.

It may be surprising that until now, it has not been shown that it is NP-hard
to find a minimum area (simple) polygon with a given set of vertices. This proof is
a major subject of the following chapter. In fact, we prove that it is NP-complete
to determine whether there exists a simple polygon with a given vertex set whose

area equals the lower bound given by Pick’s theorem that we described above.

From the described problems of dealing with the area of polygons, one has to
expect that the technical details of such a proof require a lot of careful analysis,
even when a construction with a simple underlying idea is found. Therefore it
should not be too surprising that our NP-completeness proof for Minimum Area

Polygons is long and technically involved.

We deal with area minimization and related questions in Chapters 2, 3, 4 and

5. The contents is organised as follows.

In this Chapter 2, we give basic definitions and a description of Pick’s theorem.
We show how the area of a simple polygon can be calculated and prove that MAP
1s in NP. We note that Pick’s theorem yields very easy upper and lower bounds for
the area of a simple polygon on a given vertex set. For the minimization problem,
meeting this bound means finding a polygon that does not contain any other than
the given grid points on its boundary or in its interior. For the maximization
problem, it means finding a polygon that contains all grid points that lie in the

convex hull of the given grid points. We describe some easy special cases where we

can meet the lower bound and point out some difficulties for the general case.

Chapter 3 contains an NP-completeness proof for the problem GAP: Is there a



CHAPTER 2. THE AREA OF SIMPLE POLYGONS 12

simple polygon that connects a given set of grid points and does not contain any
other grid points on its boundary or in its interior? Since this question is a strong

version of MAP, the result implies NP-completeness of MAP.

In Chapter 4, we shift our attention to the problem MAXP of mazimizing
the area of a simple polygon with given vertices. We show how a similar NP-
completeness result of MAXP follows directly from the result for GAP. We give
a very fast (O(nlogn)) heuristic for finding a simple polygon on a given set of
points that encloses more than % of the area of their convex hull, yielding a %»
approximation method for MAXP. This result is best possible for any approach
that uses the area of the convex hull as an upper bound for the optimal area. Since
finding a simple polygon on n points takes {2(nlogn) in the algebraic computation
tree model, we cannot hope to find a faster method. (See Ben-Or [2] for an ex-
planation of the model.) On the other hand, we show that it is NP-complete to
decide whether there is a polygon of more than % of the area of the convex hull.
Finally, we discuss a game theoretic problem closely related to maximizing area of

a polygon.

In Chapter 5, we consider related problems in higher dimensions. We discuss
the calculation of the volume of a d-dimensional polyhedron and point at difficulties
with generalizations of Pick’s theorem. Then we generalize the geometric problems
TSP and MAP for two dimensions to arbitrary dimensions: We show show that in
any fixed dimensions k and d, finding a simple d-dimensional polyhedron with a
given set of vertices that has minimal volume of its k-dimensional faces is NP-hard.

This answers and generalizes a question stated by O’Rourke [66], [62].
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Figure 2.1: Pick’s theorem

2.2 Pick’s Theorem and Area Calculation

Let P be a polygon, given by a set of vertices and a set of edges. We call P simple
if any vertex is only contained in two edges and nonadjacent edges do not intersect.
Now consider a simple polygon P with grid points as vertices. What is its enclosed

area AR(P)?
Perhaps one of the most surprising and elegant answers is provided by Pick’s

theorem:

Theorem 2.2.1 (Pick [71]) Let P be a simple polygon with integer vertices; let
i(P) be the number of grid points contained in the interior of P and let b(P) be the

number of grid points on the boundary of P. Then

AR(P) = %b(?) LiP) - 1.
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Figure 2.2: Covering a large square with parallelograms

An elegant proof can be found in Coxeter [16], pp. 208-209; we give a sketch of
the idea:

Proof: It is straightforward to check that triangulating the polygon reduces
the problem to showing the claim for triangles; the expression 36(P) + i(P) — 1 is
additive for the two parts that are created by cutting the polygon along an inner
chord. ‘

Similarly, triangulating the set of grid points contained in the interior or bound-
ary of a triangle reduces the problem to showing that every triangle with integer
1

vertices that does not contain any other grid points has area ;. We call such a

triangle an empty triangle.

Consider an empty triangle with vertices (0,0),(z1,¥1),(z2,y2). Adding the
vertex (z; + Z2,¥1 + ¥2) yields a parallelogram. Because of symmetry, this has to

be empty as well.

Now consider fitting together N such parallelograms, four at each vertex, to
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cover a large square. (See Figure 2.2.) Every parallelogram is incident to four
lattice points. Conversely, any lattice point that does not lie close to the periph-
ery of the square is incident to four of the parallelograms. If the square is large
enough, the peripheral error becomes negligible and the number of parallelograms
needed is asymptotically close to the number of lattice points. Since this number

1s asymptotically close to the area of the region, the area of the parallelogram must

be 1.

O

For a discussion of alternative proof methods see the article by Niven and Zuck-

ermann [61]. There are numerous generalizations to other than the orthogonal grid,

e.g. by Ren and Reay [82].

Pick’s theorem can provide us with an easy way to see that the area of any simple
polygon with rational vertices is rational: Simply multiply all of the coordinates by
a suitably large integer I, such that all numbers become integer. This increases the
area by a factor of I?. Since the area of the enlarged polygon is rational by Pick’s
theorem, this must also be true for the original polygon. If the initial coordinates
of the vertices are integer, Pick’s theorem shows that the area must be a multiple

1
ofz.

Even though Pick’s theorem provides a very elegant formula for calculating the
area of a simple polygon, it is not very practical for actually calculating areas. An

easy method is indicated by the following observation:

Lemma 2.2.2 Let A be a triangle with vertices (0,0),(z1,y1), (22, y2)-
Then AR(A) = %(3313/2 - yl-’cz)-
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Proof: Adding the vertex (z; + z3,y1 + y2) yields a parallelogram with side vec-
tors (z1,%1), (z2,¥2). It is well known from Linear Algebra that the area of this
parallelogram is equal to the determinant formed by the two vectors, resulting in a

value of z;y, — y125.

O

This makes it desirable to partition a polygon into a small number of triangles
quickly. One easy way is to partition the polygon into triangles by a set of non-
crossing interior chords between polygon vertices. This kind of partition is usually
referred to as a triangulation. It is not very hard to see that a triangulation can
always be found in polynomial time. A celebrated result by Chazelle [12] states
that a triangulation of a simple polygon can even be found in linear time, so we
can calculate the area of a simple polygon in time that is linear to the size of the
input coordinates. As a corollary, it follows that a solution for MAP can be verified

efficiently:

Corollary 2.2.3 MAP € NP.

Proof: As an input for MAP, consider a set of n vertices, each described by a pair
of integers. A polygon can be described as a (cyclic) permutation of the vertices.
Simplicity can be checked easily. (Chazelle’s triangulation method yields a way to
accomplish this in linear time.) Calculate the area of the polygon by determining
the sum of triangle areas in a triangulation. The numbers involved cannot become
too big, since we only have to consider a linear number of products of at most two

coordinate numbers and a linear number of additions.

0
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As already discussed in the introduction, Pick’s theorem yields a combinatorial
interpretation for minimizing or maximizing the area of a polygon. (See Figure 2.3.)
Any grid point that is contained in the boundary contributes % to the area of the
polygon, any grid point in the interior contributes 1. The best we can do when
minimizing the area is to avoid including any grid points other than the given n

vertices, thus getting a polygon of area 2 — 1.

If we want to mazimize the area, we have to include as many additional grid
points as possible into the polygon, in a way that each of them contributes as much
as possible. Since no grid point on the boundary of the convex hull of the given
vertex set can be contained in the interior, they can at most contribute % Any
other grid point that is not given as a vertex contributes 1 when contained in the

interior of the polygon.

We summarize these upper and lower bounds:

Theorem 2.2.4

Let P be a set of n points in the plane that all have integer coordinates. Let
hi(P) denote the number of points of the integer grid that are not contained in P
and strictly inside the convex hull, and hy(P) the number of grid points not in P
that are on the boundary of the convex hull. Then for any simple polygon P on the

vertex set P, we have

hy(P
g-~1gAR(7>)_<_g—+—"%-l+h,»(P)~1.

These bounds suggest the following stronger versions of MAP and MAXP:
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Figure 2.3: A set of grid vertices with a Grid Avoiding Polygon and a Grid Ap-

proximating Polygon

GRID AVOIDING PoLYGON (GAP) Given n grid points in the plane. Is there
a simple polygon on this vertex set that does not contain any other grid points on

its boundary or in its interior, and therefore has area 5 — 17

GRID APPROXIMATING PoOLYGON (GAXP) Given n grid points in the
plane. Is there a simple polygon on this vertez set that contains all grid points in
the convez hull as well as possible: The grid points on the boundary of the convez
hull lie on the boundary and all other grid points belonging to the convez hull lie in
the interior? Such a polygon must have area 5 + f‘—'ﬁgﬂ + hy(P) — 1.

Even though these problems may seem combinatorially easier (all we have to
do is avoid including integer points or making sure that they are all included in the
polygon), we see in the following chapter that they are NP-complete, and hence as

difficult as the original problem.
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2.3 Special Cases

In this section, we discuss a few easy special cases for optimizing the area of a

simple polygon and point out a source of difficulties in more general situations.

Corollary 2.3.1 Given a convex set P of grid vertices, i.e. a set for which each
grid point contained in the convezr hull conv(P) belongs to P. Then any simple

polygon with vertez set P has area § — 1.

In this situation, we do not have any choice about including additional grid points,
so Pick’s theorem guarantees an area of 2 — 1. A set P of grid vertices has
hy(P) = hy(P) = 0 if and only if it forms a convex subset of the integer grid.
Thus, Corollary 2.3.1 characterizes exactly the situation where lower and upper

bound from Theorem 2.2.4 coincide.

Consider some “horizontal” direction, and the orthogonal “vertical” direction.
(We do not require the “horizontal” direction to be parallel to an axis of the integer
grid.) A set M C R?is said to be horizontally convez, if any horizontal line intersects
M in a connected set. We say that a set of grid points is horizontally convex, if no
horizontal line segment between two points in the set contains a grid point that is
not in the set. A horizontal line [ splits a set of grid points P, if each of the open
halfplanes bounded by [ contains at least one point of P. We say that a horizontally
convex set P of grid points has thickness t, if any line [ that splits P and contains

a point of the integer grid contains at least ¢ points of P.

Theorem 2.3.2 Ghiven a set P of grid vertices. If P is horizontally conver and has

thickness at least 2 for some horizontal orientation, then P has a Grid Avoiding

Polygon.



CHAPTER 2. THE AREA OF SIMPLE POLYGONS 20

Figure 2.4: A horizontally convex set of thickness 2 allows a Grid Avoiding Polygon

Proof: See Figure 2.4. Consider the subsets of grid vertices that are contained in
the same horizontal line. We can think of these subsets $j,...,S,, as ordered by
their vertical coordinates. The points in subset S; can be ordered by their horizontal
coordinates. Let p;; denote the jth point in S; and k; the number of points in S;.

Then connect the points by the polygon

(P11> ce s Pmly oy Pk s P(m~1)2y - - - ap(m-l)k(m_l),‘ «+ 3 P22y - -y P2kys Pimy - -+ ,P11>-
By construction, this polygon does not contain any other grid points.

O

The constructed polygon is monotone with respect to the vertical coordinates.
(Conversely, the existence of a unimodal Grid Avoiding Polygon requires the vertex

set to be horizontally convex.)
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If we drop the thickness condition, matters can get difficult, as shown in Fig-
ure 2.5. Both point sets are horizontally convex. Careful analysis shows that P,
does not allow a Grid Avoiding Polygon. The additional point in P; allows a narrow
triangle of area % that picks up a poiht far away, thereby “deblocking” the point
set P, and allowing the polygon shown.

These “probes” make it very difficult to localize arrangements of points. We
show in Chapter 3 how they can be controlled and used to show the NP-complete-
ness of GAP.
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Figure 2.5: Two horizontally convex sets, with and without a Grid Avoiding Poly-

gon




Chapter 3

Minimal Area

We have seen that calculating the enclosed area of a simple polygon is easier than
calculating its perimeter — at least as long as nobody knows a simple way to
compare sums of square roots. (See Garey, Graham and Johnson [33].) In this
chapter we demonstrate, however, that determining a polygon with smallest area

is as hard as determining the minimal perimeter:

Theorem 3.0.3 GAP is NP-complete.

We have already shown that the problem is contained in NP. To show that it is NP-
hard, we give a reduction of HAMILTONIAN CYCLE IN PLANAR CUBIC DIRECTED
GRrAPHS. That is, for a given planar cubic digraph D, we construct a point set Pp
in polynomial time, such that Pp admits a GRID AVOIDING POLYGON if and only

if D has a Hamiltonian Cycle.

The idea for this construction is as follows:

23
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After some minor rearrangements of the planar cubic directed graph, it is suit-
ably embedded in the plane, such that all edges are rectilinear sets of line segments.
Then the embedding is suitably scaled up and perturbed, to guarantee there are no
collinearities between nonadjacent end points of line segments. Finally, these end
points are replaced by suitable sets of grid points (“boxes”), such that a Hamiltonian
path in the graph corresponds to a very narrow polygon that does not encounter
any other grid points. Each set of points corresponding to an edge that is used in a
Hamiltonian path is collected in one connected “branch” of the polygon, while the
point sets corresponding to an edge that is not used by the path are split into two
sets that are contained in two separate branches of the polygon. (This is somewhat
similar to the idea contained in the NP-hardness proof for HAMILTONIAN CYCLE
IN GRID GRAPHS described in Itai, Papadimitriou, Szwarcfiter [46], Johnson and

Papadimitriou [47], and Papadimitriou and Vazirani [74].)

The layout of the points is chosen in a way that these branches can only be put

together in a certain way without including any extra grid points.

As pointed out in the introduction, dealing with areas instead of distances makes
it very hard to localize neighbours in a set of points. We achieve the desired

localization by the perturbation mentioned above.

3.1 Basic Observations on Planar Cubic Digraphs

Consider any planar cubic digraph D. There are a few easy assumptions that we
can make about the digraph D when we want to test it for Hamiltonicity: If D has

a vertex with indegree 3 or outdegree 3, there can be no Hamiltonian Circuit, so all
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Figure 3.1: Making all edges mandatory or optional for both their vertices

vertices must have either indegree 2 or outdegree 2. Let the first type of vertices
be called in-vertices, the second out-vertices. An edge is mandatory for a vertex,
if and only if it is the only incoming or outgoing edge; otherwise it is optional for

the vertex.

Assume there was an edge that was mandatory for one of its vertices vy, but
optional for its other vertex v,. We could delete the other optional edge of v,
without changing Hamiltonicity of the graph. The resulting vertices of degree 2
and their two adjacent edges can be replaced by a single edge. We can continue
this process until all edges are either mandatory or optional for both their vertices.

(See Figure 3.1.)

So we may assume that any edge is either mandatory or optional for both its

vertices. This implies that D is bipartite, since any mandatory edge goes from an
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in-vertex to an out-vertex and any optional edge goes from an out-vertex to an
in-vertex. Furthermore, the optional edges of D form a set of vertex-disjoint cycles
in the undirected graph G, obtained by replacing all arcs of D with edges. We

denote by m the number of vertices of D. Then D has ¥ edges.

3.2 Embedding the Planar Cubic Digraph

Now we show how to embed D in the plane, such that all edges are rectilinear
paths, the optional edges have precisely one bend, the mandatory edges have three
or five bends. Furthermore, all end points of line segments (“nodes”) will have

coordinates which are multiples of % in the range between g and m.

We start by identifying the cycles formed by the optional edges. As noted above,
they are vertex-disjoint and even, so we can easily choose one (of two possible)
perfect matchings in each cycle and contract all its edges, resulting in a 4-regular
planar digraph D with 2 vertices, m edges and % + 2 faces. (See Figure 3.2; a
graph D to D is shown in Figure A.1l in Appendix A.) As described in Appendix

A, this digraph D can be embedded into the plane as a planar rectilinear layout

with no two collinear line segments.

We modify the planar rectilinear layout to get an embedding of D where every
optional edge has precisely one bend, every mandatory edge has three or five bends

and all coordinates are multiples of } in the range between  and m.

Every vertex segment v has two edge segments adjacent to it that correspond

to optional edges, one o, coming in and one o_ going out. Similarly, every vertex
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Figure 3.2: A planar cubic digraph D

segment is adjacent to one incoming mandatory vertex segment e, and one outgoing

mandatory vertex segment e_.

Let (v1,v;) be the directed optional edge in D that was contracted to v. Because
of planarity, the two edges o, and e_ adjacent to v; must follow each other when

going clockwise around v; similarly, o_ and e; must follow each other.

Now place v; at (Og(0-) % §,0v(v)). Place v at (Og(04), Ov(v) £ 1), such

that v; lies between o_ and o; and v, lies on o,.

The optional edge from v; to v, is led along the segments v and o, , the optional
edge adjacent to v; is connected to o_ along v and the optional edge adjacent to v,

is led along o,.

The mandatory edge coming into v; from ey is led from (Op(ey ), Ov(v) + 1)
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over (Og(o-) % 5,0v(v) £ 1) to v; = (Op(o-) + },0v(v)). (e4 is lengthened or
shortened appropriately.) Because of the aforementioned neighbourhood between
e+ and o_ when going clockwise around v, we do not get any interference with
other line segments adjacent to v. Interference with other line segments is excluded

by the way the new segments stay close to the original locations.

Finally, the mandatory edge going out from v, is led to e_ either with three
bends:
1 1 1
from v, = (OE(0+), Ov(v) g) over (OE(O+) + 5 Ovy(v) £ g)
1 2 1 2
and (@E(cq.) + g,@v(v) F -5—) to ((’)E(e-) + 5 Ov(v)F g) .
or with one bend:

from vy = <0E(0+),(9V(v) + é—) to (05(6_) + %,Ov(v) + —é—) .

Again, e_ is lengthened or shortened appropriately and the neighbourhood of e_
and o, assures us that we do not get any interferences. For a display of some typical

cases, see Figure 3.3.

This results in an embedding of D where every optional edge has precisely one
bend, every mandatory edge has three or five bends and all coordinates are multiples

of ¥ in the range between ¥ and m. (See Figure 3.4.)

We noted above that the mandatory edge e, = (v4,v;) is led through the vertical
line segment from t := (m,t,) for some t, to s := (m, s,) for some s,. If we replace
the edge (v,,v,) by the two edges (s,v;) and (v,,t), we get a digraph D’ that has a
Hamiltonian path from s to ¢ if and only if D has a Hamiltonian cycle. (For reasons

that will become clear in Chapter 4 on Maximal Area, we make the position of ¢
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Figure 3.3: How to connect the vertices to the edge segments
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Figure 3.4: An embedding of D

extremal by moving ¢t to (m + 1,t,), thereby extending the adjacent line segment
by 1.) We denote by G’ the undirected version of D’.

3.3 Perturbing the Embedding

In the following, a node is a grid point in the embedding that separates two straight
line segments. So a node either represents a vertex of D’ or is a grid point where
two line segments meet that belong to the representation of the same edge of D’.

We let 77 denote the number of nodes. It is not hard to see that m < %’5.

Next, we perturb the embedding of D’. We start by multiplying all the distances

in the embedding by a factor of 5N3, where N :=m"™.
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We think of z-coordinates as coordinates in the horizontal direction and y-co-
ordinates as coordinates in the vertical direction. In the next step, partition the
nodes into vertical classes. Two nodes belong to the same vertical class if they
have identical y-coordinates and if they are connected by a path of at most two
line segments of this y-coordinate. So each class consists of two or three nodes,
where three nodes occur in the case of an out-vertex, with the two adjacent nodes
representing the bends of the two adjacent optional edges. This implies that there

are less than 1;‘— vertical classes.

Shift all points in the ith verticalclass by the vector (0,7m"). Similarly, define
horizontal classes and shift the points in the ith horizontal class by the vector
(Nm*,0).

3.4 Replacing Nodes by Point Sets

Finally, we replace each node by an appropriate set of points that form a connected

subset of the integer grid — called a boz.

Every degree 3 node is replaced by a switch box — see Figure 3.5. The circled
point denotes the location of the node, the arrows indicate the edges adjacent to
the node. Dotted locations correspond to points that may or may not be in the box,
depending on the adjacent optional edges — we discuss this below. Out-vertices
(represented by nodes with both optional edges leaving horizontally) are replaced
by a horizontal switch; in-vertices (with optional edges entering vertically) by a

vertical switch.
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Figure 3.5: Horizontal and vertical switch

Every node representing a bend in an optional edge is replaced by one of the link
boxes shown in Figure 3.6. The choice of link box depends on the configuration of
the optional edge and the two adjacent mandatory edges. There are four different
cases — shown in Figures 3.7- 3.10. Depending on the case, we also have to add

three points to one of the adjacent boxes — again see Figures 3.7- 3.10.

We use bend boxes to represent the nodes at bends of the mandatory edges.
Again, they are positioned such that the circled point is placed on the node and

the two line segments for the mandatory edge run as indicated.

Running through any mandatory edge e from its start to its end vertex, we
encounter a sequence of 3 or 5 nodes. The first is odd, the second is even, etc. The
parity of the bend boxes is chosen accordingly. The type is chosen in the following
way: If at its first bend, e makes a right-hand turn, we place a 3-bend; if it is a
left-hand turn, we place a 4-bend. Again, the circled position p is placed on the

node and the points p; and p, indicate the direction of the mandatory edge. On
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Figure 3.6: The two types of link boxes
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Figure 3.7: How to choose the boxes for an optional edge: Case 1
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Figure 3.8: How to choose the boxes for an optional edge: Case 2
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Figure 3.9: How to choose the boxes for an optional edge: Case 3
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Figure 3.10: How to choose the boxes for an optional edge: Case 4
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Figure 3.11: Odd 3-bends and 4-bends
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Figure 3.12: Even 3-bends and 4-bends

any following bend we use the opposite bend type if the edge makes the same type
of turn and the same bend type if the edge makes the opposite type of turn. This
implies that the points of an odd bend box are always to the right of the mandatory
edge. (See Figure 3.14 for the overall situation.)

The nodes corresponding to s and t are replaced by terminal bozes as shown in
Figure 3.13. (With respect to later usage in the following chapter on area maxi-
mization, we make sure that the points ¢; and ¢, of the box for ¢t are extremal in
horizontal direction. ¢ can be moved horizontally as far to the right as necessary.)
The grid points in all these boxes form a point set P. A straightforward estimate
yields n :=| P |< 137m.

We claim: The point set P is the vertez set of a simple polygon of area 3 — 1

if and only if D has a Hamailtonian cycle.
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Figure 3.13: The two terminal boxes

3.5 A Hamiltonian Path Induces a Small Polygon

First we show that any Hamiltonian path H in D’ induces a polygon of area 7 — 1:

Any mandatory edge in D’ is represented by a partial polygon that connects all

its bends and the two switches representing its end vertices.

Any optional edge in D' that is contained in the Hamiltonian path is represented
by one partial polygon that connects its link and the two switches representing its

end vertices — see Figure 3.16. (The cases 3 and 4 are similar to case 2.)

Any optional edge in D' that is not contained in the Hamiltonian path is rep-
resented by two partial polygons that each connect a part of the link to one of the

two switches representing its end vertices — see Figure 3.17.

Finally, the two end boxes for s and t are connected to the adjacent bends in
the obvious manner. Clearly, this results in a simple polygon that does not contain

any other grid points, so the claim follows from Pick’s theorem.
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Figure 3.14: The point set P
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Figure 3.15: A small polygon for P
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Figure 3.16: How to represent an optional edge contained in H.

3.6 A Small Polygon Induces a Hamiltonian Path

We show that any simple polygon on P of area % — 1 induces a Hamiltonian path
in D'. Considering a triangulation of such a polygon P, it turns out that the
perturbation performed on the points restricts us to triangles that connect points
from adjacent boxes. Careful analysis of possible connections by triangles in the
polygon ultimately shows that they form a particular structure that can be used to

construct a Hamiltonian Path.
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Casel Case?

by

Figure 3.17: How to represent an optional edge not contained in H.

3.6.1 Basic Observations on a Small Polygon

Assume that we have a small polygon P for the n vertices in the set P such that
AR(P) = 3 — 1. A triangulation partitions P into n — 2 triangles, each having area
at least -12~, so each of them must have area exactly % For the rest of this section,

let A; be a triangle in some triangulation of P.
Because of the perturbation that we performed, these A; are quite restricted:
Lemma 3.6.1 Any triangle A; = (p,q,7) with AR(A) = 3 must have p, q and r

from the same horizontal or vertical class. Furthermore, two of the points must be

from the same boz.
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Proof: By construction, we may assume that
p = (0,0) + (Nn*,n%),
g = (a1 N?,a;N?) 4+ (Nn? ,n%),
r = (by N3, b, N3) + (Nn*, nk?).

Now

AR(A) = - (@1 — p1)(r2 — p2) — (11 — p1)(q2 — P2)) -

(SRR

Note that —n < a3,a2,b1,bs < n and 1 < 43,123, J1,72, k1, k2 < 5. If neither

i1 = j1 = k; nor i, = j, = ko, the assumption AR(A;) = % easily leads to a

contradiction.

Now it is not hard to see that p, ¢ and » cannot be from three different boxes.

O

We say that two boxes are connected, if P contains a quadrangle Q of area 1,
such that the points in each box contain exactly two of the vertices of (). Because
of Lemma 3.6.1, two boxes can only be connected if they are in the same horizontal
or vertical class. Moreover, connecting two links of the same class leaves a set of
points of the switch between them that cannot be included in the polygon without
enclosing additional grid points — see Figure 3.19. This implies that only switches

can be connected to more than two other boxes.

3.6.2 How the Hamiltonian Path Is Induced

We define the (undirected) auxiliary graph C':
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Figure 3.18: The circled points cannot be included in the polygon without enclosing

additional grid points

Definition 3.6.2 Every switch boz B of P with neighbour bozes By, B, and Bs
is represented by three vertices v(B, B,), v(B, B,) and v(B, B;). Similarly, every
link or bend boz B with neighbour bozes B, and B, is represented by two vertices
v(B,B,) and v(B,B,). Finally, every terminal box B with neighbour boz B, is
represented by one vertex v(B, By).

There is an edge between two corresponding vertices v(B, B;) and v(B;, B) of
different bozes B and B; if and only if B and B; are connected. There is an edge
between two vertices v(B, By) and v(B, B;) of the same bozx B if and only if B 1s
connected to both B, and B, and there is a path of edges or interior chords of the
polygon P from B; to B, that visits only points of B.

For all non-terminal bozes B, delete any vertex v(B, B;) that is not connected
to any of the other vertices v(B, B;) representing the same bozx B. The resulting
subgraph of C is C*. C* defines a subgraph H of D' as follows:
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T
Rl

Figure 3.19: The auxiliary graph C for the polygon of Figure 1.21

An edge between two adjacent vertices v; and vy in D' is included in H, if and
only if there is a path in C* between vertices of the switch bozes for vy and v, that

contains only vertices of non-switch bozes.

The remainder of this section shows that H is a Hamiltonian path in D’.

3.6.3 Connections between Boxes

Assume H has a vertez of degree 3.

This implies that there is a switch B that is connected to all three adjacent boxes
Bi, B; and Bs such that for each of the adjacent B, there is another B; # B,
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Figure 3.20: The Hamiltonian path H induced by C
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Figure 3.21: A vertex of degree 3 in H and the corresponding situation in C




CHAPTER 3. MINIMAL AREA 46

’:’.24-5:6\ :.4-5:5\
T ey
o o o

Hipe e

Figure 3.22: Three connections for a switch box

such that there is a path of edges or interior chords of P connecting B; and B,
that visits only vertices of B. Furthermore, for each of the adjacent links B;, both
vertices v(B;, B) and v(B;, B) in C must have degree 2. This means that there is a
path of edges or interior chords of P connecting the switches B and B that visits

only vertices of B;.

First consider the adjacencies in the switch. One easily sees that there must be
edges that essentially look like those in Figure 3.22. (The four cases correspond to
the different situations arising from the addition of points as in Figures 3.7, 3.8, 3.9
and 3.10: A switch can have in addition (1) no extra points, (2) three extra points
on the left, (3) three extra points on the right, or (4) three extra points on the left

and three extra points on the right.)
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Figure 3.23: Adjacencies in a switch box with three connections

Representatively, we discuss case (4). (The other cases are similar — see Fig-
ure 3.23). All conclusions result from the fact that no grid points other than those
of boxes may be contained in the polygon and the condition that the vertices 1 and
2, 3 and 4, 5 and 6 may not be connected by a set of edges within the box. The
point 1 can not be connected to 2, so it must be connected to 7. The only other
possible connection for 7 is 8, leaving only 10 for 2. 3 must be connected to 8.
The only connection for 6 is 9, then 9 must be connected to 4. It follows that 5 is

adjacent to 11.

In all cases, we are left with the points z, y, a and b. It is not hard to see that
at least one of the pivol points a and b has to be adjacent to two points from a

neighbouring link.
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Figure 3.24: Two connections for a link box

Now consider the adjacencies in the links next to the switch. Representatively,
we discuss the more complicated case: First we remark that the connection from
below cannot be adjacent to 9 instead of 3 or 4. The point 1 can not be connected
to 2, so it must be connected to 5. The only other possible connection for 5 is
6, leaving only 7 for 2. 4 must be connected to 8 and 8 to 9. Finally, 3 must be

connected to 6 and 7 to 9.

At no stage would it be possible to have adjacencies to points outside of the
box without including extra grid points in P. So none of the pivot points can be
included in a connected link with two connections. This contradicts our assumption

of having a degree 3 node in H.
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Figure 3.25: Adjacencies in a link box with two connections

3.6.4 H is a Hamiltonian Path

We have seen that H has maximum degree 2. Furthermore, every switch node has
at most one adjacent link node, so every vertex in H is adjacent to at most one

optional edge.

We show that the undirected version of H is connected.

Let v, and v, be two vertices in G’ and B, and B, the corresponding switch or
terminal boxes. One easily checks that for both B, and B,, there must be triangles
A, and A, with two vertices from the respective boxes. Since P is connected, there

is a sequence of triangles A;,..., A, with the following properties:

1. Aa = Al'

2. A; and A, share two vertices.
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3. A, = Ay

By Lemma 3.6.1, each of the A; has two vertices from the same box. This implies

that the sequence of A; induces an (undirected) path between v; and v, in H.

We conclude that the undirected version of H is a Hamiltonian path in G’; since
every vertex in H has at most indegree 1 and at most outdegree 1, H must be a

Hamiltonian path in D'.

0

3.7 Approximating MAP

Since MAP is NP-complete, it is highly unlikely that we could ever find an exact
polynomial algorithm for finding a minimum area polygon. This would make it
interesting to get good approximation methods. A common method for measuring
the quality of an approximation is to consider the relative error: For a problem

instance ¢ with true optimum opt(z), the relative error of an approximate solution

app(z) is

app(z) — opi(z)
opt(z)

One particularly strong tool for finding approximative solutions to a combinatorial

optimization problem is a fully polynomial approrimation scheme (see Papadim-
itriou and Steglitz [73]). This is a method which, for any positive number ¢, de-
termines an approximate solution having relative error less than £ in time that is

polynomial in both input size n and %

Theorem 3.0.3 implies that approximating MAP is hard:
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Corollary 3.7.1 If there is a fully polynomial approzimation scheme for MAP,

we can solve GAP in polynomial time.

Proof:

For a set of n vertices, there can be no simple polygon of area less than 2 - %

1

5. would therefore yield a polynomial

if there is none of area 2 — 1. Choosing ¢ :=
method for finding a polygon with area no greater than

n n 1 1 n 1
1 o)y =24 2ot
( ”)(2 1) 511 m 2 P

i.e. a grid avoiding polygon.

0

But even a method that can guarantee a solution not exceeding a reasonable
constant multiple of the optimal solution is not known. This contrasts to the TRAV-
ELLING SALESMAN PROBLEM that allows the well-known approximation method
by Christofides (see [14] or [73]) that uses a shortest spanning tree to find a solution

within a factor of % of the optimum.

The main reason for this difficulty lies in the more complicated geometric re-
lation between the boundary of a simple polygon and its enclosed area. A short
tour can be constructed of easy pieces like shortest spanning trees, while a similar
approach for small area (building up a simple polygon by greedily adding triangles)

tends to run into difficulties. We briefly discuss difficulties for a natural approach:
“Greedy-Build”

1. Start with the smallest nondegenerate triangle in the vertex set.
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Figure 3.26: An example where ”Greedy-Build” performs badly

2. Aslong as there are vertices not contained in the polygon, choose the smallest
nondegenerate triangle formed by an edge of the current polygon and a vertex

outside of the polygon that can see the edge.

3. Add the triangle to the polygon and continue at 2.

It may very well be that a vertex outside a simple polygon cannot see any com-
plete edge. Even if this difficulty does not occur, the approach can yield arbitrarily

bad results:

Example 3.7.2 See Figure 3.26.
“Greedy-Build” constructs the polygon (p1,ps, pe, P4, P2, P3, p1) that has an area of

more than %1 The optimum area is N® + —1%1 and is assumed e.g. by the polygon

(PlaPS,P6>P5aP4aP2>P1>-




Chapter 4

Maximal Area

For some practical purposes, one might be more interested in simple polygons with
a large enclosed area than in those with a small area. As we will see in this chapter,

the relation between the problems MAXP and MAP is very close.

4.1 GAXP and MAXP are NP-complete

Using our results on GAP, we show that GRID APPROXIMATING POLYGON is

NP-complete.

Theorem 4.1.1 GAXP is NP-hard.

Proof: See Figure 4.1. Consider the point set P in the NP-hardness proof
of GAP. In any simple polygon with vertex set P of area 3 — 1, the points ¢; :=

53
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Figure 4.1: GAXP solves GAP: Turning a small polygon inside out
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(tz,ty—1) and t; := ¢; —(0,1) in the terminal box for ¢ are connected to each other.
By construction, all other grid points lie to the left of the vertical line through ¢,
and t; (We made sure of this in the previous section in order to guarantee this

property.) Then add the points

p1o= iy —(0,N*)
p2 = +(0,N*)
ps = p —(2N*+1,0)
ps = p» —(2N*+1,0)

to P to get the set P. It is straightforward to see that there is a simple polygon
P on the vertices P that satisfies GAP if and only if there is a simple polygon P
on the vertices P that satisfies PICK’S BOUND FOR MAXP. (The polygon P is

simply the complement of P in the square with vertices pi, p2, p3, ps.)

0
Similarly as for GAP and MAP, we get the following corollary from the NP-

completeness of GAXP.

Corollary 4.1.2 MAXP is NP-complete.

4.2 A %--Approximation Algorithm for MAXP

A lower time bound for any approximation algorithm for MAP is given from the
difficulty of just finding a simple polygon on a given set of n vertices. Lower time
bounds are usually based on the model of algebraic computation trees. In this

model, we assume that the evaluation of any algebraic function or any comparison
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of two numbers can be carried out in one step; see Ben-Or [2]. It is well known that
finding a simple polygon with a given set of vertices has a lower bound of lower
bound of Q(nlogn) in the model of algebraic computation trees. (See Exercise

3.6.1, p. 142 in the book by Preparata and Shamos [73].)

Drysdale and Jaromczyk (23] have established a lower bound of Q(nlogn) for
finding a polygon with k vertices chosen from a set of n points in the plane, where

k is a given parameter.

In the following, we describe an O(nlogn) method to obtain a simple polygon
on a given set of points P whose area is bigger than half the area of the convex
hull, conv(P), of P. Since the area of the convex hull is an upper bound for any

solution of MAXP, this yields a fast approximation method for MAXP.

Theorem 4.2.1 Let P be a set of n + 1 points in the plane. We can determine a
simple polygon P on P that has area larger than ; AR(conv(P)). This can be done
in time O(nlogn).

Proof: Let py be a point on the convex hull of P. In time O(nlog n), sort the
points p; of P by the slope of the lines [(po, pi), such that the neighbours of py on
the convex hull are the first and the last point, respectively. If there is a set of
points for which the slope is the same, break the tie by ordering them in increasing
distance from po, except when those points have the smallest of all slopes, in which
case we take them in order of decreasing distance from po. (The latter corresponds
to the line through py and p,.) Connecting the points p; in this order yields a
simple polygon P; on P — see Figure 4.2.
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Figure 4.2: The simple polygon P;

If AR(P1) > 3AR(conv(P)), we are done. Suppose this is not the case. Then
the set Q := conv(P) \ P; has area at least ; AR(cont(P)). Let P be the set of
points that lie on the boundary of cony(P). (There are well-known methods to
determine the convex hull of a simple polygon in time O(n), e.g. see McCallum
and Avis [56]. Since P; is star-shaped from po, we can achieve the same objective

in a very straightforward and much simpler fashion.)

In the following, we write g, for a point ¢; € P if and only if ¢; € P. Q consists

of h > 1 polygons Q; := (ngj),qgj),...,qﬁj).l,'q(f),"q{lj)), where ngj) and “q{;”) are the

z

only vertices of Q; that belong to P.

Now for any j, the points qng) and qg),,l can see each other in the polygon P,

— see Figure 4.3. By construction, the angle ¢ := 4(q§51‘§(,q§j3,1 satisfies 0 < p < 7.

Let C, be the set of all points of the plane inside this angle . Since all vertices of
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(5+1)

Figure 4.3: The points ¢, and qg)wl can see each other

P; between ”‘g) and ’q‘§j+l) belong to P, the set C, NP, is convex and the line from
() '

qgﬂ"l) to g,;_; runs through the inside of P;.

(h)

zp~-1

With the same argument, it is not hard to see that the edge from 7, to g
lies in P;. This implies that the polygon

. 2 1 i+1 h h - PR
P2 - (pg,qgl),.-.,qg)_l,qé ),--~,Q£32.1,q:(53+ )a""qg %*-wqghllypna---7p17p0>

is simple: First travel all the points inside the hull, then go back along the hull —
see Figure 4.4.

Since P, contains Q as a proper subset, we get AR(P;) > 1 AR(cony(P)), con-
cluding the proof.

O
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Figure 4.4: The simple polygon P,

All the estimates involved are tight:

Theorem 4.2.2 Let MAX(P) denote the largest area enclosed by a simple polygon

- on P and P* be a solution obtained by the described heuristic.

There are classes of point sets for which the inequalities

1. MAX(P) < AR((conv(P))
2. MAX(P) > 2 AR(conv(P))
3. AR(P*) > ;MAX(P)

are tight. Moreover, the estimate for the above heuristic is still tight if P* is obtained
by trying all possible starting points py on the convez hull.
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Figure 4.5: An example for which the bound 1 is tight

Proof:

1. Any simple polygon is contained in the convex hull.

2. Consider a set of (n+1)? points that form an (n+1)* (n + 1)-grid. By Pick’s
theorem, the area of any simple polygon on these points must be “ms*‘i"”l.

For large n, the quotient with AR(conv(P)) = n? gets arbitrarily close to 3.

3. Consider the situation shown in Figure 4.5: The points ¢y, ¢z, ¢z form a suit-
able approximation of an equilateral triangle spanning the convex hull. The
sets P, P,, P; all consist of points that are close to the midpoints of the sides
of the triangle. It is easy to see that the best solution has an area close to that

of the convex hull. Now choose ¢; as the point pg in our heuristic. Sorting the

slopes from ¢;, we get P; as shown in Figure 4.6. The area of P, is close to
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Figure 4.6: P, has area close to 1 MAX(P)

61

Figure 4.7: P, has area close to 1 MAX(P)
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>AR(conv(P)). The same holds for the area of P, — see Figure 4.7. Since the
situation 1s symmetric, we get no different result by choosing ¢, or g3 instead

of ¢; as the point po for constructing P;.

4.3 A Negative Result on MAXP-Approximation

We can use a similar idea as in Theorem 4.1.1 to show that there is little hope of

finding a simple polygon that encloses more than 32,; of the area of the convex hull:

Theorem 4.3.1 Let 0 < &€ < t. If there is a polynomial algorithm that de-

3
cides for any vertex set P whether there 1s a simple polygon of area at least (% +

£)AR(conv(P)), then we can solve GAP in polynomial time.

Proof: The idea is similar to the proof of Theorem 4.1.1. For any instance of
GAP, we can add a suitable set of points outside, such that deciding the existence
of a polygon with 2 + ¢ of the area of the convex hull solves the GAP instances

constructed in the NP-completeness proof of GAP.

Given a set of n grid points that form an instance for GAP as constructed

in the NP-completeness proof of GAP. As in the proof of Theorem 3.0.3, we can
4 4 4 4

%:)3("& "”'N"") - ’Zy"")a

207 2 Hh T g
(g’%ﬁ, ——%i), where N = n™. The terminal box for ¢ is moved to the right so that

the points ¢; and t, have the coordinates (2N*,1) and (2N*,0). Finally, add the

assume that they lie inside the box B with vertices (%i,
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Figure 4.8: Finding a polygon with area at least (2 + ¢£) AR(P) solves GAP
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points p; = (M, —M), p, = (M, M) and p; = (—2M,0), where

4N4——1+2N4——n+1

M =
6¢e 4N4 — 1

(See Figure 4.8.) If desired, we can make M integral by scaling the whole arrange-
ment with a suitable integer. Assuming that N is large enough, it follows from the
definition of M that M > 2N* and the convex hull is formed by p;, p, and ps and
has area AR(conv(P)) = 3M?2.

Consider a simple polygon P in which p; is connected to ¢; and p, to t,. If

GAP(P) denotes the minimum area solution of the GAP instance, we get

M — 2N*

AR(P) =2M? + 2N*M — 5

— GAP(P).
Now we note that

2 2N4 -2

4N* 1\’ , n 1
(”’""sm) H(¥ -5 +3)

to these inequalities and using the definition of M yields

1 1(2N4-n+1)2
’">Z o > 0.

Adding

1 n 1 n 1
4_.__ 4__q 2 4mm 4,,..,_, o
(2N 2)M+N S +1>3eM >(2N 2)M+N S+

Since either GAP(P) = % — 1 or GAP(P) > % — 1, this implies that AR(P) >

2 27

; (% + €)AR(conu( P)), if and only if GAP(P) = 5 — 1.

ps cannot be connected to any other points than p; and p,: We would have a
triangle outside of P that is formed by ps, one of the points in B and (w.l.0.g.)
p1. Such a triangle has area at least M? — M N*, which leaves an area of at most

9M? 4+ N*M for P. Since this is smaller than the value 2M? +2N* M — W -5 +}§
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that does not meet the required bound, the area of P is too small, regardless of

other connections.

This concludes the proof.

O

4.4 A Game-Theoretical Problem

The preceding discussion dealt with the question of how to find a polygon that
covers a large portion of the convex hull for a given set of points. From a game-

theoretical point of view, it is interesting to examine the converse question:

CHOOSING AREA-MINIMIZING PoiNTs (CAMP)

Given a convexr polygon Q with vertex set Q. How should we choose a set P of

vertices in the polygon, such that for the resulting point set P := Q U P,

MAX(P)
AR(Q)

becomes as small as possible?

(We can think of this problem as setting fence posts on a convex piece of land.
An opponent then gets to draw a fence that has to use all of the posts and takes

everything inside the fence. We want to keep his share as small as possible.)

It follows from Theorem 4.2.1 that for any choice of P, there is a simple polygon
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P on P := QU P such that

AR(P) S 1
ARconvu((P)) = 2°
With the help of Pick’s theorem, we can show that this bound is asymptotically
tight:

Theorem 4.4.1 For any conver polygon Q with vertex set Q, we can add a suf-
ficiently large set of points P inside Q, such that for the resulting point set P :=
Q U P, the value MAX(P) is arbitrarily close to ZAR(Q).

Proof:

We multiply the coordinates by a suitably large integer factor. Consider the
set GG of all resulting grid points contained in @ and let G; C G be the set of all
grid points contained in the interior of Q; similarly, let G, C G be the set of all
grid points on the boundary of Q. If we choose the scaling factor high enough, the

ratio LI%—'I’ gets arbitrarily close to 1. Furthermore, Pick’s theorem assures us that

the ratio @%‘J—ﬂ gets arbitrarily close to 1. (The ratio is equal to 1 for rational

vertices. If the vertices of P are not all rational, we can approximate the area by
a polygon contained in P that has rational vertices.) On the other hand, Pick’s
theorem tells us that the area of any polygon on the vertex set G is el 1,

5 —

Choosing P such that P = G results in %‘%@2 getting arbitrarily close to

()
- . . EG; /2
{Gbng‘]c}‘ml , thus arbitrarily close to TeAR %

]
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Figure 4.9: The circled point cannot see any whole edge of the surrounding polygon

Farming on the resulting pieces of land may not be too efficient: In the limit,

the fence is a spacefilling curve.

We have assumed that the original polygon Q is convex. If we drop this condi-

tion, there may not be a simple polygon on P that does not leave Q:

Example 4.4.2 See the polygon in Figure 4.9. (In Computational Geometry, it is
known as “GFP” for “Godfried’s Favourite Polygon”, since Godfried Toussaint has
used it as a counterezample for many conjectures.) By placing one additional point

as shown, it becomes impossible to find a simple polygon on all the points that does

not leave the original area.

It may be an interesting question to study the extremal values of

. (mMaxp(QU P)
canr, = min (o)
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Figure 4.10: CAMP, < XL

2k+1

for a fixed k and convex polygons described by their vertex sets Q. It seems that
CAMP, is extremal if Q is a triangle; the example in Figure 4.10 proves that
CAMP, < fi—% Some case analysis shows that this bound is tight for k = 1,2,3.
Note, however, that this strategy (choosing P on a line through one of the vertices

that bisects the area) does in general not provide an area close to AR(Q) if Q is

not a triangle — see Figure 4.11.

Determining CAMP), for a given @, i.e. optimizing the choice of the additional
points does not seem to be easy. For the special case k = 1, assume that Q has the
edges e;. it is not hard to show that for an optimal choice of P = {p} for k = 1,
there must be three distinct edges e;, ex, e; such that AR(A;) = AR(Ax) = AR(A)),
where Aj, Ak, A; are the triangles spanned by p and e;, e, €, respectively. This
yields a straight-forward O(n?®) algorithm for finding the optimal position of p. It

should not be too hard to improve on this complexity.
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Figure 4.11: The strategy does not generalize if Q is not a triangle
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Chapter 5

Higher Dimensions

In this chapter we study several higher dimensional generalizations. After discussing
the question of calculating volume, we show that in any fixed dimensions k and
d, finding a simple d-dimensional polyhedron with a given set of vertices that has
minimal volume of its k-dimensional faces is NP-hard. This answers and generalizes

a question stated by O’Rourke [66], [62].

Before we discuss how we can generalize the calculation and optimization of
area to higher-dimensional polyhedra, we define what kind of polyhedra we want

to consider:

Definition 5.0.3 A d-dimensional polyhedron P s called simple, if it is homotopic

(topologically equivalent) to a d-dimensional sphere.

It is feasible for a given vertex set P, if every vertex of P belongs to P and

every point in P is contained in at least d — 1 different faces of P.

70
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The generalization of simplicity from the two-dimensional situation is clear. The
reason for considering feasibility in the stated form is the following: We want all
points in the given set P to carry some significance for the polyhedron. In the two-
dimensional case, however, a “vertex” of a simple polygon is usually not required
to be locally extreme; it can very well be the common end point of two adjacent
collinear edges. We account for this situation with the above definition. Any point

in P is at least contained in an edge of P.

5.1 Volume in Higher Dimensions

Pick’s Theorem has been generalized to three-dimensional space, although there

are easy examples showing that counting grid points alone is not enough:

Example 5.1.1 (Reeve [81])

Consider the point set (0,0,0),(1,0,0), (0, 1,0),(1,1,7) for any positive integer
7. The tetrahedron with this vertex set contains no more than those 4 grid points,

but the enclosed volume can become arbitrarily large.

Reeve [81] has shown that this difficulty can be overcome by counting points with
half-integer coordinates. One special case of his fairly general results yields the

following formula for three-dimensional volume:

Theorem 5.1.2 Let P be a convex three-dimensional polyhedron with integer ver-
tices. Denote by i(P) the number of points with integer coordinates inside P, 12(P)
the number of points with half-integer coordinates inside P, b(P) the number of
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~0,0,0) 4,0,0

Figure 5.1: Why Pick’s theorem does not generalize easily to 3 dimensions

integer points on the boundary of P, b,(P) the number of half-integer points on the
boundary of P. Then

6 VOL(P) = -;- (26(P) = ba(P)) + ia(P) — 2(P).

In addition,
4b(P) — by(P) = 6.

For calculating the volume of a higher-dimensional simple polyhedron, a similar
approach as for calculating the area of a simple polygon seems appropriate: Sub-
divide the polyhedron into simpler parts and calculate their individual volumes.

Lemma 2.2.2 can be generalized easily:
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Lemma 5.1.3 Let S be a d-dimensional simplez with vertices (0,...,0),

(Z11y+ 4y 21d)y- - oy(Td1, - oy Taa). Let X = (zy;). Then

VOLJ(S) = %]det(X)].

Proof: We can proceed straightforwardly by induction over d, see Benson [3].

0

But while triangulating a (two-dimensional) polygon is a comparatively easy
problem, the analogous task is a lot trickier in three dimensions. A detailed dis-
cussion can be found in a very recent article by Rupert and Seidel [86]. We just

mention some of the main difficulties.

It is not true that any “tetrahedralization” of a polyhedron without any addi-
tional vertices (Steiner points) has the same number of tetrahedra — a fact that was
already known to Schonhardt [89]. Moreover, it is NP-complete to decide whether

a polyhedron can be decomposed at all without using any Steiner points — see

Rupert and Seidel [86].

However, these difficulties need not be of great concern for us: All we need
for calculating the volume of a d-dimensional polyhedron is a polynomial method
to partition it into a polynomial number of tetrahedra. Von Hohenbalken [42]
has solved the problem of subdividing a convex d-dimensional polyhedron into a
small number of d-dimensional simplices. Therefore it is sufficient to partition
into convex pieces. In three dimensions, this has been done by Chazelle in [10],
who gave a method to decompose into O(n?) pieces and also showed that Q(n?)
convex pieces may be necessary. (His method is based on the exact RAM model

of computation; the behaviour of the coordinates of the resulting Steiner points
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is not clear from his exposition.) For higher dimensions, a brute-force method for
partitioning a simple polyhedron into O(n?) convex pieces proceeds by cutting it

with axis-parallel hyperplanes through its vertices.

5.2 Minimizing Surface Area

The following problem has been proposed by O’Rourke [66], [62]:

MINIMAL SURFACE POLYHEDRON (SURF):

Given a finite set P of points in 3-dimensional Euclidean space. Among all
simple polyhedra that are feasible for a vertex set P, find the one with the smallest

surface area.

This is a special case of the following problem:

MiINIMAL FACE PoLYHEDRON (FACE):

Let 2 < d and 1 < k < d. Given a finite set P of points in d-dimensional
Euclidean space. Among all simple polyhedra that are feasible for vertex set P, find

the one with the smallest volume of its k-dimensional faces.

It turns out that FACE is NP-hard for any choice of d and k. We first show
that the special case SURF is NP-hard. The concluding section describes how the
reduction can be generalized to prove NP-hardness of FACE.

Theorem 5.2.1 SURF s NP-hard.
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Figure 5.2: Extending a planar tour into a cone in 3-space

Proof: We describe a reduction of HAMILTONIAN CYCLE IN GRID GRAPHS. Take
any instance of HCGG, i.e. a grid graph G with n vertices. This grid graph G can be
canonically represented by a set Pg of n points in the plane E, = {(z,y,0) | z,y €
R}. Let g = (zg4,y,,0) be the center of mass of the points in Pg and p* = (z,,y,, H),
where H = 2n®. (See Figure 5.2.)

We show that for the set P := PzU{p"}, thereis a polyhedron with the required
properties of surface area n* 4+ n? + ¢ or less if and only if there is a (Euclidean)

tour of length n or less in P, i.e. a Hamiltonian cycle in the grid graph.

If there is a tour of length n, it induces a polyhedron with a surface area of

)
=1 2

where A is the area enclosed by the tour and d; is the distance of (z,,y,,0) from

the ith tour edge. Clearly, we have A < n? and d; < n. Thus we get the surface
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area to be at most

Now since H = 2n® and

2
H? +n? < H+—7f—
2H ]’

we have

1
VH2+72,2<H+Z—,
7

so the surface area is at most

nz—{-n(—q—{»—l—) =nt4ni4 =
2 8n 8

To see the converse, assume that there is no tour of length n. First note that
for every simple polyhedron P on P, the domain P, = P N E, must be a simple
two-dimensional polygon. (Each vertex in Pg must be close to interior points of
P; furthermore, the set of inner points of P close to p* has to be simply connected
and nonempty.) This implies that the edges of P, must form a tour. Let A be the
enclosed area of this tour. Discounting this face of P, we can partition the surface

of P into a set of triangles by connecting p* to all other vertices in P.

If there is no tour of length n, the length of the shortest tour must be at least
n+vV2—-1>n+ % and the surface area

n s/ H? + d,z
PR g e
i=1 2

(where s; is the length of the ith edge) is at least
H(n+3) s n®
—2 Tty

This is bigger than n* + n? + 1 as soon as n exceeds 3.

0+

0
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5.3 Minimizing Face Volume

We conclude this chapter by proving the NP-hardness of FACE:

Theorem 5.3.1 FACE is NP-hard.
In the proof of Theorem 5.3.1, we use the following lemma:

Lemma 5.3.2 Let 1 < k and P = {e1,...,ex41}, where e; denotes the ith unit
vector. Then the k-dimensional reqular simplex Sy, spanned by P has k-dimensional

volume

Vk+1

VOLK(Sy) = “—.

Proof:

We proceed by induction over k. The claim holds for &k = 1. Assume it was true

for £k — 1. Then the distance of exy; from Si_; is /1 + k (-};)2 and we get

1 [k+1 k+1
VOLk(Sk) == E T" VOLk._l(Sk,,l) = k’ .

We now proceed to prove Theorem 5.3.1. The idea is to add a set of (d — 2)

points at a large distance from an instance of a 2-dimensional problem to transform

it into a d-dimensional one.

We distinguish the following three cases:
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(A)k=4d
B)k=1
(C)1<k<d.

For all these cases we use the following:

Let Pg be a set of n points in the plane E, = {(z;,z,,0,...,0) | 1,22 € R}
that either represents an instance of MAP (case (A)) or a grid graph G (cases
(B) and (C)). Let g be the center of mass of the points in Pz and pi =g+ H-e
for + = 3,...,d, where H = 9d?n® and e; denotes the ith unit vector. We write
P; := U_4{p:} U Pg and E; := {(z1,...,2a) € R? | 2j41,...,24 = 0}. For any d-
dimensional simple polyhedron P, feasible for the vertex set P,, the corresponding

J-dimensional subpolyhedron induced on P; is denoted by P; := P, N E;.

As in the previous proof, we may assume that P, = P N E, is a simple polygon.
Furthermore P; is simple if and only if P;_; is simple. Finally, each of the points

pi is connected to any other vertex by an edge of P;.

Now consider case (A).

By Theorem 3.0.3, it is NP-complete to decide whether a given set of n grid

points allows a simple polygon of area 7 — 1. With respect to Corollary 5.3.3, we
n-l

may assume that if there is no such polygon, there is none of area less than *3%.

We claim that there is a simple polyhedron feasible for the vertices Py of volume

at most

2
VOL, = Eﬂd"z(g 1)
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if and only if there is a simple polygon on the vertices Pg with area at most 2-1

This claim follows by induction over j: Consider the (j-dimensional) volume

VOL;(P;) and note that
H
VOLJ(PJ) = VOLj..l(pj_l)*]—,—, SO

2 M
VOL;(P;) = }.—!H’ (—2— —1).

Next consider case (B).

We show that there is a simple polyhedron P, that is feasible for the vertex set
Py with sum of edge lengths LEN(P,) not exceeding

n + (d—“z)z(d*g)flx/i+(d-2)nﬂ+ an”(;zf; 2),

if and only if there is a (Euclidean) tour of length n or less in Pg, i.e. a Hamiltonian

cycle in the grid graph.

If there is a tour of length n, it induces a polyhedron P, such that the sum of
edge lengths in P,_,, satisfies

i—1
LEN(P;) = LEN(P;-1) + Y dist(p;,p;) + Y dist(p;, q).
i:3 gePg
Now
dist(p;,pi) = HV2
and

diSt(pj: Q) =y H? + 331

where s, = dist(q,g) < n, and

n2 2
H? 2,
(H+M2H> > +n
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thus
3

n
> dist(pj,q) < nH + —.
6P 7 2H

Using these relations, we get

(d—2)(d—3)

n?(d — 2)
5 e

LEN(P;) <n + —

Hv2 +(d—2)nH +

Now assume that there is no tour of length n in Pg. Then it follows from the

previous estimates that

LEN(Pa) Zn+\/§w1+§:((i~2)ﬂ+nﬂ), s0
(d —2)(d - 3)

LEN(Ps) >n+V2 -1+ 5

HV2 + (d - 2)nH.

Since v/2 — 1 > gd—;%)ﬁ, the claim holds.

Finally, consider Case (C).

For a simple polygon P4 on Py, let FACE,(P4) denote the sum of volumes of its
k-dimensional faces. We show that there is a simple polyhedron P, feasible for the

vertex set P; with

d—2 \ VE+1
FACEW(P)) < v z: i
k1 !
d-2 n’ vk k—1
+ - (”H*’ 'é"’ff) TR
d—z n \/k"’l k1
-+ o n(l + *2’-1"{"5) X H
+ / d—2 2 k=22
k—2 | (kF—2)
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if and only if there is a (Euclidean) tour of length n or less in Pg, i.e. a Hamiltonian

cycle in the grid graph.

Consider the k-dimensional faces f of P;. There are four cases:

1. f is determined by a set of k + 1 of the d — 2 points p;. In this case f is a

regular k-dimensional simplex and we get

vk+1

k
k!H'

VOLi(f) =

d—2

There are
k+1

) faces of this form.

2. f is determined by a set of k of the d — 2 points p; and one of the points in
Pg. In this case f consists of a regular (k — 1)-dimensional simplex and a

single point at distance at most

2
VAt + H? < H +

2H'
We get y: y:
k x n? k k
YT H* < .
(kwl)!H <VOL(f) < (1+ 2H2) (k= 1)!H

d—2

There are n
k

) faces of this form.

3. f is determined by a set of k — 1 of the d — 2 points p; and an edge in P,.

Let (g1, qz) be the edge of length s; and I; = dist(q1,g). The volume of the
k — 1 dimensional simplex S,E?_‘;Z.

/12 + _H?
VOLkwl(Slgalg) = '""*i"*::’im VOLsz(Sk..z).

formed by ¢; and the k — 1 points p; is




CHAPTER 5. HIGHER DIMENSIONS 82

The distance of g, from S,(f_‘% lies between s;(1 — %) and s;. Since

2

Hg\/l§+H2<H+§E—,

we get
d—2

There are faces of this form for each edge of P,.
k-1

If we sum this over all (tour) edges for a fixed simplex Sk_,, we get a lower

bound of
k V k - 1 k-1

and an upper bound of %
n? Vk—1_, |

where s(T') is the length of the tour.

4. f is determined by a set of k —2 of the d — 2 points p;, and the simple polygon

P,. In this case, we get
VOLi(f) = VOL(Py)

and therefore (cf. Case (A))

2
VOL;(f) = mﬂk”zﬁl;

where A is the area enclosed by P,; since 0 < A4 < n?, we get

2 k~2, 2
0 < VOL(f) < (kmz)!H n.

d—2

There are
k—2

) faces of this form.
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Now assume there is a tour of length n. Using the above estimates, we see that

this tour induces a polyhedron P, such that

d—2 \ VET1I

FACE(P)) < g*
k+1 ) K
()
+ Z:j (kfg)!Hk“znz.

For the converse assume that there is no tour of length n. Then s(T) > n++2 -1

and
d—2 )\ VE+1
FACE(Ps) > YEL g
k+1 ) K
d—2
+ nH vk ’Hk“l
po) =)
d—2 E\ VEZT
+ (n+v2-1) (1 - -—) m—’iriyk”l.
b1 H) &
Since y: \ okon?
E n® n 2(k — 1)%kn
— ) 2 -1k
(d=2) == +ogtr+v2-1) +(d—-2) e

<9(v2 - 1)d®n® = (V2 - 1)H,

we conclude that the inequality

(7)) e
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E—1 2 k!
d—2 VEZI
+ (n+V2-1)k k=1 e
k—1 k!
N d—-2\ 2 k22
k-2 | (E=2)!
d—2 \ VE—1
< (\/5——1)( ) ko1 g
k—1) K

holds. Comparing the estimate for FACE,(P4) to the given bound, this implies
that the value for FACE,(P;) does not meet the given bound.

This concludes the proof.

Corollary 5.3.3 If there is a fully polynomial approzimation scheme for FACE,

then we can solve FACE in polynomial time.

Proof:

By our above proof, we can guarantee that the next best solution to an instance
is at least some positive number r larger than the critical value that we have to
check. Since this value is always bounded above by some polynomial b(n), choosing

£ < b"(tﬁi guarantees the optimum.

O




Chapter 6

Pseudoconvex Tours

The research for this chapter was done in cooperation with Gerhard Woeginger.

6.1 Convexity and Pseudoconvexity

Consider the Euclidean TSP instance shown in Figure 6.1. Intuitively, the solution

shown looks optimal. Why is this true?

It is not hard to see that the given tour is the only noncrossing one, and hence
the only 2-optimal tour. (A tour is 2-optimal if it cannot be changed into a shorter
tour by replacing any 2 tour edges by 2 non-tour edges. It is a simple consequence

of the triangle inequality that a self-intersecting tour is not 2-optimal.)

More geometrically, we observe that all the vertices of the tour lie on the bound-

ary of their convex hull, i.e. they form a conver arrangement. The associated convez

85
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Figure 6.1: A Euclidean TSP instance with an easy solution

tour is the boundary of the convex hull. We discuss generalizations of convex tours

for other than the Euclidean distance function in Chapter 8 and Chapter 9.

If we think of a tour as being a closed polygon consisting of directed line segments
between consecutive vertices, we can characterize a (non-degenerate) convex tour

by the following two conditions:

1. It is stmple, i.e. noncrossing.

2. For any three consecutive vertices p;_1, p;, pit+1, the angle Z(p;_1,p:, pir1) lies

in the nonnegative interval [0, ).

All angles are considered as contained in the interval (—x,n]. We follow the usual
convention that for three points z, y, z, £(z,vy, z) describes the angle by which the

ray yz has to be rotated in counterclockwise fashion around y to place it over yz.

We can think of 2. as a local condition that requires us to make a “right-hand

turn” when following the line segments from p;_; to p; and then from p; to p;y;.
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Figure 6.2: The bad shape

If we relax the conditions on convexity by dropping the global condition 1., we get

so-called pseudoconvez tours.

Observation 6.1.1 Not every finite set of points has a pseudoconver tour — see

the four points in Figure 6.2. We call this arrangement the bad shape.
Surprisingly enough, this is the only counterexample:

Theorem 6.1.2 Let P be a set of n > 5 points in the Euclidean plane. Then P

has a pseudoconvez tour.

The main objective of this chapter is to prove Theorem 6.1.2.

The basic idea is the following — see Figure 6.3: Consider the convex hull of the
point set P. Assuming that we have a pseudoconvex tour of the points Ip inside the
hull, we will try to find an edge of this inner tour that we can replace by a sequence
of all the points on the hull Hp. It turns out that a particular arrangement of

directed edges (a “y-segment”) in the inner tour guarantees the existence of such a
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Figure 6.3: Extending a pseudoconvex tour

replaceable edge. The proof proceeds by induction over the number of convex layers
in the so-called onion-decomposition of P. Most of the work consists of identifying

~y-segments.

6.2 Setting up the Proof

Before we start the proof by induction, we introduce some basic definitions, state
and prove a key lemma and take care of some starting cases that arise when the set
of inner points is too small to allow a pseudoconvex tour. For easier description,
we assume that the points are in general position. We discuss the situation for

nongeneral position at the very end.
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Figure 6.4: A y-segment

Definition 6.2.1 For any point set P, let Hp be the set of points on the boundary
of the convez hull. We call Hp the set of hull points. We write Ip := P\ Hp for

the set of its interior points.
For two distinct points x and y, Ty denotes the line that they determine. zy 1s

the directed edge from z to y. A point z lies right of zy, if the angle Lz,y,z) s

positive, 1.e. contained in the interval (0, 7).
Let I be a point set with a pseudoconvex tour T. Assume there is a consecutive
sequence £_,Z,Y,y4 in T, such that the lines T_z and §y; do not intersect left of

zy. (See Figure 6.4.) In this case we say that T contains a vy-segment zy.

The main significance for y-segments arises from the following Lemma 6.2.2,

which shows that we can include the next layer of points in a pseudoconvex tour of
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the inner layers by using a y-segment. Lemma 6.2.2 provides the main tool in the

induction step.

Lemma 6.2.2 Let I be a finite set of points with a pseudoconver tour T and a
~-segment zy. Let H be a finite set distinct from I such that H 1is the set of points
on the boundary of the convez hull of H UI. Then there is a pseudoconvez tour in
H U I in which the elements of H follow each other consecutively in the order in

which they appear when going clockwise around the hull.

Proof: Assume that in 7, z_ is the predecessor of z, and y, is the successor of
y. Consider the halfplane ¢; lying to the right of z_z and the halfplane €, to the
right of y3,. As the bounding lines cut the convex hull of P, both halfplanes ¢,

and ¢, must each contain at least one point of H.

If the set £; U €, contains at least two points of H, then we are done — see
Figure 6.5: In this case, we can find two points ho € &1 and hy € &5 that are
neighbors in the clockwise ordering ho, hy,...,hAm_1 of H. By construction, both
the angles Z(z_zh;) and Z(hoyy4) are positive, so we get the pseudoconvex tour
(€,h1y- ey hme1,h0,Y, Y+, T, z), where T' denotes the part of 7 leading from y to z.
(Whenever we use 7" in a figure, it denotes an appropriate part of a pseudoconvex

tour.)

If the set ¢; U e, contains only a single point h; of H, then hi € € N es.
Consider the segment z_z instead of zy. Let z_ be the predecessor of z_ in 7 and
the halfplanes €3 and ¢4 lie to the right of z_z_ and zy, respectively. By definition,
7-% and 775 do not intersect to the left of zy. This implies that the set of all
points left of yy; and left of z_z lies to the right of zy. (See Figure 6.6.) This
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Figure 6.5: Using a y-segment when ¢; U ¢, contains more than hull point

means that €4 contains all the points in H \ {h;}. As in the previous case, we can

find two consecutive points k; and his1, such that h; € £4 and h;yq € €.

By construction, the angles Z(z-z_hit1), £(z_hit1hiss), Z(hi—1hiz), L(hozy)
are all positive, so (z-,z_,h;q,.. hion ki 2y, ye, Tz, z_) is a pseudoconvex

tour.

O

The following Lemma 6.2.3 covers all the starting cases for the induction. The
reader should be warned that the number of cases that need to be considered makes

the proof quite tedious.
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Figure 6.6: Using a 4-segment when €; U €; contains only one hull point
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Figure 6.7: How to solve Case 0

Lemma 6.2.3 Let P be a set of points in the Euclidean plane that is in general
position and not a bad shape. Let Ip be the set of its interior points. If |Ip| < 5 and
does not allow a pseudoconver tour, then P has a pseudoconvez tour containing a

Y-segmendt.
Proof: Let Hp with |Hp| = m be the hull points of P. Let the points of Hp be
ordered as hy,...,h,_1 when going clockwise around the hull.

We distinguish cases according to the form of Ip.

(CASE 0) |Ip| = 0:

See Figure 6.7. For m = 3,4, the tour (ho,... yhm-1,ho) is convex, thus pseu-
doconvex. Since there must be two consecutive angles whose sum does not exceed

7, the tour contains a y-segment. For m > 5, we can rearrange the order of A,,_,,
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]

- P
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R

Figure 6.8: How to solve Case 1

ko, k1, ha, hs in the convex tour (ho,...,hm-1,h0o) in order to get a pseudocon-
vex tour with a v-segment: Clearly, the tour (hm_1,h1, ks, ho, k2, ha, - - yhom-1) 1s

——
pseudoconvex and hsho is a y-segment.

(Case 1) |Ip| = 1:

See Figure 6.8. Let z denote the only point in Ip; since |P| > 5, we have
|Hp| > 4. There exists a triangle Ahjhih of points hj, he,hy € Hp containing = in
its interior. Without loss of generality assume 0 < j < k < [ and z is contained in
the triangle Ahohjhi. Then (ho,z, by, ... shm-1,h1, ..., hi_1,ho) is a pseudoconvex

tour and zh; a y-segment in it.
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Figure 6.9: How to solve Case 2

(CASE 2) |Ip| = 2:

See Figure 6.9. Let = and y denote the two points in J. The line through z and
y partitions the set Hp into two subsets. Without loss of generality assume that

ho and h; lie on the right of the directed line zy.

Then (ho,z,y,h1,hay. .., hm_1, ko) is a pseudoconvex tour and zy a ~-segment
in it.
(CAsE B) Ip is a bad shape.

Let Ip := {q0,91,92,93}, where go is the point contained in the convex hull of

the other three, which may have clockwise order g1, 92, qa.

According to the number m of hull points, we further distinguish:
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(Case B.3) m = 3.

The lines hoqo, h1go and hyqo partition ‘the triangle Ahgh,h, into the six triangles
A] = Athomg,

A, = Ahymaqo,
Az := Ahigemo,
Ay = Ahymogo,
As := Ahygomy,

Ae == Ahomlqo,

where mg, m1,m, are the intersection points of hogo and hihs, hi1go and hohs, hago

and hghi, respectively.

Since qo is contained in the convex hull of ¢1, ¢2 and g3, there must be one of
these three points such that it lies in triangle A; and none of the two other points
liein A;_1, A; or A;;;. By symmetry, we may assume that ¢; liesin A, and neither

g2 nor gz lies in Ag, A; or A,. This implies that either g5 € A4 or g3 € As.

Now consider the line §;gz, which has to intersect hmlwl;:z and either h;?zl or h;};g:
If g1g; intersects h;,?n, then the angle Z(hog1qz) is positive and one easily checks
that all the angles in the tour (ho,q1, g2, 93, 9o, h1, ha, ko) are positive — see Fig-
ure 6.10(a): Z(q19293), since qi, g2, gs follow each other clockwise on the convex hull
of Ip; £(q29s90), since ¢z, g3 follow each other clockwise on the convex hull of Ip and
qo lies inside the convex hull of Ip; Z(gsgohi), since g3 lies in AsUALUAs; Z(qohihs),
since hy, h, follow each other clockwise on the convex hull of Hp and g lies inside

the convex hull of Hp; Z(h1hsho), since hi, bz, ho follow each other clockwise on the
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Figure 6.10: How to solve Case B.3

97
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convex hull of Hp; Z(h2hoq1), since ks, ho follow each other clockwise on the convex

hull of Hp and ¢, lies inside the convex hull of Hp. Clearly, h;‘i;g is a vy-segment.

If G1q> intersects hghe, then the angles Z(hog2¢1) and 2(gaqi1h1) are positive and
g2 lies in Aj;. As stated above, either g3 € Ay or ¢z € As.

For g3 € Ay, the angle Z(h;qogs) is positive and one easily checks that all the
angles in the tour (ho, gz, q1,h1,h2,q0,9s3, ho) are positive — see Figure 6.10(b):
£(g1h1h2), since hy, h, follow each other clockwise on the convex hull of Hp and ¢
lies inside the convex hull of Hp; Z(h1h2qo), since hy, hy follow each other clockwise
on the convex hull of Hp and go lies inside the convex hull of Hp; £(qogsho), since

gs lies in Ag; Z(gshoqu), since gq lies in Ag. Clearly, gzq; is a vy-segment.

For g3 € As, the angle Z(h2qsgo) is positive and one easily checks that all
the angles in the tour (ho, g2, ¢1, h1, g3, g0, k2, ho) are positive — see Figure 6.10(c):
Z(q1h1q3), £(h1gaqo), £(gsqohs), since gs lies in Ag; Z(qgohaho), since hy, ho follow
each other clockwise on the convex hull of Hp and gy lies inside the convex hull of
Hp; Z(hshogs), since hy, ho follow each other clockwise on the convex hull of Hp

and ¢, lies inside the convex hull of Hp. Again, ¢;¢; is a y-segment.

(Case B.4) m = 4.

Let s be the intersection point of the diagonals hoh, and hihs. Without loss of
generality, let go be contained in the triangle A with vertices s, hs, hy. Furthermore,
we may assume that we have numbered ¢, ¢; and g3 in a clockwise fashion such
that ¢, lies left of h;;a and ¢, right of h—;;o. Both angles Z(hohohs) and Z(hzhshy)

are positive because of the clockwise order of the h;.
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Figure 6.11: How to solve Case B.4
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If ¢; lies to the right of h-l—;g, the angle Z(h1qogs) is positive. It is not hard to
check that all other angles in the tour (hq, k2, k3, k1, g0, 93,41, g2, o) are positive —
see Figure 6.11(a):

Z(h3hiqo), since go lies in A; £(gogsq1), since g3, ¢1 follow each other clockwise
on the convex hull of Ip and ¢ lies inside the convex hull of Ip; £(g3¢142), by the
way we numbered the ¢;; Z(q1g2ho), since £(g2hogq1) is positive by numbering of the
qi; Z(g2hoh2), since g lies in A and g, right of the line h:;o.

If g5 lies to the left of k;qq, it follows that g3 must lie to the left of hogo, otherwise
(¢1,92,93,¢1) cannot run clockwise around go. By the same argument, g, must lie

to the right of h—l-q’(), and ¢; to the left of h—l—;g.

We easily check that all other angles in the tour (ho, k2, ha, k1, q1, 92,93, 90, ho)
are positive - see Figure 6.11(b): £(hahi1q1), since ¢ lies in A and ¢; right of hj}o;
£(h1g1q2), since £(gah1q1) is positive as ¢; and g lie left and right of h:;(;; £(q19293),
by the way we numbered the ¢;; £(¢2q3q0), since gz, g3 follow each other clockwise
on the convex hull of Ip and g lies inside the convex hull of Ip; Z(g3goho), since g3

lies left of h;;o; £(gohohz), since go lies in A.

ey

In both cases, hohs 1s a y-segment.

(Case B.5+) m > 5.

See Figure 6.12. Consider the lines Iy := qoq1 and I, := ;5. The idea is to find
two appropriate pairs of points (ki , hi,41) and (hj,, hj 1) for which we can insert

(g0, q1) and (g2, g3) into the convex tour hyy, ..., hj ;... hi;. Toget a pseudoconvex




CHAPTER 6. PSEUDOCONVEX TOURS 101

Figure 6.12: How to solve Case B.5+

tour, we have to make sure that these two pairs are disjoint. For easier notation,

we write e; for a pair {h;, h;;1} of consecutive points of the hull Hp.

There are at least 3 different pairs e;,, €,;, and e;, that are not separated by
l;; similarly, there are at least 3 pairs e, e;, and e;, that are not separated by
l,. Assume that e;, Nej;, # 0 for k = 1,2,3, i.e. the edge e;, intersects all three
edges €j,, €j,, €j,. It is not hard to see that this can only happen if ej,, €, €;
are adjacent edges and (for appropriate numbering), e;, = e;,. It follows that there

must be a j, for which e;; Nej, = 0; let this be the case for j;.

Without loss of generality, let the angles Z(h;,gog1) and £(hj, g2q3) be positive.
(Otherwise exchange the order of go and ¢ or ¢; and g3, respectively,in the following
tour to make it pseudoconvex.) Then we can change the convex tour of Hp into

(hi; s 90,91, hiy41y -+ -y Ry 92,93, Rj1, - o, Ry ). By choice of 7y and j;, the angles
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Figure 6.13: The setup for the induction step

£(qoqihi,+1) and Z(g2q3hj, +1) are both positive and the tour pseudoconvex. By

- R d -
construction, gog; 1s a ~y-segment.

This concludes the proof.

0

6.3 Proving Theorem 6.1.2

With the help of Lemma 6.2.2 and Lemma 6.2.3, we can prove the main Theo-
rem 6.1.2. As stated before, we use induction on the number of convex layers;

Lemma 6.2.3 is used to start the induction, while Lemma 6.2.2 is the main tool for

establishing the induction step.
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As mentioned before, the main idea is to include the points of one layer at a
time in their clockwise order into a tour of the inner points. (See Figure 6.13.)
Since we use 7y-segments for this purpose, we may have to rearrange the resulting
tour in order to get a 7-segment that we can use for including the nezt layer. Since
there are numerous cases, we use indirect argumentation to establish the validity

of the induction step.

Let Hp with |Hp| = m be the extremal points of P. Let the points of Hp be
ordered as ho,...,hn_; when going clockwise around the hull Hp and let Ip =
P\ Hp denote the interior points of P. Let H; with |H;| = k be the hull points of

Ip and I; the interior points of Ip.

If Ip satisfies the assumptions of Lemma 6.2.3, we are done: Ip allows a pseu-
doconvex tour with a v-segment, so by Lemma 6.2.2, this tour can be extended
into a pseudoconvex tour of P. So we only have to consider point sets P for which

this is not the case.

Assume that P is the smallest of these sets that does not have a pseudoconver
tour where the points of Hp follow each other in the order in which they appear
around the hull.

We observe that the set I with its interior points I cannot satisfy the as-
sumptions of Lemma 6.2.3: One of the constructions in Lemma 6.2.3 would create a
pseudoconvex tour of I with a y-segment, therefore (by Lemma 6.2.2) we would get
a pseudoconvex tour for P in which the elements of Hp follow each other in order.
Using our minimality assumption on P, we conclude that I allows a pseudoconvex

tour 7, where the elements of Hy_ follow each other in order as q1,..., g.



CHAPTER 6. PSEUDOCONVEX TOURS 104

In the following, we either locate a y-segment in 7, find a way to rearrange 7
in order to create a y-segment, or show that 7 has a structure that allows us to

extend 7 into a tour of P without using v-segments.

We distinguish three cases:

(Case 1) k < 4:

kid

Since the sum of angles in the polygon with vertices ¢i,...qx is 5 or 7, it is not

hard to see that one of the segments ¢4z, ¢23s, Qe_1qk is a ~y-segment.

(CASE 2) k > 6:

If z lies left of g;¢s, the segment g1, is a y-segment, contradicting our assump-
tion on P. Similarly, if y lies left of gx_,qx, the segment Qe_1qk is a y-segment. If

neither is the case, we can rearrange the sequence of the g; in 7 to get

<33, q1+93,Qk—~1,92: 945 - - -y Tk—2> Gk yaTa :8),

thereby again creating a pseudoconvex tour with ¢3qs being a +y-segment. (See

Figure 6.14)

(CASE 3) k= 5:

Let z be the predecessor of ¢; in 7 and y be the successor of gs in 7. Let z_ be
the predecessor of z and y, the successor of y. Now see Figure 6.15. We note that:

e If the point z lies to the left of q1q3, q1q2 is a y-segment in T

o If the lines g7gz and G3qs do not intersect to the left of 4203, 423 is a y-segment

in 7.
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Figure 6.14: Rearranging 7 in order to get a «-segment

e If the lines 32¢3 and G5gs do not intersect to the left of gsqs, ¢3qs is a y-segment

in 7.

o If the lines gags and 357 do not intersect to the left of g4qs, gags is a y-segment

in 7.

e If the line from y through y, separates ¢4 and g¢s, gsy is a y-segment in 7.
Therefore assume for the rest of this proof that

e z lies right of ¢1qs.
e The line 775 does not separate g4 and gs.

¢ §1q; and G3q; intersect in a point s,3 that lies to the left of ¢o¢s. ¢ lies between

g1 and si3, and g3 between s;3 and qq.
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9

q @ q4

q %

Figure 6.15: Potential 4-segments in 7

® ;3 and §4Gs intersect in a point s34 that lies to the left of gzqs. g3 lies between

g2 and s34, and g4 between s,3 and gs.
o 33q; and 37 intersect in a point s45 that lies to the left of gags. g4 lies between

gz and 45, and ¢s between s45 and y.

With the first two relations, it follows that the tour

(2!-,33, 91,9395, 92, 945 Ys Ypy - - - ,:Z!..)

is pseudoconvex with gsgs being a vy-segment, if y lies to the right of ¢2qs. (See

Figure 6.16.)

Therefore assume that y lies left of ¢;¢4. Let ¢; be the intersection of gzq; and

Gsy. Clearly, t; lies between g, and g4.




CHAPTER 6. PSEUDOCONVEX TOURS 107

CL q5

Figure 6.16: A pseudoconvex tour for y right of goq,

If none of the points h; € H lies left of ¢29s and left of qags, the edge gsg4 can
be used to extend 7 to a pseudoconvex tour of P by inserting the points A; in the
way they appear clockwise around H: Assuming that hg is the first of the h; that
lies left of g4qs, ho lies right of 4293 and A, right of qags.

This means that the tour

<x:ql?q2»q3¢h0)' . whm—lvq‘%)qS:y}y-ﬂ' . .,23..)

1s pseudoconvex, contradicting our assumption on P. (See Figure 6.17.) We con-
clude that there is a point k;,, left of ¢;¢5 and left of qags; without loss of generality

assume that h,;, 1 lies to the right of g,qs.

Considering the position of hi,, relative to the points g¢,, gs, G4, g5 and s34 (see

Figure 6.18), we see that h;, lies left of g,q4 and left of gags.
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L& h,

Figure 6.17: There must be a point h;,, left of ¢29s and right of qags

Considering the position of h;,, relative to gs, qa, gs, t1 and s45, we see that we
have a similar situation as for h;,, relative to g2, g3, 334, g4 and g5 — see Figure 6.19.
Thus, h,,, lies right of t‘;';‘i, i.e. right of goqs. This implies h;,, # hy,, .

148

Next consider the intersection of sy with the boundary of the triangle A =
(g4823g2), as shown in Figure 6.20. Since {s4s5} = @3qa N 57 lies right of qags, the
point s45 cannot belong to the triangle; so g5y must intersect gz8; in a point ¢,

between ¢, and s3. This means that h;,, lies right of tgg, i.e. right of ¢;¢o.

Finally, hi,,+1 must lie right of q1q2 (see Figure 6.21): By construction, hiy, 41
must lie between h;,, and h;,, when going clockwise around the hull H; if we do
cross gig; on this way, this cannot happen after we cross 72¢s. This means that

hiy,+1 lies on the same side of q192 as hi,,, i.e. on the right.
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Figure 6.18: h,,, lies left of ¢,q, and left of qsqs

Figure 6.19: h,,, lies right of ¢,q4
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e

Figure 6.21: h;,, 41 lies right of 0142
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But now all the angles in the tour

<w7q13Q27hi34+1""ahi34)q5’q37q47y’y+ .. '9$—7m>

are positive — see Figure 6.22:

The angle /(q1q2hiy,+1), as stated; £(g2hiy 41his 42), since hi, 41, hiy, 1o follow
each other clockwise on the convex hull of P and g, lies inside the convex hull of
P; £(hiy,-1hiy,q5), since hiu_l,.hiu follow each other clockwise on the convex hull
of P and gs lies inside the convex hull of P; £(hiy,g5qs), as stated; £(gsqsqs), since
£(g394gs) is positive; £(gaqay), since gs, g4 follow each other clockwise on the convex
hull of I and y lies inside the convex hull of I; £(qayy+ ), since £(gsyy.,.) is positive

and 771 does not separate ¢4 and gs.

We conclude that P does have a pseudoconvex tour with the elements of the

hull H following each other in order.

This completes the proof.

0

The time complexity O(n?) claimed above follows by constructing the so-called
onion decomposition of a planar point set into convex layers in O(nlog n) time
(see [11, 24]). Starting from the inside, at each of the O(n) stages, we include
another layer of the decomposition into the tour; detecting v-segments (or the
constellation used at the end of the preceding proof) can be done in O(n) time,

resulting in the above overall complexity.

If the points in P are not in general position, there may be no pseudoconvex tour

that encounters each of the vertices exactly once. Easy examples for this situation
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Figure 6.22: The final pseudoconvex tour
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ql’:

q, q,

Figure 6.23: A pseudoconvex tour that encounters a vertex more than once

arise if P is a set of collinear points or if P consists of the four vert;ces of a rectangle

together with a fifth point at the intersection of the diagonals.

We may choose to permit a vertex to be “run over” by other edges — see
Figure 6.23, where we have the pseudoconvex tour (%,94,92,93,¢1,2). A tour that
satisfies the angle-restriction but has vertices that are contained in the interior of
some edge p;pi;1 is called weakly feasible. (In a weakly feasible tour every vertex
may only be used once as an end point of an edge.) A tour that satisfies the

angle-restriction and encounters each vertex exactly once is called strongly feasible.

If we are content with weakly feasible tours, it is not hard to check that the
above steps of the proof remain valid even if the points are not in general position.
(All regions in the argumentations include their boundaries if we allow the use of

the angles 0 and 7.)
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Corollary 6.3.1 Let P be any set in the plane with |P| > 5 in general position.

Then P has a strictly feasible pseudoconvez tour and all angles lie in the open

interval (0, 7).

6.4 Pseudoconvex Paths

Any nondegenerate convex tour is a pseudoconvex tour that is simple. While the
existence of a convex tour is a very special property of a point set, we have seen that
any set of at least 5 points has a pseudoconvex tour. If we relax the question for a
Hamiltonian cycle with nonnegative angles to the question for a Hamiltonian path
with nonnegative angles, the situation becomes considerably easier as the simple

proof for the following Theorem 6.4.1 shows.

Theorem 6.4.1 Any set P of n points allows a nonintersecting pseudoconvez span-

ning path.

Proof: See Figure 6.24. Choose any point po on the convex hull of P to be
the starting point and remove po from P. Find some line through po that does not
intersect the convex hull of P and turn it clockwise until it hits the first point in
P. This point is the next point in our path, we remove it from P and repeat the
procedure. The resulting path is always be intersection-free. (It is not hard to see

that we follow the convex layers of P in an inward spiral.)

0
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Figure 6.24: Any point set has a pseudoconvex spanning path




Chapter 7

Angle-Restrictions

The research for this chapter was done in cooperation with Gerhard Woeginger.

7.1 Introduction

In this chapter, we generalize the question for pseudoconvex tours to other angle
sets. Let A be a set of feasible angles, A C (—m;+n|. For a set P of n > 3 points
in the Euclidean plane, consider the tours (p1,ps,-..,Pn,p1). We call a tour weakly
feasible with respect to A, or an A-tour for short, if all the angles L(pipis1Pit2)s
0 < i < n— 1, are elements of the angle set A. As in the case of pseudoconvex
tours (p. 112), we call a feasible A-tour strongly feasible, if none of the segments

PiPis1 contains another point of P,0 <1< n—1.

This yields the following problem:

116
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ANGLE-RESTRICTED TOUR (ART) Given a set A C (~—7£; +] of angles. The
problem “Angle-Restricted Tour” (ART) is to decide whether a set P of n points
in the Euclidean plane allows an A-tour, i.e. a closed directed tour consisting of

straight line segments, such that all angles between consecutive line segments are

from the set A.

We can think of this as the question of deciding whether a machine with re-
stricted mobility is able to make a roundtrip through a given set of points. For
this motivation, Culberson and Rawlins [17] have discussed the problem of finding

a simple polygon with a given sequence of angles.

Restricted orientations have also been examined because of their relevance for
computer graphics and VLSI design — see Rawlins and Wood [77], [78], [79], [80],
Schuierer [90] and Widmayer, Wu and Wong [93]. We discuss a different aspect of

restricted orientations and convexity in Chapter 8.

While these orientations are fixed relative to the surrounding space, an angle-
restricted tour has to deal with restricted relative orientations. Thus, angle-restric-
ted tours can also be considered as an interesting variation on restricted orientations

(Wood [92]).

As in the case of pseudoconvex paths, a (weakly) feasible spanning path with
respect to some angle set A is defined like a (weakly) feasible spanning tour with

the only difference that a path is not closed.

A trivial necessary condition on some angle set A to allow point sets with A-

tours is the following: There exist angles ay,...,ar € A, k nonnegative integers
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¢1,...,ck that are not all zero and an arbitrary integer cj41, such that
ciay + coap + ...+ Ok = Cy * 2T

holds. Otherwise, a tour could never close. Clearly, this condition is not necessary

for the existence of A-paths.

One interesting question is whether there is any simple connection between the
size of A and the complexity of ART. It is not hard to see that ART is easy when
|A| = 1: Assume A = {a;}. Then the existence of a strongly feasible A-tour for
some point set P, |P| = n, can be checked in the following way. It is easy to see that
the starting segment of an A-tour completely determines all the following segments
in the tour. Hence, we simply check all n — 1 possible starting segments emanating

from some fixed point in P.

The problem becomes considerably harder if |A| = 2. As shown in the following
Section 7.2, there exist angle sets with two elements for which determining the
existence of A-tours is NP-complete and there exist two-element angle sets for

which determining the existence of A-tours can be done in polynomial time.

In the following sections, we discuss the situation for the set of obtuse angles
AP = {o | a < —m/2 or /2 < a}; the set of acute angles A*™* = {a | —7/2 <
a < 7/2}; the set of orthogonal anglés A = {—7 /2,47 /2,n}. Tours or paths
that are weakly feasible with respect to A**, A°°* or A°™? are called orthogonal,

acute, or obtuse tours or paths, respectively.
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7.2 Orthogonal Tours

In this section we treat the problem of detecting strongly feasible orthogonal tours.
Let Ay = {—7/2,+7/2,7}, Ay = {n/2,7} and A3 = {—7n/2, +7/2}. We prove that
detecting strongly feasible A;- and A,-tours is NP-complete while finding Aj-tours

can be done in polynomial time.

We start with the NP-completeness result on A;-tours. A related result was
derived by Rappaport [75, 76] who gave an NP-completeness proof for the case of

Aj-tours that are not allowed to be self-intersecting.

Theorem 7.2.1 Given a set P of n points in the plane, deciding whether P allows
a strongly feasible Ai-tour is NP-complete.

Proof: We show that the NP-complete problem HAMILTONIAN CYCLE IN GRID
GRAPHS (Itai, Papadimitriou, Szwarcfiter [46]) can be reduced to detecting A;-
tours. A grid graph G = (V, E) has a set V of n integer grid points. There is an

edge between two vertices if and only if the corresponding points are at distance 1.

In our reduction, we first partition the points in V into horizontal classes. Two
points belong to the same horizontal class if they have identical y-coordinates and
if they are connected by a path that uses only edges of the graph with this y-
coordinate. The points in the i-th horizontal class are shifted by the vector (0,1/4%).
(The reason for this choice is to give all horizontal classes distinct y-coordinates.)
In an analogous way, we define vertical classes and shift them by vectors (1/4°,0).
Clearly, all points adjacent in the grid graph maintain their horizontal (vertical)

connections. All points not adjacent in the grid graph either keep the distinctness
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REEE

Figure 7.1: Shifting vertical classes removes the dotted “crossovers”

of their vertical (horizontal) coordinates, or these coordinates are made distinct by

the shifts.

Finally, we consider the leftmost point py with smallest y-coordinate. Let p,
be its horizontal neighbour. As shown in Figure 7.1, we add the four points ¢,
2, g3, qs to the point set, such that ¢; has only neighbours py and g2, g2 has only
neighbours ¢; and g¢s, g3 has only neighbours ¢, and g4, g4 has only neighbours g3
and p;, and ¢, becomes lowermost and leftmost. Clearly, there can be no orthogonal
tour of the point set where g, is not adjacent to both ¢; and g3, so this arrangement
forces every strongly feasible 4;-tour to be axes-parallel. Now it is easy to see that
a Hamiltonian Cycle in the graph exactly corresponds to a strongly feasible 4;-tour

in the shifted point set.

O
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An alternative to adding the points gi, g2, g3, qa is provided by Theorem 7.2.7:
Assuming that the grid graph is connected, the only orientation for which we can

connect all vertices in any manner is axes-parallel.
Next, we describe the NP-completeness proof for detecting A,-tours.

Theorem 7.2.2 Given a set P of n poinis in the plane, deciding whether P allows
a strongly feasible A,-tour is NP-complete.

Proof: We show that the problem of detecting an azes-parallel A,-tour is NP-
complete. The claim then follows by adding some extra points as in the proof of
the above theorem. We show the NP-completeness by reducing Hamiltonian Cycle
in cubic directed graphs to it. (See Plesiik [72] or Garey and Johnson [34], p.199.)
Solet D = (V, E) be some cubic, directed graph with |[V| = n. Asin Chapter 3 (see
section 3.1, pp. 23ff.), we may assume the following properties: All vertices have
either indegree or outdegree two, partitioning V into in-vertices and out-vertices.
This partition induces a bipartition of the graph and the edges are either mandatory
(being the only edge leaving or entering for both its end points) or optional (being
one of two edges leaving or entering for both end points.) Furthermore, the optional
edges form a set of disjoint (undirected) cyclesin D. Let Ci,...,C, denote the set

of these cycles.

We construct a point set Pp that allows an axes-parallel A,-tour if and only if

G has a Hamiltonian Cycle.

In a first step, we choose n disjoint parallel boxes in the plane as shown in

Figure 7.5. Let v; be some out-vertex in Cy and ¢; = |C4]. Let vs,...,v., be the
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other vertices of C; in an order in which they appear when running through C,.
Then assign the first ¢; boxes to vy,...,v.,. In the same manner, assign the other

boxes to the verticesin C,...,C,.

Next, the optional edges are represented by horizontal edges connecting the
appropriate boxes, such that all edges get different vertical coordinates. Clearly,
the boxes for v; and v,, have their two edges lying on the same side (“type A”),
while any other box has one edge on each side (“type B”). For a box of type B,
we refer to the appropriate adjacent optional edges as the “right” and the “left”
optional edge. After placing the optional edges adjacent to v; at any vertical level,
we run through the boxes for the vertices v,,...,v., -1 of type B to place the other
optional edges of ;. The right edge for v; is placed below the left edge whenever ¢
is even — i.e. v; an in-vertex. If 7 is odd, i.e. v; an out-vertex, we place the right

optional edge above the left optional edge.

After folloWing this procedure for all C;, we represent each mandatory edge by
a rectilinear path consisting of two vertical and one horizontal line segment, such
that the appropriate boxes are connected. Again, we make sure that all vertical

coordinates are distinct.

Now consider some fixed out-vertex v with, and let Bo, be its corresponding

box. Depending on whether v is of type A or B, we distinguish:

(A) If both outgoing edges leave the box on the same side, we place a stretched
copy of the set A as depicted in Figure 7.2 into the box Bo,. This is done
in such a way that the heights of 0UT1 and OUT2 coincide with the heights

of the line segments corresponding to the two outgoing edges. If (u,v) is the
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Figure 7.2: Box type A: oUT1 and OUT2 leave on the same side.

mandatory edge adjacent to v, reroute it into IN by placing one point at each

right turn of (u,v) and three points at each left turn of (u,v).

(B) If both outgoing edges leave the box on different sides we use the point set B

depicted in Figure 7.3 in a similar manner as 4 in (A).

Finally, if the vertex v is an in-vertex, we simply use reflected versions of the
two point sets in (A) (Figure 7.2) and (B) (Figure 7.3). Inputs become outputs

and vice versa. We indicate the resulting point sets by A and B in Figure 7.5.
To give some intuition on our constructions, we state the following observations.
For an example, see Figure 7.5.

(a) Groups of points in different boxes have different coordinates with the ex-

ception of the three in- and outputs. Consequently, a strongly feasible tour enters
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Figure 7.4: A cubic digraph D
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Figure 7.5: The representation for D

a box, run through all points, leave the box, and it never enters it again (otherwise

it would have to use at least two inputs and at least two outputs).

(b) The point set used to reroute a mandatory edge must be used in each
strongly feasible tour, since there is no possibility for a strongly feasible tour to
enter through OUT1 and to leave through 0UT2 (or to enter through 0UT2 and to

leave through OUT1) and to visit all points inside the box at the same time.

(c) If we reflect an Aj-path from a to b, it becomes a strongly feasible A;-path
from b to a. Hence, for in-vertices, the paths in the figures are strongly feasible

paths from OUT to IN.

Now assume we are given a Hamiltonian Cycle for G. We want to construct

a strongly feasible A,-tour visiting all points in the point set Pg. First, we draw
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in all line segments corresponding to edges in GG that belong to the Hamiltonian
Cycle. Next we consider a box corresponding to some out-vertex. We know at
which positions the box is entered and at which positions it is exited again. We
include the point set that was used to reroute the input from IN to the height of
the ingoing edge. Then we use the corresponding segment sets shown in Figures 7.2
and 7.3 to connect IN to one of the outgoing segments. (In case of an in-vertex we

use the reflected versions). Clearly, we end up with an A,-tour.

Finally, assume that the constructed point set allows an A,-tour 7 and consider
some out-vertex v. The only possibilities for 7 to enter and to leave the box
corresponding to v is via the line segments OUT1, OUT2 and IN corresponding to
the three incident edges (all other points have distinct z- and y-coordinates). It is
easily checked that the tour cannot visit all points inside the box in a valid way if
it enters through 0UT1 or OUT2 or if it leaves through IN. Hence, the tour must
enter all boxes at places corresponding to ingoing edges and it must leave all boxes
at places corresponding to outgoing edges. Contracting the subpaths of the tour
in every single box yields a strongly feasible Hamiltonian Cycle in G. Our proof is

complete.

0

The polynomial time result on As-tours is a direct implication of the following

proposition due to O’Rourke [65].

Proposition 7.2.3 (O’Rourke [65]) For a set P of n points in the Euclidean
plane, it can be checked in O(nlogn) time whether P allows a strongly feasible As-

tour such that all segments in the tour are axes-parallel to the z- or to the y-ams.
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Figure 7.6: Finding strongly feasible As-tours

Furthermore, there can be at most one strongly feasible Az-tour for any orientation

of the azes.

This yields the following Corollary 7.2.4. For the sake of completeness, we
describe the proof idea.

Corollary 7.2.4 For a set P of n points in the Euclidean plane, it can be checked

in O(n?logn) time whether P allows a strongly feasible Az-tour.

Proof: See Figure 7.6. Consider some fixed line segment s in some valid Az-tour
T. Then all other line segments in 7 are either parallel or normal to s. That means
we may assume an underlying coordinate system such that all segments in 7 are

parallel to one of the axes.
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As a first step we determine a set of O(n) possible orientations for such a coor-
dinate system: In O(n?logn) time, sort the O(n?) line segments into equivalence
classes, where two segments belong to the same class if and only if they are parallel
or orthogonal. We only have to check the orientations corresponding to classes with
at least n segments, of which there are O(n). In the rest of the proof, we show how
to test the existence of an Az-tour in O(nlogn) time, if the coordinate system has

been fixed. This gives us an overall time of O(n®logn), and our proof is complete.

Thus, we assume that the coordinate system has been fixed and we consider
some horizontal line that contains at least one point of P. Let p;,pa,...,pr be the
points of P on this line sorted from left to right. Assume there exists an Ajs-tour
7T that visits all points of P. In this case the point p; has two neighbors on the
polygonal line 7, one of them vertical, the other horizontal. The only possible
horizontal neighbor is the point p,. Hence, we may connect p; to pp. Similarly, the
only possible horizontal neighbor of p; is p4, the only possible horizontal neighbor of
ps is ps and so on. This yields k/2 segments that must be part of 7. We repeat this
process for every horizontal and every vertical line that contains at least one point
of P. If we meet some line that contains an odd number of points, we immediately

stop, as a tour cannot exist for the given orientation.

Therefore we end up with a set of n line segments, such that every point of P
is incident to exactly two segments. If the segments form a single closed polygonal
line we have constructed a (strongly feasible) As-tour, otherwise none exists for the

orientation considered.
1

We can extend the result to not necessarily strongly feasible As-tours:
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Figure 7.7: Merging subtours to find weakly feasible A;-tours

Theorem 7.2.5 Let P be a set of n points in the Euclidean plane. Then we can
decide in O(n?logn) time whether P allows a weakly feasible As-tour.

Proof: If a solution exists for some fixed coordinate system, the method described
in Corollary 7.2.4 either detects a strictly feasibly tour (and we are done) or it
finds a partition of P into disjoint sets P,,..., P, such that each P: allows a weakly

feasible Aj-tour.

Assume there exist two points p; € P; and p; € P; such that p; and p; have
identical z-or y-coordinate. In this case, there exists an axes-parallel line containing
a segment of the tour for P; and a segment of the tour for P;, and it is easy to see
that the As-tours for P; and P; can be merged into a weakly feasible Aj-tour for
P; U P;. (See Figure 7.7.)

We may repeat this merging procedure, so the problem reduces to determining
whether there exists a coordinate system such that P is connected with respect to
axes-parallel connections. This is easily done in O(n®logn) time by checking n — 1

coordinate systems and sorting the corresponding z- and y-coordinates.

O
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In [65], O’Rourke has stressed the aspect of uniqueness of strongly feasible As-
tours. He motivates the question as a pattern recognition problem: We are trying
to find a simple rectilinear polygon for a given set of vertices. For his uniqueness
result, he assumes that the orientation of the polygon edges is axes-parallel in some

given coordinate system.

If we have to find the underlying rectilinear polygonal shape of a given a set
of vertices in the plane, we cannot necessarily assume knowledge of an underlying
coordinate system. Interestingly enough, we can show that O’Rourke’s uniqueness
result remains valid even if no orientations are known in advance. This nicely
illustrates our point about the relation between relative and fixed restricted orien-

tations.

Definition 7.2.6 Given a subset V of the Euclidean plane R?. For any orientation
O of a Cartesian coordinate system, we define the O-orthogonality graph Go(V) =
(V, E) as follows: Two vertices v; and v are connected by an edge, if and only if

they have the same z- or y-coordinate.

Theorem 7.2.7 Given a set P of n vertices in the Euclidean plane that all have
rational coordinates. Then there is at most one orientation O for which Go(P) is

connected.

Proof: Suppose that we have two such orientations O; and O,. Then we can
write the direction of the z-axis in O, as (a,b) with a,b # 0 in O;-coordinates.
Since all the coordinates are rational, we may assume that a and b are relatively

prime integers.
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Furthermore we can assume that all O;-coordinates of the given points are
relatively prime integers. This implies that there are two points of the same y-
coordinate that have a positive distance in x-direction that is not a multiple of

a?+b* > 1, say k.

Since these two points can be connected by an axis-parallel path with orientation
(a,b) and all endpoints of segments being grid points, the vector (k,0) must be an
integer combination of the vectors (a,b) and (—b,a), i.e. the system

ar —by = k

bz +ay = 0
must have an integer solution (z,y) — which is equivalent to
(> +b)z = ka
(a®> +0%)y = kb.

Since a and b are relatively prime, a® + b and a are, so a must divide z. This

implies that k is a multiple of (a® + b*) — a contradiction.

0

7.3 Acute and Obtuse Angles

In this section, we discuss tours and paths for acute or obtuse angles. The set
A®" can be interpreted as being required to make “sharp” turns at every vertex;
conversely, A°”*" corresponds to the situation where we have to avoid too sudden

changes of direction. Wolkowicz [95] pointed out the possibility that problems of
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Figure 7.8: A point set without obtuse spanning paths

the latter kind might be interesting for the planning of aerial surveys, where a plane

has to fly over a certain number of check points.

Mathematically, the feasible angle sets for pseudoconvex, acute and obtuse tours
can all be represented as one half of the unit circle S* = R mod 27. The following
statements, however show that the situation for each of the three angle sets is quite

different from that for the others.

Example 7.3.1 Obtuse spanning paths do not ezist for all point sets. To see this,
consider the three vertices of an equilateral triangle together with n — 3 points in the
interior of the triangle. (See Figure 7.3.1.) Any spanning path must contain one of
the corner points somewhere in its middle. But then the corner point together with

its two neighbors in the path form an acute angle.

O

Theorem 7.3.2 Every finite set of points has an acute path.
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Figure 7.9: Every finite set of points has an acute path.

Proof: See Figure 7.9. Choose any point py to be the starting point and remove
po from P. p; is a point in P that is farthest from py, and we remove p; from P.
p2 is a point in P that is farthest from p;, and so on. This procedure can never
produce an angle Z(p;p;;1pi+2) that is not acute, as in this case p;,, is further from

p; than p,,;, and we would have chosen Pi+2 to be the successor of p;.

O

The situation for acute tours is more complicated:

Example 7.3.3 Let Py be a point set containing an odd number of points on the
z-aris (perturbated a little bit to get a point set in general position). Suppose P,
has an acute tour. We call a segment a western (eastern) segment, if the acute
tour traverses it in direction of negative (positive) . The tour must consist of an
alternating sequence of eastern and western segments; If the tour traverses some

western line segment Ty, it must traverse the following segment ¥z in eastern di-
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Figure 7.10: Sets that do not allow acute tours

rection to avoid an obtuse angle at the point y. This forces the tour to use an even

number of line segments and, consequently, an even number of points.

An even number of points still does not guarantee an acute tour; see Figure 7.10.

Example 7.3.4 The point set P, containing the four points (0, —10), (0,10), (5,0),
(10,0) does not allow an acute tour. The point set Py containing the siz points
(0,-10), (0,10), (1,0), (2,0), (3,¢) and (4,¢) (where ¢ < 107'° is a small real) is

in general position and does not allow an acute tour.

Surprisingly enough, Example 7.3.4 cannot be generalized to any even number

of points. In fact, we have the following conjecture:
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Figure 7.11: Some difficulties for acute tours

Conjecture 7.3.5 Every set P of 2k > 8 points admits an acute tour.

After the construction of acute spanning paths in Theorem 7.3.2, one might be
tempted to conjecture some kind of relation between acute paths, acute tours and
tours of maximal overall length. However, the following Example 7.3.6 points out

a few difficulties.

Example 7.3.6 For a positive integer m, the point set Py contains the 2m points
(m?,0), (=m?2,0), (0,1),...,(0,2m — 2) as shown in Figure 7.11. One easily checks
that for m > 4, the following holds.

o P, allows an acute tour.

e No acute tour contains the diameter (0,m3)(0, —m?3).

o [t s impossible to get any acute tour by using the approach for construct-

ing acute spanning paths as described in Theorem 7.3.2. (Regardless of the
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starting point, the diameter would be included in the second step at the latest.)

o Any longest tour has length 2m3+\/m6 + (2m — 2)2+\/m6 + (2m — 3)*+4m—
3 and contains the diameter (indicated by the broken lines in Figure 7.11),

while a longest acute tour (solid lines) has only length \/m6 +(2m —2)? +
M+ (2m — 3)2 + \/m® + (2m — 4)2 + {/m® + (2m — 5)2 + 4m — 4. (Note
that 2m® + 1 > \/m,6 +(2m — 4)? + \/m6 +(2m — 5)% form > 4.)

O

Finding spanning paths that minimize the maximum angle or maximize the mini-
mum angle seems to be difficult. By the above algorithm for finding acute spanning
paths, we can always guarantee a maximum angle of absolute size at most /2. A
set of n — 1 collinear points with an nth point far away from the line show that this

guarantee is best possible.

As for a lower bound on the minimum angle, we have the following conjecture:

Conjecture 7.3.7

There always exists a spanning path with minimum angle at least 7 /6.

The equilateral triangle together with its centerpoint shows that no angle greater

than 7 /6 can be guaranteed.

7.4 Other Questions

We conclude this chapter with some other open questions.
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Conjecture 7.4.1 It is polynomial to detect {—27/3, +27 /3}-tours.
Conjecture 7.4.2 It is NP-complete to detect {—n/3,+m/3, 7 }-tours.

To our knowledge, it has not been shown that detecting Hamiltonian Cycles in
vertex-induced subgraphs of the hexagonal grid is NP-complete. A proof of this
would certainly be helpful.

Problem 7.4.3 What is the complezity of detecting acute/obtuse tours?

For this problem as well as for Conjecture 7.3.7, some of the results on trian-
gulations that minimize the maximal angle or maximize the minimal angle may be
useful. It may appear as a good choice to consider Hamiltonian paths in a Delaunay
triangulation, with any two adjacent edges in the path belonging to the same tri-
angle. However, Delaunay triangulations or other minimum weight triangulations

are in general not Hamiltonian. (See Dillencourt [18], [19].)



Chapter 8

Geometric TSP Optimality

8.1 Polyhedral Combinatorics and the Subtour

Polytope

Consider the symmetric travelling salesman problem (TSP): For a complete graph
K, on n vertices, we are are given a weight ¢, for each edge e. Each Hamilton cycle
can be represented by its 0-1 incidence vector. We let T, denote the set of these

vectors. Finding a shortest tour is equivalent to the problem
min{cz | z € T,}.

The polyhedral approach for this problem involves studying the associated polytope
Q™ C R™ that is the convex hull of all 0-1 vectors representing tours of K,:

min{cz | z € Q"}.

Optimizing over Q™ is NP-hard, so it is unlikely that we will ever get a complete

description of this polyhedron (see Karp and Papadimitriou [50]). For solving many

138
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real world problems, however, it is not necessary to have complete knowledge of
all the facet-defining inequalities of Q™, as was demonstrated by the cutting plane
approach by Dantzig, Fulkerson and Johnson [20], Grétschel [37], and Padberg and
Hong [67]. A comprehensive survey of the polyhedral aspects of the TSP can be
found in Grétschel and Padberg ( [39] and [40]).

Some of the known inequalities describing Q™ have a particularly easy interpre-

tation: The nonnegativity constraints
z. > 0forallec E,

are valid, since no z € Q™ can have negative entries. Gréotschel and Padberg [38]

showed that these inequalities are facet-inducing for n > 5.

Furthermore, any z € Q™ must satisfy
ze < 1lforallec E.
For § C V and J C E, we write §(S5) := {[u,v] € E | v € S,v € V} and
2(J) = Lees Te-

Clearly, every vertex must be adjacent to precisely two edges of a tour, so every

z € Q™ must satisfy

z(8(v))=2forall v e V.

These degree constraints form a maximal independent set of equations whose solu-

tion set contains Q™ — see Grdtschel and Padberg [38].

For § C V, we write v(S5) := {(v,v) € E | u,v € S}.
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No tour can contain a cycle of less than n vertices, so every set of less than n
vertices must have at least 2 edges leaving it. Since the degree constraints assure

this for single vertices, we can write this condition as
z(§(S))>2forall SCVand 2<|S|<n-—2.

These subtour elimination constraints were first introduced by Dantzig, Fulkerson
and Johnson [20]. Grotschel and Padberg showed that they are facet-inducing for

n > 4.

The above inequalities define a polytope S™ that contains Q™ — the so-called
subtour polytope. If z € S™ and z integer, z must be a tour. Thus the linear
program

min{cz | z € S™}

is a relaxation of the TSP.

Since Q™ C 8™, any optimal solution to minimizing over S™ is a lower bound for
the optimal value of TSP. It was proved by Wolsey [96] that for any cost function ¢
satisfying the triangle inequality, this bound can be at worst 2/3 of the optimum.

It is an open conjecture that it is never worse than 3/4.

Grotschel, Lovasz and Schrijver [41], and Karp and Papadimitriou [50], showed
that a polynomial method for solving the separation problem for a polytope yields
a polynomial method for optimization by means of the ellipsoid method. Padberg
and Hong [67] (see also Padberg and Wolsey [70], and Padberg and Rao [68])
demonstrated how to solve separation for the subtour polytope in polynomial time
by using the method of Gomory and Hu [35] for finding the minimum cost cut in

a graph. Thus we know that optimization over the subtour polytope is possible
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in polynomial time by means of the ellipsoid algorithm (see Grétschel, Lovasz and
Schrijver [41].) Since the ellipsoid method is, however, of purely theoretical value,
it would be desirable to find a combinatorial method for this purpose. No such

method is known at this time.

For a comprehensive study of optimizing over the subtour polytope, see Boyd [7]

and also Boyd and Pulleyblank [8].

8.2 Geometric Interpretation and Moat Packings
If we think of the vertices V' as locations and the cost ¢, of an edge e = [u,v] as
describing the distance d(u,v), we can write the optimization problem

min{cz | z € S"}

as

min Z d(u, v)zz[u,v}

[uv]eE
subject to the constraints
Ty > 0 forall [u,v]€E,
T[] < 1 forall [u,v]€E,
PlupleE Tlup] = 2 forall v eV,
Cluples(s) Tuw) > 2 forall {5,S5} € M.

(We write M for the set of all partitions of V into two nonempty parts S and
S. M(u,v) denotes the set of all partitions for which u and v belong to different

parts.)
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The dual of this linear program is

max (2 Z w{sg}—’;—ZZ'rv)

S 5eM veV

subject to the constraints

v

0 forall {$,5} e M,
S (55 eMuw) Wissy T Tu e < d(u,v) for all u,v € V.

W55y

This linear program has exponentially many variables, but for any instance,
there is an optimal solution for which the sets having w4z > 0 have the special

structure of a nested family:

Definition 8.2.1 A family of partitions (S1,51),---,(Sk,Sk) is called nested, if
for any two partitions (S;,S;) and (S;,5;), we have S; N S; = 0 or §; C §; or
S; €S

For details on nested families, see Pulleyblank [71]; a proof for the above claim

can be found in Cornuéjols, Fonlupt and Naddef [15].

If the locations of the v € V are embedded in the plane R?, and the distances
are induced by some metric d (e.g. the Euclidean norm || - ||z, also written as L),

we can give a very elegant geometric interpretation of this problem.

Draw a d-ball of size 7, around each vertex v. Separate the two sets of vertices
of a partition {S5} by a moat of width w gz — i.e. a compact set such that any
path between two vertices v; € S and v, € § must have a connected section of at

least length w gz, with respect to d.
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Figure 8.1: A moat

Now assume we can arrange these balls and moats in a way that they have
pairwise nonintersecting interior. We call such an arrangement a moat packing.
Clearly, the moat widths in a moat packing must satisfy the constraints of the
linear program. Furthermore, any tour must cross any given ball or moat at least
twice — so the objective function is a geometrically appealing lower bound for the
length of a travelling salesman tour. If we have a moat packing for which this lower
bound is met by a tour, we say that the moat packing is tight. If there is a tight
moat packing for a given tour, it yields a fast proof for the optimality of the tour.

Jinger and Pulleyblank have shown in [48] that any nested solution of the linear
program can be represented by a moat packing. (Because of the laminar structure,
any solution can be transformed into nonnegative solution.) Their proof is valid

regardless of the metric.
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Geometric interpretations of combinatorial optimization problems and their use
for heuristics have also been given for other problems than the TSP: Minimum
spanning trees and minimum matching, along with TSP and Steiner trees are dis-
cussed in the survey paper by Jinger and Pulleyblank [49]; a discussion for the
matching problem can be found in Jinger and Pulleyblank [48].

We will return to the subject of moat packings in section 8.4, after elaborating
some topological aspects of realizing travelling salesman tours as curves embedded

in a surface.

8.3 Convexity

The basic notion of a convex set is a set for which any two elements can be joined
by a shortest path that stays within the set. These sets have been abstracted
and generalized in various ways and their properties used in all different kinds of
settings. (For a survey see Danzer, Griinbaum and Klee [21] and the shorter article
by Klee [51].) Abstract and axiomatic generalizations were developed, most notably

by Menger [57].

Recent developments in Computational Geometry and Computer Science have
led to new interest in this topic. The study of restricted orientations, visibility and
Voronoi diagrams (see Rawlins and Wood [77], [78], [79], [80], Schuierer [90] and
Widmayer, Wu and Wong [93], as well as Klein [52], and Espie [24]) has led to the

rediscovery of several different notions of convexity.
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In this section, we introduce some basic concepts and definitions and show how

they are useful for dealing with geometric realizations of the TSP.

8.3.1 Definitions

We follow the exposition of Klein [52].

Let M be a set. A metric on M is a function d(.,.) that maps every pair (z,y)

of elements of M into the nonnegative reals and satisfies the following three axioms:

M1: d(z,y)=0ifand onlyifz =y (identity)
M2 . d(z,y) = d(y,z) (symmetry)
M3 : d(z,z) < d(z,y) + d(y, z) (triangle inequality).

A d-ball is the set
By(z,e) = {y € M | d(z,y) < ¢}

of all points not further than ¢ from the center z. A metric induces a topology
on M: A set is open, if it contains a (sufficiently small) d-ball around each of its
elements. Two different metrics d; and d, can induce the same topology for M —
this is the case if every small d;-ball contains a d,-ball and vice versa. (Intuitively,

this means that “closeness” of points is similar under the two metrics.)

Let M be a vector space. For simplicity, we restrict our attention to the vector
space R%. (Most of the following properties and definitions hold for other spaces as
well.) A norm of R? is a function || - || that maps R? into the nonnegative reals and

satisfies the following three axioms:
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N1: ||z|| =0if and only if z = 0 (identity)
N2: IAz] = [Alll=z]| (scalar multiplicativity)
N3: llz + gl < [l=]| + [yl (triangle inequality).

Well-known examples are the Euclidean norm ||(z1,z2)|l2 = m, the
“Manhattan” norm ||(z1,z2)||; = |z1]|+|z2|, and the maximum norm ||(z1,22)||e =
max{|z;,|zs|}. (We also write Lj, Ly and Lo for these norms.) For a norm || - ||,
d(z,y) = ||z — y|| defines a metric. Clearly, the metric induced by a norm is
invariant under translations, i.e. the distance between z and y depends only on
their relative positions. Because of N2, all balls are scaled copies of the unit ball
B = BH.”(O, 1). From its definition, it follows that the unit ball is compact, sym-

metric with respect to the origin, and convex.

Conversely, we can define a norm by its unit ball B: To calculate the distance

of two points z and y, center B at z and consider the unique intersection point z

of the ray from z through y with the boundary of B. Then define

dz,) = oY

IEEEIY

see Figure 8.2.

This definition is not dependent on the Euclidean norm for calculating the
distances of z, ¥ and z — we only need axiom N2. It follows that a norm is

uniquely defined by its unit ball.

We note (see Rinow [84]):

Proposition 8.3.1 All norm-induced metrics of R? induce the same (Euclidean)

topology.
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Figure 8.2: Every norm is defined by its unit ball

Norm-induced metrics can be characterized in the following way (see Lemma 1.2.1

in Klein [52]:)

Proposition 8.3.2 A metric d on R? is induced by a norm if and only if it has the
following properties:

1. d induces the Euclidean topology.

2. The d-distance is invariant under translations.

3. The d-distance is additive on straight lines (that 1s, if z, y and z are points on

a straight line with y between = and z, then d(z,y) + d(y, z) = d(z, z) holds.)

A curve is given by a continuous injective mapping c of the interval [0,1] into

R?. A curve is closed, if ¢(0) = c(1). It is simple, if c(s) # c(t) for all distinct
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Figure 8.3: The flowershop metric

s,t € (0,1). The mapping induces an order of the points of the curve; in the
following, we will refer to appropriate orderings of this type when we speak of the
order of points. Given a metric d for R?, a curve is called d-straight, if for every
set of three points z, y and z, such that y falls between z and z, the equality
d(z,y) + d(y,z) = d(z,z) holds. As noted above, the straight line (in the ordinary
sense) between two points = and =z is d-straight for any norm-induced metric d.

Clearly, it is the only d-straight curve for the Euclidean distance.

It is not hard to see that d-straight curves between two given points are in
general not unique — an example is given by the L;i-norm. It may be less obvious

that there need not be any d-straight curves:
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Example 8.3.3 (Klein [52]) Let f be a fized point in the plane. Then define

le=fllz+llf —zll ife#=
0 ifz = z.

d(z,z) =

This “flowershop” metric can be interpreted as follows: When travelling from z to
z, we have to go by f (the flowershop) to buy some flowers for the host at z. (See
Figure 8.3.) Clearly, we have d(z, z) < d(z,y)+d(y, z) for distinct z, y and z, unless
y = f. So there can be no d-straight curve between = and f, hence none between

z and z. Also note that this metric does not induce the Euclidean topology: For

2 # fand € < ||e - fl|2, Bu(z,<) = {x}.

The existence of d-straight curves is the subject of Menger’s powerful “Verbind-
barkeitssatz”. A metric space (M, d) is complete if every d-Cauchy sequence in M

has a limit in M.

Theorem 8.3.4 (Menger 1928, [57]) Let (M,d) be a complete metric space and
assume that to any two different points z and y, a point z ¢ {z,y} ezists such that
d(z,z) = d(z,y) + d(y, z) holds. Then two points in M can always be connected by

a d-straight curve.

Proposition 8.3.5 (Jordan Curve Theorem) A simple closed curve ¢ subdi-
vides the plane in ezactly two connected open sets. Ezactly one of those sets, called

the interior of ¢, is bounded.

See Blumenthal and Menger, [4].

Let ¢ be a closed curve. Then the support of ¢ is the smallest simply connected

set that contains ¢. The contour of ¢ is the boundary of the support.
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8.3.2 Generalized Convexity

In [52], Klein has elaborated the theory of planar Voronoi diagrams for general
metrics. In order to ensure suitable properties of the boundaries of Voronoi regions,

he and Wood defined so-called “nice” metrics:

Definition 8.3.6 (Klein, Wood)

Let d be a metric of R®. For points p,q € R?, we write
Clp,g) = {z€R|d(p,2) <d(g,2)}

D(p,q) = {ze€R®|d(p,2) <d(q,2)}

A metric d on R? is called nice if it enjoys the following properties:

1. d induces the Euclidean topology.
2. The d-balls are bounded with respect to the Fuclidean metric.

3. Ifz,z € R? and = # z then there exists a point y & {z,z} such that d(z,z) =
d(z,y) + d(y, z) holds.

4. Forp,q € R?, J(p,q) := C(p,q) N D(q,p) is a curve homeomorphic to (0,1).
(Here D(q,p) denotes the topological closure of D(q,p).) The intersection
of two such curves, J(p,q) and J(u,v), consists of finitely many connected

components.

Properties 1, 2 and 3 are satisfied by any norm-induced metric. Klein and Wood
introduce the technical property 4 to make sure that the boundaries of Voronoi
regions have a simple structure. For our purposes, we only need properties 1 and

3: we say a metric is a Menger-metric if it satisfies these two conditions.
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Definition 8.3.7 Let M be a subset of R? and d be any metric of R2. M is d-
convex if for any two points in the set, there is a d-straight curve connecting them

that does not leave M.

We get the usual convexity if d is the Euclidean metric. For d = Ly, we get
orthoconvezity: A set is orthoconvex, if the intersection with any axis-parallel line
is connected. Generalizing orthoconvexity has motivated the notion of restricted
orientation convezity: For a given set of orientations O, a set M is O-convex, if any
O-parallel line has a connected intersection with M. Examining restricted orienta-

tion convexity has been one of the main objectives of Rawlins [77] and Schuierer [90]

in their Ph.D. theses.

O-convexity is a special case of d-convexity: For a given set of orientations O,
let B be a (centrally symmetric) unit ball defining some norm-induced metric d,
such that O is the set of directions of the extreme points of B, as seen from the
origin. It is not hard to see that for any such d, d-convexity implies O-convexity.
(In [90], Schuierer gave one particular way for defining d and proved the stated

implication. We note that there are infinitely many different norms that define the

same set of orientations.)

8.3.3 Tours and Curves

Consider a geometric Travelling Salesman Problem where the cities are given by
vertices in the plane. For a considerable number of practical purposes, the distances
are not described by the Euclidean norm. Examples of other distance functions
include the L; norm, which plays a role in VLSI design, and the L norm, which

describes the motion of a plotter. The following distance function originates from
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Figure 8.4: The Livermore metric

the testing of microchip wafers at the Livermore Laboratories. It shows that it is

very easy to encounter problems where the distances are not described by a norm.

See Figure 8.4.

Example 8.3.8 Consider a set of vertices (“test points”) on a disk (“wafer”) and
a distinguished (“attachment”) point on the boundary of the disk. We have to
repeatedly move the disk such that each of the vertices gets positioned at the origin
(“quality sensor”). The disk can be moved by rotating it around the attachment
point and moving the attachment point parallel to the z-azis. These two motions
can be performed independently, so for two points py = (r1,¢1) and p2 = (r2,p2) in

polar coordinates, the distance 1s

d(Pl;Pz) = max (M,min (“Pl - @21,271' — ‘801 — @21)) '

. Vo v,

We have to solve a Travelling Salesman Problem for this metric.
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Despite all their differences, a considerable number of practical metrics have
one thing in common: Reflecting the fact that we move from one tour vertex to the
next, the distances between points correspond to shortest paths. Furthermore, two
points are usually “close” if their Euclidean distance is small. This means that we

are dealing with Menger-metrics.

We have already pointed out at the beginning of Chapter 6 how a convex ar-

rangement of tour vertices leads to easy solvability:

Theorem 8.3.9 Given a set of n vertices in the Euclidean plane, such that they lie
on the boundary of their convez hull, i.e. the contour. Then the optimal solution
of the Euclidean Travelling Salesman Problem for these vertices is given by the

contour.

Proof: The only way to get a noncrossing tour is given by the contour. It is an

easy consequence of the triangle inequality that any optimal tour is noncrossing.

O

Convexity is a particularly easy optimality criterion for the TSP. We will see in

the following chapter how it can be used for the purpose of error analysis.

What is it that makes convezity so useful for Fuclidean distances? Can we

generalize this property to other metrics?

We have already discussed notions of generalized convexity. Since we are dealing
with Menger-metrics, we should concentrate on properties of shortest paths. This is
done with the definition of d-convex sets. For tours, we can formulate the geometric

properties as follows:
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Vs v,
. Y
.
Vs
° ®
Va v

Figure 8.5: A d-convex tour requires more than just a d-convex support

Definition 8.3.10 Consider the TSP for some Menger-metric of R*. A tour of n
vertices in the plane is d-convex, if it can be represented by a curve c that consists
of n d-straight curves connecting successive vertices, such that the support of c s

d-convez and all vertices lie on the contour of c.

We will see in the following section that any d-convex tour is indeed optimal.

This need not be true if there are vertices that do not lie on the contour:

Example 8.3.11 See Figure 8.5. Suppose the cost for travelling along the shown
edges is equal to the Euclidean distance. The cost for any path outside those edges is
100 times the Euclidean distance. Then the tour (vq,v2,vs, V4, Vs, 1) has a d-convez

support, but is longer than the tour (vy,vs,vs,v3, V4, V1)
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8.4 Convexity and Moat Packings

We now return to moat packings.

We have seen that we can define unit balls, distances and convexity in a much
more general sense than just for the ordinary Euclidean metric. We proceed to show
that these notions can be incorporated in our geometric interpretation of balls and

moats.

Theorem 8.4.1 Let d be a Menger-metric, describing the distance function for a
planar TSP. Consider a set of n vertices that form a d-convez arrangement, i.e.

for which there is a d-convex tour. Then there is a tight moat packing for this tour.

Proof:

We proceed by induction over n. All the “balls” will be d-balls of appropriate
radius around vertices. (The reader may find it useful to consider the situation for
the Euclidean metric, where the d-balls are disks. Our argumentation is based on
weaker topological properties, since general d-balls do not have to be convex.) Each
moat will separate two components of the plane that are at some d-distance w. A
moat of width w will consist of the union of appropriate pieces of w-strips around
some of the vertices it surrounds. (We remind that a strip of width w around some
vertex v is given by By(v, R) \ B4(v,r), where R —r = w as the difference between
two d-balls.) We say a moat packing is tight, if it covers all the edges. A moat

packing is feasible, if it is tight and nonoverlapping.

Let the tour be given as T' = (vy,...,Vn_1, Vs, v1) and realised by an appropriate

curve c, consisting of d-straight curves between successive vertices. Let ¢; and ¢,
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Figure 8.6: Inserting the new moat and redirecting the old moats

be the d-straight curves between v; and v,, and v, and v,_;.

Let
1
Tp & "2‘ (d(vlavn) -+ d(vn—»'l,vn) - d('vnml’vl)) )
1
Ty i '2" (d(vlavn) + d(vn—-hvl) e d(vnwlavn)) s

1
Tr—1 += -2' (d(vl, vn-l) + d('v,,wl,vn) — d(v,,, i)l)) .

By triangle inequality, all these quantities are nonnegative. For n = 3, define a

feasible moat packing by the three balls By(vi,r1), Ba(vz,72), Ba(va,73).

Suppose we have a tight moat packing for the tour T = (v4,...,vn-1,v1) on the
(n — 1) vertices vy,...,Vn-1. For some d-straight curve c,.1 between v, and v,
that does not leave the support of ¢, the tour 7" is also d-convex. If r,, = 0, we are

done — the moat packing for 7" is a moat packing for T'.
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The set of all moats that cross ¢,.; can be partitioned into those that run in
strips around v; and those that run in strips around v,_;. Let R; be the sum of
the strip widths around v; and R,,_; the sum of the strip widths around v,_;. By
definition, Ry + R,y = d(vi,vp_1) = 71 + Tpo1.

For R, = ry, add only a ball of radius r, to the set of moats and balls for 7" to
get a tight moat packing for T'.

For R, # r;, assume without loss of generality R; > r; and see Figure 8.6. The

strip of width s = R; —r, = r,_; — R, around v, is replaced by
Bd(vla Rl) U Bd(vny Trn -+ 3) \ (Bd(vhrl) U Bd(vna "‘n)) ’

which means redirecting the strip so that it runs around the vertex v,,.

By construction, we get a tight moat packing. We have to show that it is
nonoverlapping. Clearly, no intersection can occur between the moats separating
V1, Un_1, and v,. By induction hypothesis, the only overlapping of other moats can

occur if a moat around v, intersects a moat around some v; # v;,v,_1.

So suppose r; +r, + 5 > d(v;,v,), where r; denotes the radius of an appropriate
ball around v;. Since T is convex, there must be a d-straight curve ¢; between v,
and v; that does not leave the support of ¢ and therefore has to intersect ¢,,_; in

some point p.

Now either d(v;,p) < 7; or d(vn,p) < rn+s. The former case implies that there
is a point close to p on ¢,_; that lies in the interior of By(v;,7;) as well as in the
interior of B4(vi, R;) or By(vn-1, Rn—1) — a contradiction to the feasibility of the

moat packing for 7", (See Figure 8.7(a).)
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Figure 8.7: The new moat packing is tight and feasible
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Therefore assume d(v,,p) < r, + s. Since
d('vnavn-l) =Ty, + 8+ Rn—-la

d('vlavn—-l) =71y + 8-+ Rn-l)
d(vlyvn—l) = d(vhp) + d(p’: vn~1)? and
d(”ﬂ:”n-l) < d(vmp) + d(?»'vn-l),

we have

Tn+ 8 — d(vn,p) <71 + s — d(v1,p).

This implies d(vn,v;) > 7, + s — otherwise v; would belong to the interior of
Ba(v1, R1). Then let ¢ be the point on ¢; with d(v,,q) = r,+s. (See Figure 8.7(b).)
It follows that g belongs to By(v1, R;) and to the interior of By(v;,7;) — a contra-

diction to the assumption that By(v;, R,) and By(v;,r;) are nonoverlapping.

We conclude that the resulting moat packing for T' is nonoverlapping, completing

the proof.

O



Chapter 9

Error Analysis for the TSP

9.1 Introduction

Let us consider an instance I of a mathematical problem, given by a set of numerical
input data. Our objective is to find a solution z. Because of limited accuracy in
our calculations, we may only be able to find an approximate solution Z, even if
we are given an algorithm that theoretically computes an exact solution. Under
these circumstances, we would like to have some estimates on the error ||z — Z|
that has been accumulated during the calculations. This type of error analysis has
been studied extensively in the field of numerical analysis. It is usually referred to

as forward error analysis.

For most practical purposes, we are in a situation where the input datais already

inaccurate. Young and Gregory [97] state:

“If we take the point of view that any computed solution to a problem is the

160




CHAPTER 9. ERROR ANALYSIS FOR THE TSP 161

exact solution to a slightly perturbed problem, then the details of what caused the
computed solution to differ from the exact solution are not too important. This is
the motivation for what is called backward error analysis as opposed to the usual

forward error analysis |[...]”

In other words: If we are given a suggested solution z, what is the error ||I —T||/

that separates the input data I from an instance I that has exact solution z?

Backward error analysis was used by Givens [37] and Lanczos [53], but its great-

est advocate has been Wilkinson [94].

When trying to solve a combinatorial optimization problem, we may have a third
source of error besides imprecise calculations and inaccurate data: The difficulty
of finding an exact solution within reasonable time may require us to accept an
approximate solution. The bounds that we can give for the error on a solution that
was achieved by a heuristic may be considerable: The well-known approximation
method of Christofides for the symmetric TSP with triangle inequality yields a
solution that can be 50% greater than the optimum. Still, currently there is no

(polynomial) method known that can guarantee a smaller relative error.

Similar to the case of numerical problems, these combinatorial difficulties can
make it interesting to consider the notion of backward error analysis. Since we
may either have to pay a high price for an exact solution z of a given instance I
or accept a high error ||Z — z|| between an approximate solution Z and z, we may
prefer to solve an instance I that has a distance || — I||’ that is not too large. This
means that we may rephrase the question of backward error analysis in the context

of optimization:
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How far is the instance I from an instance I that we can solve satisfactorily?

There are various special cases for which the TSP can be solved accurately and
quickly. For the purposes of backward error analysis, we concentrate on an easy
geometric criterion that we have already discussed in previous chapters: Generalized

Convexity. This gives rise to a geometric question:
Given a finite set of points in the plane. How far is it from being conver?

There are two metrics involved in this question:

e The metric that defines the convexity of the point set. Since it also describes
the distances between the points, we refer to this metric as the distance metric

or the distances for short.

e The metric that measures the amounts by which each point in I must be

moved to yield . We refer to this metric as the error metric.

Error analysis has also been examined in a purely geometric setting. But
while the study of errors in arithmetic calculations has been extensively studied
in the field of numerical analysis, the propagation of errors in geometric algo-
rithms has only very recently become the subject of attention — see Hoffmann [43],
Milenkovic [58], [59], [60], Li and Milenkovic [55], Salesin [87]. Since inaccuracy of
geometric algorithms may cause inconsistencies in the combinatorial results, which
may in turn cause severe problems in later stages of an algorithm, the question of
robustness of geometric algorithms can become very important (Hoffman, Hopcroft

and Karasick [44]).
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Some of the interest from the geometric side has focussed on the question of
(Euclidean) convexity. Milenkovic [58], [59], [60], and Li and Milenkovic [55] have
studied the notion of strong convezity. They call a polygon ¢-strongly convez, if any
perturbation of all vertices by at most ¢ leaves it convex. The obverse of strong
convexity is weak convezity: A polygon is e-weakly convez, if it can be transformed
into a convex polygon by moving each point by at most . In this sense, we are

interested in weak convexity.

In his recent Ph.D. thesis [87], Salesin examines questions of strong and weak
convexity. (He uses the terms e-convez for e-weakly convex and —e-convex for e-
strongly convex.) Since he is interested in robust implementations of geometrical

algorithms, his results are mostly of the “uncertainty interval” type:

Given a logical predicate with a parameter ¢ like “the polygon P is e-convex”,
an uncertainty interval [p.lo, p.hi] reflects the situation where it is known that P is
not e-convex for ¢ < p.lo and P is e-convex for € > p.hi, but not known what the

answer is for p.lo < ¢ < p.ha.

We have already discussed how we can successfully generalize the notion of
convexity for other distance metrics than the Euclidean metric. We discuss e-

convexity for several combinations of distance metrics and error metrics.

Finally, we stress one important difference from Salesin’s results: While he
examines ¢-convexity of polygons, we consider point sets. This reflects our interest
in connecting the given vertices by a convex polygon without prescribing the optimal
solution in advance. Not knowing the order of the points in the final convex solution
may make matters considerably harder. (See Section 9.2.2 on L; distances and L,

error bounds for an example.)
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9.2 [, Distances

There are some Travelling Salesman Problems for which the distance between two

points (z1,y2) and (z2,y2) is given by the L; metric as

(z1,92) — (z2,¥2)|l1 = |21 — 22| + |y1 — 2|

Typical examples arise from VLSI routing, where the wire connections between
adjacent pins have to consist of horizontal and vertical segments. Since these rec-
tilinear paths resemble the route between two points in New York, the L; metric is

also called the Manhattan metric.

In other applications, the distance is described by the L., metric

(21, 92) — (22, ¥2)|l0 = max{|z1 — 22, [y1 — Yal}-

This situation occurs for the motion of a plotter, where vertical and horizontal
motion are performed by independent motors, so the time required to connect two

points is determined by the direction in which the greater motion occurs.

As described in the previous chapter, any norm-induced metric is characterized
by its unit ball. L; and L., metric are special cases of so-called generalized polygonal
metrics: the unit ballis a convex 2k-gon that is symmetric with respect to the origin.
In the following, we write Lp if we refer to any generalized polygonal norm. Both
L, the L., metric have a square as the unit ball — with axes-parallel edges for L,
rotated by I for L;. This property makes the two metrics very similar for many

purposes.

We mentioned in the previous chapter that for any norm-induced metric d, d-

convexity can be expressed as restricted orientation or O-convezity: For a set O of
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orientations, a set S C R? is convex, if any intersection with a line parallel to one
of the orientations in O is given by the directions of the extreme points on the unit
ball. The set of directions is given by the directions of the extreme points of the
unit ball. This means that for any polygonal norm Lp that is defined by a unit ball

with 2k vertices, Lp-convexity is the same as () for a set of k orientations.

Rawlins and Wood [77], [78], [79], [80], Schuierer [90] have given a detailed
description of the properties of O-convex sets in general and O-convex polygons in
particular. Since it would take some fairly technical elaborations that would not
provide any further insight for our purposes, we concentrate mostly on L;-distances
and hence L;-convexity. In each case we briefly mention how to generalize the

results to arbitrary Lp.

Proposition 9.2.1 A simple polygon Q is Ly-convez if and only if we can partition
its edge set into at most 4 subsets, such that each subset forms a connected path

that s monotonic with respect to z- and y-direction.

Any path is an L;-shortest path between its two end points, if and only if it
is monotonic in the coordinate directions. An azes-parallel L;-shortest (i.e. mono-

tonic) path between two points is usually referred to as a staircase.

For other Lp, we split the edge set of Q into 2k convex paths, each of which is
monotonic with respect to two appropriate (adjacent) directions in . Staircases
can be defined analogously. For details, see Schuierer [90]. Along these lines, all

the following constructions can be carried out for Lp instead of L,.

Monotonicity with respect to z- and y-directions is closely related to the follow-

ing partial orders. We think of the positive and negative y-direction as “north” and
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Figure 9.1: An L;-convex polygon

“south”, while the positive and negative z-direction are “east” and “west”. These
directions are indicated by the letters n, s, e, w in the following notation.
Definition 9.2.2 For any two points p; = (z1,y1) and p; = (z3,y2), we define
ne i s
P71 = p2 if and only if £, < z, and y; < y,.

71 % p2 if and only if 2, <z, and y; 2> v,

D1 = p2 if and only if 21 > =, and y1 < y»

p1 < py if and only if 2, >z and g1 > ya.
Simalarly, we write

3 =z p2 if and only if z; < x5 and y; < Y2

2 = p2 if and only if 2, < z2 and y1 > Y2
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21 = p2 if and only if &1 > z5 and y; < y,

P = p2 if and only if ¢4 > x5 and y; > y,.
Note that p; = P2 1s not the same as p; nje p2 and p; # p,.

If we are only given a point set without the additional information provided by
a polygon, we would like to find ways to determine the existence of a convex tour.
For standard (Euclidean) convexity, any finite point set P has a maximal set that
can be connected by a convex tour that encloses all points in P. (This is the set
of points on the boundary of the convex hull.) We call this set the surface of P.
Moreover, the surface has a unique convex tour that follows the boundary of the

convex hull.

For L;-convexity, matters are slightly more complicated, as can be seen in Fig-

ure 9.2. We can, however, still define the notion of “surface” for L; convexity:

Definition 9.2.3 Let P be a finite set of points. Then we have the following four

sets:
P, = {p€ P| thereis noqEP:p?«(&q},
P. := {peP| thereisnoge P:p =< q},
Py = {p€ P| thereis noqEP:prﬁq},
Py = {peP| thereisnoge P:p = q}.

The surface of P is sur(P) = Py U Pse U Poy U Ppy. The interior of P is int(P) =
P \ sur(P).

The following shows that the surface provides valuable information about con-

vexity.



CHAPTER 9. ERROR ANALYSIS FOR THE TSP 168

Figure 9.2: An L,-convex point set does not necessarily have a unique shortest tour

Lemma 9.2.4 A point set P allows an Ly-convex tour if and only if P = sur(P).

In this case we say that P is convexz.

Proof: If P allows an L;-convex tour, the claim is a direct consequence of Proposi-
tion 9.2.1. Conversely, suppose P = sur( P). It follows from its definition that P,. is
totally ordered with respect to § Similarly, Ps., Psw, Paw, are ordered with respect
to f_'%', '{%’, ?jc If there are ¢ € P, N Py or ¢ € Py N P,y (as in Figure 9.2), eliminate
them arbitrarily from one of the two intersecting sets. The points in Py, Py, Psw,
P, can be connected by staircases in southeastern, southwestern, northwestern,

northeastern direction. The union of these staircases forms a simple polygon that

is Lj-convex by construction. See Figure 9.3.

0
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Figure 9.3: An L;-convex point set is equal to its surface

If a set P is not convex, we consider its surface and interior. Our objective will
be to move each point p € P by as little as possible (with respect to some specified
error metric) to some new location p’. The p’ form a set P’ of destination points. We
will try to move interior and surface points in a way that all interior points become
part of the surface. The following two sections will show that coordination of the
movement of all the points can be relatively easy or quite complicated, depending

on the error metric that is used.

9.2.1 L, Error Bounds

A typical situation for L, error bounds arises when we describe the positions of
the points by Cartesian coordinates with a limited number of digits. The result are

error bounds in both coordinates that are independent of each other.
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Figure 9.4: A point set with L,-surface and L., error bounds

The situation for a point set with L., error bounds is shown in Figure 9.4. We
can connect the surface points by four staircases in a way that the region inside the

resulting polygon becomes as small as possible.

As mentioned before, we try to move interior and surface points such that all
interior points become part of the surface. We can think of this process as moving
the surface points until a staircase polygon through them intersects all error squares
around the interior points. (See Figure 9.6.) Since this is fairly straightforward, we
do not elaborate all of the technical details and instead sketch the way the necessary

L, distances can be calculated.

If p is any point of the interior, we can try including it into P,., Pi, P.w, or
Fow. Suppose we try to include p = (p1,p2) into Pow = {g; = (zi,%:) | ¢ € I}.
(See Figure 9.5.) Since p € Pay, we have to consider all ¢; for which p < g;, i.e. for
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Figure 9.5: Including an interior point p into P,

which p and g¢; are not comparable by njc Let Jow be the index set of these ¢;. To
make p comparable with all ¢;,7 € J, we either have to move each of p and g; by
at least %(pl — z;) in z-direction towards each other, or each by at least 2w — p2)
in y-direction. We write dn.(p, ¢;) := min((p; — z;), (y; — p2)). Clearly, we need to
move all points by at least  max{d.u(p,q;) | j € J}.

Analogously, we can consider including p into P,., P.., P,«. Then we need at
least ; max{dne(p,¢;) | 7 € Jue}, 3 max{dee(p, ;) | j € Jie}, : max{deu(p,q;) | j €
Jow}, respectively. Let d,u.(p) be the smallest of the resulting 4 numbers; clearly, we
have to move all the points in sur{ P)U{p} by at least this amount in order to include
p into the surface. Overall, we get a lower bound of max{dsu(p) | p € int(P)}.

Considering an L;-convex polygon through the surface points that consists of

4 staircases, it is not hard to see that this lower bound is also sufficient to achieve
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Figure 9.6: The lower bound is sufficient to achieve L;-convexity

L,-convexity of the whole point set. (See Figure 9.6.) For the sake of completeness,

we describe the computational evaluation.

From the way we include an interior point p into the surface, it follows that a
surface point in P, N P,. does not need to be moved at all. (It can neither be
contained in Jp. nor Jyw.) The same holds for surface points in P, N P,,. Any
surface point that is only contained in one of the sets Py, Pye, Pic, Peow is only
moved in southeastern (southwestern, northwestern, northeastern) direction if it
is contained in Paw (Pae, Pec, Pew). Finally, consider a point ¢ = (z4,y,) that is
contained in Py N Paw. If

max{y; | (z:,%:) € sur(P) and z; < z,} < max{y; | (z:,¥:) € sur(P) and z; > z,},

then move g in southeastern direction, otherwise in southwestern direction. Anal-

ogously, we can treat the points q in P, N Pie, Pow N Paey Pow N Pow-
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We summarize:

Theorem 9.2.5 For a given set P = {q1,...,qn}, the minimal € for which there is
an Li-convez set P' = (q;,...,q,) with ||q1 — qj|lc < €} can be calculated in O(n?)

time.

It is straightforward to calculate the sets Pnyw, Pye, Pee, Psw in time O(n?) (or in
O(nlog n) using a plane sweep). For any of the O(n) interior points p, the distance

dsur(p) can be calculated in linear time, resulting in an overall complexity of O(n?).

The simplicity of the described method hinges on the fact that for every point ¢
on the surface, we can very easily determine an extreme point of the ¢-balls around
g that becomes the new location of ¢. (See Figure 9.6 again.) If we are guaranteed

a similar situation by other metrics, we get a comparatively easy method.

In particular, we can get an O(n?) method for any combination of a polygonal
(distance) metric Lp with another polygonal (error) metric Lp+ if Lp. is dual to
Lp in the following sense: The unit ball of Lp. has edges that are orthogonal to
the directions of the extreme points of Lp. See Figure 9.7 and Figure 9.8.

9.2.2 [ Error Bounds

If we replace the L, error metric of the previous section by the L, metric, the
préblem of making a point set Li-convex becomes considerably harder. The main

difficulty can be seen in Figure 9.9:

The choice of the new location p’ of each of the surface points is no longer easy.
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Figure 9.7: A polygonal metric Lp and a dual metric Lp

Sevnre

Figure 9.8: A point set with an Lp-convex polygon for the surface points and Lp.

error bounds
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Figure 9.9: A point set with L, error bounds around the surface points

Instead, we have to “distribute” the allowed movement of a surface point between

z- and y-direction.

We believe that a promising approach for solving the problem is to consider the

following auxiliary problem first:

Problem 9.2.6 Given a set P = {p,...,p,}. What is the minimal ¢, such that
there is a set P' = {p},...,p,} with ||p; — pi|l < € that is totally ordered with

ne
respect to <?

Once we have a method for Problem 9.2.6, we can consider partitioning P into
four subsets that are transformed into the sets Ppe, Pie, Péw, Phw,of P'. We do not
know how to find the right partition. This illustrates the difference to transforming
a given polygon instead of a point set, where the right partition follows from the

order of the vertices of the polygon.
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Figure 9.10: How far do the points in P have to be moved to be comparable?

When we consider ordering a set of points in northeastern direction, the points
in P, and P, play a special role, as they lie extremal among the incomparable
points. It can be shown that we only need to consider the error bounds for the
points in P,y U P, when we are trying to order P. Furthermore, we can prove
that we may assume that the final order of the destination points P’ preserves
the existing order of P with respect to g, so we only need to consider ordering
incomparable pairs in P. Furthermore, we can show that we may assume that the
points in P,, are only moved in eastern and southern direction, while the points in

P.. need only to be moved in northern and western direction.

After the described simplifications, Problem 9.2.6 is equivalent to the geometric
problem of how to “merge” the two ordered chains P, and P,. in the most efficient

manner. It may be possible to solve this problem by dynamic programming.
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9.3 FEuclidean Distances

In this section, we discuss the situation for Euclidean distances, corresponding to
“normal” convexity. Whenever we speak just of “convexity”, we refer to Euclidean

convexity.

For some error metric d and a given ¢, consider the set B; = {p € R? | d(p, p;) <
e} for each point p;. We will see that picking one point from each of the sets B;
in order to get a convex arrangement is equivalent to finding a convex curve that
intersects all B;. The latter is a variation on a problem known from computational
geometry as stabbing. (See Edelsbrunner, Maurer, Preparata, Rosenberg, Welzl
and Wood [25] about the problem of stabbing a family of sets with line segments.)
We can state the question of finding a convex curve that intersects a family of sets
as the problem of finding a convezr stabber. As such it was posed by Tamir [91]
in 1987 for the situation where the B; are arbitrary compact sets. Goodrich and
Snoyeink [36] have given an O(nlogn) algorithm for finding a convex stabber for n

parallel line segments.

We show that the problem is polynomial if the B; are induced by a generalized
polygonal error norm, i.e. thereis a convex polygon B with 2k vertices such that for
any p;, we have B; = p; + B. On the other hand, we discuss some of the difficulties
that arise when the error metric is given by the Euclidean norm and all the B; are

discs of radius ¢.
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9.3.1 General Properties

Consider some error norm || - ||, an € > 0 and a set P = {p;,...,p,}. Let B denote
the set of all points that have || - ||-distance from the origin no greater than ¢. For
each point p;, welet B; = {p € R? | d(p,p:;) < €} = p; + B. Let B denote the family
of all B;. Deciding whether a given ¢ is large enough to get a convex arrangement

is equivalent to the following problem:

Can we pick one point from each B; such that the resulting set P' forms a convex

arrangement?

We can ask this question regardless of whether the set B arises from a norm. For
this section, we do not require B to be anything more than compact and convex.

The sets B; are given as p; + B.

For Euclidean convexity, we can define the surface, sur( P), of P as the set of all
p; that are extreme points of the convex hull of P. (This only includes points that
are proper vertices of the convex hull.) For a point p; € sur(P), we say that the
related B; is a surface set. Again, the interior in#(P) of P is P \ sur(P). We say
that a point p € R? lies inside a closed convex curve ¢ C R?, if it lies in the convex
hull of ¢, i.e. p € conv(c). A point p lies strictly inside c, if it lies inside ¢ and not
on c¢. Analogously, we speak of points lying outside and strictly outside c. For some
subset of the plane D, we denote the boundary of D by 0D. We write C for the set
of all closed convex curves that intersect all sets of B. (We admit degenerate cases,

where “closed convex curve” stands for a line segment or a point.)

We have the following lemma:
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Lemma 9.3.1 Let ¢ be a closed convex curve in the plane intersecting all sets of
B. Then every closed convex curve € € R? lying inside of c intersects all sets of B

iof and only if it intersects all surface sets.

Proof: We only prove the sufficiency. For each p; € sur(P), there is a v; € B
such that y; := (p; + v;) € B;Ne. For each p; € sur(P), there are )\gi) such that
- Z A%, wh A9 1
= p;, where 30 = 1.
p; ESUT(P)
Since € is convex, the point
e AD(y,. N = o A,
Y- Z 3(pJ+vJ) p‘+z i Vi
p;ES p;i€S
lies inside of €. Since B is convex, we have
vii= Y ,\gi)vj € B,
p;ES

soy; € B;.

Because c intersects B;, there is a point 7; € B; outside of ¢, therefore outside

of 2. So the line from y; to 7; intersects ¢ in a point y} € B;.

O

Lemma 9.3.1 is not necessarily true if B is not convex, see Figure 9.11. With
Q1 = (010)) qz = (071)’ g3 = (1,”1), qs 1= (”’1’"1): let B := q1¢z U q1G3 U q1qa
and P := {(030)7(290)1(17'"2)9(1'25)_1)}' Then sur(P) - {(090)3(230):(17“2)}

and ¢ := @;qs U Gaga U Gaqz intersects all sets of B. Furthermore, we can choose
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Figure 9.11: Lemma 9.3.1 is not necessarily true if B is not convex.

e:={(1,-1)}= () B,

pi€SUN(P)

which intersects all surface sets and lies inside of ¢, but does not intersect Bj.

We will show that it is sufficient to consider only polygons of very special proper-
ties instead of arbitrary convex curves. For this purpose, we need some topological

tools.

The distance between two bounded convex sets G, H C R? can be described by
the Hausdorff-distance n(G, H): For any positive { € R, we define the {-widening
G¢ of G by G¢ := {z € R*|d(z,G) < ¢}, where d(z,G) is the Euclidean distance
between  and G. Then (G, H) between G and H is the smallest number > 0
such that G C H,, and H C G,. It is straightforward to prove that the Hausdorff-

distance is a metric. We say that a sequence G;, G5, ... of compact convex regions
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converges towards the region G, if the sequence (G, G1),n(G, Gz),. .. tends to 0.
With this convention, we can consider converging sequences of regions. A detailed

proof of the following lemma, can be found in Fejes-Téth [30], pp.29-31:

Lemma 9.3.2 (Blaschke) Every sequence of conver regions, which all lie within

a bounded subset of the plane, has a convergent subsequence.
With the help of Lemma 9.3.2 we can prove the following lemma:

Lemma 9.3.3 Let C be the set of all convez curves that intersect all sets of B, and

assume that C is nonempty. Then there is a (bounded) curve c* € C with minimal

enclosed area AR (c*).

Proof: We consider mapping each ¢ € C to the size of its enclosed area AR(c).
Using the Hausdorfl-metric on C, we see that this mapping is continuous. Consider

the set

conv(B) := conv ( U B,-) .

B;cB

For every ¢ € C, we can consider a convex curve that does not leave conv(B):
¢c|g := 0(conv(c) N conv(B)).

Then c|g € C and AR(c|g) < AR(c). Therefore, it is sufficient to consider the

enclosed area of curves from the set
Clsg :={c|ls| c€C}.

By Lemma 9.3.2, every sequence (ci ),y of intersecting convex curves has a subse-

quence C; such that conv (ckj) converges towards a closed convex set D.
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Figure 9.12: The sets M; for an arrangement of squares

Now consider the boundary 8D of D: Since all ¢, have (Euclidean) distance
0 from all sets B; € B, D must have distance 0 from all B;. As all the B; are
compact, 8D has to intersect all B;, thus 6D € C.

So C|s is a compact set and the continuous function AR assumes a minimum in

an element c* € C|g.

O

Our next objective is to restrict the choice of p from the B;. In order to use

Lemma 9.3.3, we need the following definitions:

For each p; € S, define I; as the set of all nontrivial linear functions which are

maximized over P by p;.




e
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A candidate setis a set
M;:={qeB;|3lel;:l(q) <I(r)forall r € B;},

i.e. the set of all points in B; which minimize one of the linear functions in I
over B;. For p; ¢ sur(P), we write M; = (. We can think of these sets M;
as the sets of all points on a surface set that lie “towards the interior” of the
arrangement formed by all the sets B;. (See Figure 9.12.) Intuitively, it seems
sufficient to intersect the surface sets at these points. We establish this property in

the following Theorem 9.3.4.

Theorem 9.3.4 Let there be a closed conver curve c intersecting all sets of B.

Then there exists a convexr polygon P* with the following properties:

1. P* wntersects all sets of B.
2. For each vertez v; of P*, there is a surface set B;; such that P* N B;; = {v;}.

3. For any vertez v; of P*, we have v; € M;; if (v;) = P* N B;,.

Proof: Consider a closed convex curve ¢* € C of minimal enclosed area. The
existence of ¢* was proven in Lemma 9.3.3. In case of AR(c*) = 0, i.e. ¢* being a

line segment or a point, assume that ¢* has minimal length among all ¢ € C with

AR(c) = 0.

For each surface set B;, choose a point y; € ¢* N B;, yielding the finite set of
points Y. Oconv(Y) lies inside of ¢*, so by Lemma 9.3.1, it intersects all sets of
B. By minimality of ¢*, we get Gconv(Y) = ¢* for all Y chosen in the described

manner. Therefore, ¢* is a convex polygon P*.
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Figure 9.13: Examining intersecting convex curves can be reduced to examining

polygons

Assume there was a vertex v; of P* with |P* N B;| > 2 for all surface sets B;
with v; € B;. Then we can choose a set Y that does not contain v;, a contradiction.

(See Figure 9.13(a).)

To see that 8. must hold, note that there must be a line g separating the convex
sets B; and P*, such that g N P* = {v;}. (See Figure 9.13(b).) Since all B, # B;
must have one point y; in the same halfplane as P*, we see that for an appropriate

linear function ! induced by g, we get the two conditions

Uv;) 2 Uwe)
and
Z(pi,‘ - vj) 2 l(pk - yk):

so consequently

I(pi;) > Up)-
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Since the minimum of [ over Bj; is attained at v;, we have v; € M;,.

O

9.3.2 Polygonal Error Bounds

As stated before, the situation where the error metric is given by a generalized
polygonal norm corresponds to a B that is a centrally symmetric polygon with 2k
vertices. In generalizing these B, we consider the case that B is a convez polygon
with k vertices. To investigate the existence of a convex curve that intersects all
sets B;, we use Theorem 9.3.4, which reduces the problem to examining certain sets
of points that constitute the vertices of the convex polygon P* of Theorem 9.3.4
that intersects all sets B;. When we talk of “picking” a vertex v from a set B;, we
imply that B; is a set that satisfies B; N P* = {v}.

As we have seen in the previous section, we can restrict ourselves to picking
vertices of P* from the candidate sets M;. Our next steps are to show that we
can apply further constraints, eventually leaving us with no more than O(n%)
candidates for P*. Checking whether the boundary of a given convex polygon with
O(n) vertices intersects all n sets of B can be done in time O(n?), so we get an

overall complexity of O(n®+?%).

First we make the following observation:

Lemma 9.3.5 There are at most 2k nontrivial M;, i.e. sets that satisfy |M;| > 1.

We can restrict those to at most k nontrivial M;.
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Ms

Figure 9.14: There are at most k nontrivial M;

Proof: Each M; consists of a connected set of edges of B;. An edge e; of B
can can correspond to an edge in at most two of the M;. Moreover, we see that e;
corresponds to edges in two different M; (let it be in B; and B, by b; := z; + ¢;

and by := z; + ¢;) only if b; and b, are collinear.

If b, Nby, = 0, let =1 < z,, i.e. z; be “left” of z,. Using Theorem 9.3.4, we
see that any vertex of P* picked from b; has to be the right endpoint z; of b, any

vertex of P* contained in b, must be the left endpoint z, of b,. So we can delete

b1\{z1} from M; (thereby getting M;) and b;\{z;} from My, yielding M.

If b N by # 0, then similarly we can set M; := b, Nb, and M, := 0. By the same

reasoning we can remove all other edges that might be contained in M; or M,.

0
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Figure 9.15: Picking vertices of P*

We observe that even a nontrivial M; does not necessarily imply that the set
Bj; contains a vertex of P* — see Figure 9.15. It is, however, not hard to see that

for the vertices of P* that correspond to the same vertex of B on their respective

B;, the following holds:

For all M; that contain the same vertex v of B as v +p; € M;, the respective
p; form one consecutive sequence (say pi,...,p;) as we go around the convex hull
of P. Furthermore, |[M,| = ... = |M;_1| = 1 and if v + p; and v + p;;, are vertices

of P*, s0is v + piyq.

We can use this to enumerate all possible choices of vertices from the M; with
|M;| = 1: From the sequence py, ..., p; for which M,... , M ; contain v + p;, choose
a smallest index a and a largest index z, such that precisely v + pg,...,v + p, are

picked as vertices of P*. (Possibly a = z, i.e. only one of the v + p; is picked, or
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a > z,1i.e. none of the v + p; is picked.) Since there are only k vertices v of B, we

get O(n?*) different combinations.

Now consider the situation for any of these O(n?*) choices, each consisting of
0 < s < kn vertices of known location. In the following, we speak of vertices
with known location as static vertices of P*. The other m < k vertices have to
be chosen one each from the m nontrivial M; and are called mobile vertices. For
each M;, a mobile vertex can be chosen from one of k; edges. We get [[Z, k;
different combinations of edges to choose, where "7, k; = k, resulting in 0(35)
combinations. In the following, consider one of these combinations at a time, so
choose each mobile vertex v; from an edge e;. In determining the location of the
mobile vertices, we make use of the fact that we can change the location of mobile

vertices within their respective e; until we are restricted by additional points.

Theorem 9.3.6 Assume there is a convez polygon that intersects all sets B;. Then
there must be a polygon P* that intersects all sets B; and has the following proper-

ties:
e P* has precisely one mobile vertexr v; in m of the edges e;. The other vertices
Umt1;- - s Umss are static.

o There are m anchor points ay,...,a, contained in specified edges of P*, such

that each a; is a vertez of some B;.

o The static vertices Umy1,-..,Um+s and the anchor points a4, ..., a,, determine

Pr.
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Figure 9.16: The situation if there are no static vertices.

Proof: From the previous discussion it follows that we can assume the first
property. So consider such a polygon that has mobile vertices vy, ..., v,,. We speak

of the points a4,...,a,, as anchor points.

We proceed by induction over the number m of mobile vertices. For each m, we
have an induction over the number s of static vertices. We therefore consider two

cases:
(CASE A) P* has no static vertex:

If P* has no static vertices and only one mobile vertex, the claim is trivial.

Assume the claim was true for all situations with less than m mobile points.

We can change P* by moving v; on e;. See Figure 9.16. By Theorem 9.3.4,

neither (v,,,v;) nor (v1,v;) share any other point with B; than v,. This means we
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can move v; along e; such that the interior angle of P* at v,, is increased and the
interior angle of P* at v, is decreased. (The situation where v, is a vertex of B is
part of case 1. below.) Moving v; does not change the properties of P* until one

of the following “events” happens:

1. v; hits a vertex a; of e;.
2. v,, ceases to be an extreme point of P*.

3. (Um,v1) or (v1,v,) hits a vertex a; of a B;.

In Case 1., we can choose the anchor point a; = v;. This determines the position of
v; and we can treat v; like a static vertex, changing the number of mobile vertices

to m — 1, proving the claim.

In Case 2., we can eliminate M, from the list of nontrivial candidate sets. This

reduces the number of mobile points to m — 1, again establishing the claim.

For Case 3., assume that (v1,v;) hits a;. Add a; to the list of anchor points.
Then continue with moving v, along e; and v, along e,, such that (vy,v,) runs
through a;. As before, this can be done until we get another event. If v; or v, hit a
vertex, we are done again; similarly, if a vertex ceases to be an extreme point of P*.
If the edge (vi,v,) hits another vertex a,, the anchor points a; and a; determine

v; and v,, allowing us to treat them as static points.

This leaves the situation where one of the edges (v,,,v1) and (v2,v3) hits a vertex
aq; without loss of generality assume it is (vz,v3). Then we continue moving vy, v,

and v, such that (vy,v2) runs through a; and (v;,vs) runs through a,.
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Continuing in this manner, we either get an edge (vi,viy1) that contains two
anchor points, in which case the location of v; and v, is determined, or an anchor
point a; for each of the edges (v;,vit1). In the latter case, we only need to discuss
the situation where we cannot continue to move the v;. Then the polygon P* is
determined by the information about the mobile vertices and the anchor points:
Every v; lies on an edge e;, so it can be described by a linear variable z;. The
condition that (v;,v;41) runs through a; can be formulated as a linear equation
involving z; and z;4;. The resulting system of m linear equations with m variables
has a unique solution, since we cannot continue moving the v;, i.e. cannot change

any z;.
(CAsE 2) P* has s > 0 static vertices:

By the induction hypothesis, we may assume that the claim is true if we have a
P* with less than s static vertices. Consider a chain v,,,,v1,...,v;,v141 of consecutive
vertices, such that v,, and v;;, are static vertices and vy,...,v,, are mobile vertices.
(See Figure 9.17.) As before, consider moving v; along e; such that the interior
angle of P* at v,, increases. We can continue until one of the following events

happens:

1. v; hits a vertex a; of e;.
2. v,, ceases to be an extreme point of P*.
3. (vm,v1) hits a vertex ay of a B;.

4. (vy,v2) hits a vertex a; of a B;.

As before, Case 1. and Case 3. lead to a reduction of the number of mobile vertices,
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Figure 9.17: The situation if there are static vertices.

establishing the claim. In Case 2., we can remove v,, from the list of static vertices.
Since this reduces the number of static vertices to s — 1, the claim follows from the
induction hypothesis. This leaves Case 4., which is treated similarly to Case 3. in
our above discussion of s = 0: We add a; to the list of anchor points and move v,
along e; and v, a.lohg ez such that (vy,v;) runs through a;. Continuing this process,

we eventually get one of the Cases 1.-3., or find an edge (v;,v;4;) with two anchor

points or an anchor point and a static vertex.

This concludes the proof.

0

With the help of Theorem 9.3.6, we can solve the problem of convex stabbing

for a family of identical convex k-gons in polynomial time:
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Corollary 9.3.7 Consider a family of n sets B,,...,B,, such that B; = p; + B
for some point p; and a conver k-gon B. Then we can decide in O(kgn%“) time

whether there exists a convexr curve that intersects all sets B;.
A special case occurs when B arises as the unit ball for some polygonal norm:

Corollary 9.3.8 Let Lp be a polygonal error norm. Then we can decide in poly-
nomial time whether each point in a set {p1,...,p,} can be moved by at most ¢ with
respect to Lp, such that the resulting set {p,...,pl.} forms a convezr arrangement

in the Buclidean sense.

9.3.3 Euclidean Error Bounds

The previous section showed that we can achieve polynomiality when the error
bounds are given by a polygonal norm. We made use of some linear properties of the
resulting e-balls around the points py,...,p,, so we cannot exploit this approach to
deal with situations where the error bounds are given by the Euclidean norm. Since
we achieved polynomiality for k-gons with a fixed k, we cannot use the approach of
approximating the disks by a sequence of k-gons with increasing k. For Euclidean

error bounds, we have to consider the following equivalent problem:

Problem 9.3.9 Given a set of unit disks Dy,...,D,. Is there a conver curve that

intersects all the disks?

A detailed analysis of some of the resulting geometric aspects can be found in

Salesin [87]. If we want to consider whether a polygon (p1,...,pn,p1) is weakly
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g-convex, we have to consider disks of radius ¢ around the vertices. Salesin gives an
O(n®) method for determining upper and lower bounds for the smallest ¢ that makes
a given polygon weakly e-convex: First approximate the smallest ¢;, for which
the polygon is weakly e;-L;-convex. Then approximate the smallest necessary e,
to transform the resulting L;-convex polygon in one that is L,-convex. Putting

together €; and ¢, yields a lower and an upper bound for the true ¢.

As already mentioned before, we are mainly interested in point sets instead
of polygons. In the terminology of convex stabbing this means that we have no
information about the order in which we have to encounter the disks. This seems
to be a difficult aspect; but even knowledge of the order does not seem to solve the

problem.

One of the reasons for this difficulty lies in the algebra that is involved: If
we have to examine tangents of disks, we immediately have to consider algebraic
expressions that involve square roots. It is not even clear whether the results can
be expressed in polynomial space. If we need to consider solutions that contain

irrational numbers, a considerable number of approaches cannot be successful.

This is similar to the problem arising from the Euclidean TSP, when we have
to decide whether a given tour is smaller than some bound, i.e. decide whether a
sum of square roots is smaller than a given rational number. (See Garey, Graham

and Johnson [33].)

The basic question that arises for the convex stabbing of disks is whether we
necessarily get solutions with irrational coordinates, assuming we start with rational
input data. Superficially, it would seem so: All we have to do is construct an

arrangement of disks that has a unique solution for the resulting intersection points.
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Figure 9.18: An arrangement of disks that forces a unique choice of intersection

points

Choosing the input parameters in an appropriate manner should force irrational
solutions. See Figure 9.18 for an example. (Considering arrangements without
a unique solution may not be helpful, since it may be possible to perturb the

intersection points and make them rational.)

The following Theorem 9.3.10, however, shows that we have to do a lot better

for constructing an arrangement that has only intersection points with irrational

coordinates:

Theorem 9.3.10 Consider three r-balls for any norm ||-|| and any realr. Suppose
there is a straight line that has ezactly one point in common with each of the three

| - l|-balls and separates one from the two others. If the || - ||-balls have rational

centers, the touching points must also be rational.
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=" (X,y)
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Figure 9.19: All touching points must be rational

Proof: See Figure 9.19. Suppose the centers of the balls are given as p; = (0,0),
p2 = (a,b), ps = (¢, d), with p; # p, and py, ps, ps not collinear,i.e. ad # bc. Let the
point on the first ball be denoted by ¢; = (z,y). Every || - ||-ball is a closed convex
set, so it has a continuous curve as its boundary. Therefore the other touching
points must have coordinates ¢, = (a + z,b+y) and t3 = (c — z,d — y) and (a,b)
must be orthogonal to (z,y). This implies bz = —ay. Since ¢, t3, t3 are collinear,

they form a triangle of area 0, i.e.

0 = det((t; — t1),(ts — t1)) = det((a,b),(c — 2z,d — 2y) = (ad — 2ay — bc + 2bz).

Since not both a and b are 0, assume a #. Then we get 4ay = ad—be,i.e. y = 3%’—“;99.

Then b cannot be 0 and we get = = "C'b“d, showing that all three points have rational

coordinates.

O
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Figure 9.20: Another arrangement with a unique solution

There are more complicated arrangements with a unique solution that we can
try. (See Figure 9.20 for an example.) They can always be described by a sys-
tem of linear and quadratic Diophantine equations. For all arrangements that we
have considered so far, extremely tedious algebraic calculations in the appropriate
quadratic field extensions over the rationals show that s has to be rational if the

centers of the disks are rational. This motivates the following conjecture:

Conjecture 9.3.11 Assume that there is a convezr curve that intersect all of a
gqwen sets of unit disks with rational centers. Then there is a conver curve that

wintersects every disk in a point with rational coordinates.
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We may consider other norms than the Euclidean L, norm for this rationality

question. One choice may be the so-called L, norms that are given as

Iz, y)|| := (=P + 12'/1?)% )

The existence of rational points (other than (+1,0), (0,+1)) on the boundary of
the L, unit balls for integer p > 3 has already attracted considerable attention: It

is equivalent to Fermat’s conjecture that the equation
zP 4 yP = 2P

cannot be solved with positive integers z, y and 2 whenever p > 3.

The margin is not wide enough to warn the reader sufficiently of all the conse-

quences of dealing with this problem.




Appendix A

Rectilinear Planar Layouts

In Chapter 3, we need a particular way of embedding a planar graph into the
Euclidean plane. In a rectilinear planar layout, every vertex is represented by a
horizontal line segment, every edge is represented by a vertical line segment. Two
vertices are connected by an edge if and only if the corresponding horizontal line
segments have nonempty intersection with the vertical line segment representing
the edge. (See Figure A.3 for a planar rectilinear layout for the graph shown in
Figure 3.2.)

Rosenstiehl and Tarjan have described how every planar graph can be repre-
sented by such a layout. Their method takes only linear time and produces integer
coordinates that are bounded by the number of vertices and faces. For our purposes,
we need a modified version of their algorithm that does not produce any collinear
line segments. We describe the basic steps; for more details, see Rosenstiehl and

Tarjan [85].

199
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(34)

Figure A.1: A planar digraph D*

A bipolar order O of an undirected graph G is a labelling of its vertices, such

that every vertex except the one with the minimal label is adjacent to lower-labelled

vertices and every vertex except the one with the maximal label is connected to
higher-labelled vertices. This implies that the digraph induced by directing the
edges of G' from lower to higher vertices (a “bipolar orientation”) has a unique

source and a unique sink.

For the sake of simplicity, assume that the linear orders defined in the following

are one-to-one mappings onto appropriate sets of the form {1,...,k}.

1. Choose any mandatory edge e* = (v,,v,). Pick any bipolar order Oy of the
vertices of G such that v, is the source (i.e. Oy(v,) = 1) and v, is the sink
(i.e. Oy(v,) = 3.) O induces an acyclic digraph D*, such that for every

face f the edges having f to their left form one connected chain — see [85].
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Figure A.2: The dual of D‘ with edge directions induced by the linear order Op

(Assuming the contrary implies the existence of more than one source and

sink.)

2. Oy induces a linear order Of of the faces of D* as follows: For two faces h
and f; that are separated by an edge e # €*, Op(fi1) < Op(f2) if and only
if f; lies to the left of e. If f; and f, are separated by e*, Or(f1) < Or(f2)
if and only if f; lies to the right of e*. (In the latter case, Op(f;) = 1 and
Or(f2) = 3 + 2.) Since the order of the vertices is bipolar, it is not hard to

see that this defines a linear order.

3. This further induces a linear order O of the edges of D*:

If two edges e; and e, have two different faces f; and f, to their left, let
Okg(e1) < Og(e;) if and only if Op(f1) < Or(f;). If e; and e, have the same

face f; to their left, let Og(e;) < Og(e;) if and only if e; comes before e, in

the connected chain of directed edges that have f; to their left. (Note that

Og(e*) = m.) Again, it is not hard to see that this defines a linear order.
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4. Represent any edge e = (v1,v;) by the vertical line segment with end points
(Og(e), Ov(v1)) and (Og(e), Oy(v2)).

5. Represent any vertex v by the horizontal line segment with end points
(min(v), Oy(v)) and (max(v?,(’)v(v)) ,

where min(v) := min{Oy(e) | e adjacent to v} and max(v) := max{Oy(e) |

e adjacent to v}.

A proof of correctness can be found as Theorem 1 in [85]. (Lay out the faces of G
one at a time in the order given by Or. Consider the moving frontier corresponding
to a sequence of horizontal and vertical line segments forming the rightmost extent

of the partial layout. Apply induction on the number of faces.)

Giving all edge segments the direction induced by D* results in a directed rec-

tilinear planar layout for D*.
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Figure A.3: A planar rectilinear layout for D*
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