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Abstract
Tracking animals is mandatory for a better understanding

of their social interactions. Social behavior of bats is of par-
ticular interest, since it can be used for improved epidemic
avoidance and forecasts. Animal-borne sensor nodes are en-
abling the monitoring and analyzing the social contacts. At-
tached to bats, these nodes can only be equipped with small
batteries, dictating tight requirements regarding the energy
demand of the soft- and hardware infrastructure.

In this paper, we present our software architecture of a
wireless sensor network that allows a fully-automated track-
ing of the social behavior of free ranging animals. This soft-
ware was extensively tested during a two month lasting field
test in the tropical rain forest of Panama, thereby monitoring
38 free-ranging bats. We documented more than 300,000
biologically relevant events, generated by animal-borne sen-
sor nodes running up to 15 days. Furthermore, we support
runtime reconfiguration, allowing to adapt the system during
campaigns without disturbing the animals. Showcasing that
our system and especially the software works under realis-
tic conditions, we give an in-depth insight of our experience
during the field test.
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1 Introduction and Motivation
The observation of the (social) behavior of animals in

their natural environment is a great challenge for biolo-
gists. Often they rely on technical solutions to study wildlife
in detail since direct observation may not be feasible for
cryptic or highly mobile species. Wireless Sensor Net-
work (WSN) consisting of miniaturized animal-borne sensor
nodes (called Mobile Node (MN)) give several new oppor-
tunities for wildlife tracking as different prior works shows
[19, 21]. A high degree of automation allows for creating
extensive data sets with moderate effort. Wireless sensor
nodes can collect and store accessory physiological or envi-
ronmental data sensed by on-board sensors. Remote data ac-
cess minimizes the impact on the observed animals ensuring
the documentation of unbiased behavior. Finally, commu-
nication among MNs gives the opportunity to study group
dynamics and social behavior of gregarious animals.

However, this increase in functionalities comes at the cost
of higher energy demand compared to the state of the art
radio telemetry. Current high-performance tracking devices
carry large batteries and are in turn rather heavy (the weight
ranges from 30 g [19] up to 200 g [21]). The high weight
limits their applicability to medium or large-sized vertebrates
since the weight of the MNs should never exceed 5-10 % of
the observed animal’s body weight [1]. Sophisticated soft-
ware architecture is key for energy-efficient on-board data
collection and processing, thus allowing for the miniaturiza-
tion of MNs. We propose a system that is suitable for au-
tomated tracking of social interactions of small, highly mo-
bile animals in the wild. Our aim was to study social be-
havior of free ranging bats in a Panamanian tropical rain-
forest to demonstrate the performance of our system under
real-world conditions.

In Panama, we tracked 38 individual bats from 3 species
(fringe lipped bats (Trachops cirrhosus), common vampire
bats (Desmodus rotundus) and pale spear-nosed bats (Phyl-
lostomus discolor)). We chose these medium-sized bat
species (25-45 g) because they show very distinct forms
of dietary specializations, foraging strategies, and social
organizations. These contrasting behavioral traits gave
us the opportunity to test the functionality of our system
in diverse conditions.



In this paper, we present our developed software infras-
tructure for MNs, which is tailored to the needs of the bi-
ologists. These nodes are composed of off-the-shelf com-
ponents and are capable of documenting social interactions
among free living bats fully automated and at high resolu-
tion. The system is suitable to observe free ranging bats that
are as light as 20 g over time periods of 10-15 days. As the
software interacts closely with the hardware, we also give
insights of the used hardware and its parameters like clock
drift and energy demand. These parameters are important
for our software, as one of our goals is to save energy to
achieve a long runtime for each node. With our collected
data we discuss some of the most important parameters like
the occurrence of different meeting durations and memory
utilization which can be used as a baseline for further appli-
cations. Furthermore, packet losses while exchanging moni-
toring data are decreasing the coverage of our collected data
during the runtime and is, therefore, an important value. We
discuss our observed packet losses during the field tests as
both good case and bad case scenarios.

In Section 2 we discuss the requirements from the biolo-
gist point of view, which also outlines the state of the art. Af-
terwards we give an overall view of how the system works in
Section 3. As the software interacts very close with the hard-
ware we introduce the used hardware in Section 4. Based on
the previous sections, we present the software architecture
in Section 5. We evaluated our system intensively during a
2-month lasting field test in the tropical rain forest in Panama
which are discussed in Section 6. The related work is dis-
cussed in Section 7 and Section 8 concludes our paper.

2 Biological Requirements
Our goal to track animals and especially bats is because

bats form the second largest group of mammals with more
than 1000 species while the majority is living in groups.
Group size may vary depending on the species from few in-
dividuals to several millions and social systems may vary
strongly in their complexity [12]. Furthermore, bats play
central roles in ecosystems by providing crucial services
such as pollination, seed dispersal, and pest control [7], but at
the same time many species are endangered [9]. Even though
detailed knowledge on foraging strategies is scarce, there is
increasing evidence that social interactions contribute to for-
aging success [16, 3]. More recently, bats also received neg-
ative publicity for being reservoirs of many emerging infec-
tious diseases and being involved in spillovers to humans and
livestock [2, 6]. Detailed knowledge about (social) behavior
is crucial to understand the interdependencies and dynam-
ics within bat populations and with their environment. This
knowledge in turn is key to develop successful conservation
strategies in order to preserve the valuable services provided
to humans and to understand dynamics of infectious diseases
to prevent future outbreaks [20].

State of the art in bat tracking is still radio telemetry be-
cause the weight of animal-borne sensor nodes is the most
critical factor for the study of bats. These MNs are not sup-
posed to weigh more than 5-10 % of the body weight of the
study animal in order not to restrain the bats natural behavior
[1]. Thus, a weight of 2 g or less is desired for the observa-

tion of medium to large-bodied bats.
A common way of observing gregarious animals is the

use of Global Positioning System (GPS)-nodes and minia-
turized loggers are available at a weight of 1 g. However,
loggers need to be retrieved for data access and an option for
remote download multiplies the weight [11]. A miniaturized
1.3 g version of the ‘EncounterNet’, an automated solution
for encounter logging [17], would be light enough for the
application in many bat species, but the tag miniaturization
limits the runtime to less than 24h [13]. It is essential to
observe a significant share of the individuals of a population
over longer time periods at minimal levels of disturbance in
order to draw population (or even species) wide conclusions
from behavioral data.

Therefore, systems for automatic data collection of bats
must fulfill the particularly challenging task of tracking in-
teractions among group living bats.

• Smart energy management that allows data collection
over a period of 1-2 weeks at high sampling rates and at
a MN weight of < 2 g

• Remote data download which limits disturbances of the
animals by the researchers to the tagging event thus al-
lowing for observations on unbiased, natural behavior.

• Full automation of the system and operation of at
least 30 MNs at a time, enabling the observation
of entire social groups at a fraction of the costs
of conventional methods.

• Two-way communication of MNs allowing for direct
encounter logging creating dyadic data sets that form
the basis of state-of-the-art social network analysis. On
board collection and processing of accessory data (max-
imum Received Signal Strength Indicator (RSSI) and
duration of encounters) that may be used to weight
social networks.

Every encounter among two individual bats must include
the Identifier (ID) of the participating bat, the start time and
the duration of the encounter. Along with these basic data a
max. RSSI value should be stored that can be used as a proxy
for the minimum distance among the involved bats after care-
ful calibration of the system [18]. A distance estimate is cru-
cial to evaluate the biological meaning of an encounter (e.g.,
close (body-)contact vs. flying past). Similarly important,
the activity, i.e., flying or roosting, of the encountered bat
gives insights in whether the observed animals were actively
hunting in a group or just sharing a roosting site. In addition
to meeting data, the cumulated active time within a prede-
fined time window gives the opportunity to study individ-
ual differences in behavior or so called “personality traits”.
The opportunity for remote data access at multiple foraging
and roosting sites is crucial for data recovery since bats often
cover a large area, are highly mobile and frequently switch
roosting and foraging sites.

3 Scenario
In our system, we use an active MN which is attached to

a bat and is able to store and forward the collected data to
a Base Station (BS). This way all encounters among tagged
individuals can be detected without deploying a large BS net-



work. Once a meeting is detected, its data can be stored on
the microcontroller and be forwarded to a BS if the BS net-
work comes into receiving range. The BS itself stores the
raw data and may remotely be accessed for download by the
biologist at any time thus keeping disturbances of the ob-
served animal low.

Therefore, an almost unbiased behavior can be expected
if the weight limits are met. However, this approach has the
drawback that the MN becomes more complex compared to
the state of the art of radio telemetry. Thus, our system is also
prone to errors which is important, while errors in a deployed
WSN are complicated to cure. This is even more problem-
atic when monitoring animals while the system has been de-
ployed. Catching a bat repeatedly may cause avoidance of a
particular habitat and in consequence effect an altered behav-
ior. Furthermore, due to the behavior of the animal, some pa-
rameters must be reconfigurable while the node is deployed
since the behavior alters for each individual and cannot be
known a priori.

3.1 Encounter Detection
Figure 1 shows the designated system with all compo-

nents and is explained in the following. However, a more
detailed explanation on our presented scenario can be found
in the work by Dressler et. al. [5]. For simplicity, we assume
that only two MNs are attached to two different bats with the
IDs 1 and 2 in our scenario. To collect all necessary data, the
exchange of their IDs is mandatory to know who met whom
as the number of bats is not limited to two. For this reason,
each individual MN is sending out their ID periodically. If
two bats come into receiving range (approximately 10 me-
ters), which is limited due to a small transmission power
to save energy and the low sensitivity of the Wake-up Re-
ceiver (WuRx), we can assume that both bats are meeting
each other, refer to Figure 1 1 . Once a beacon is received,
the MN begins to update the data of a running meeting or to
create a new meeting data structure.

In our scenario, the bat with the ID 2 flies to its tree roost
and start to rest (Figure 1, 3 ). In this case, the temporal
granularity of the data can be decreased in order to save en-
ergy. Doing this way, we assume that if a bat is resting, the
information does not alter frequently thus a decreased gran-
ularity results in a minimal effect on the data.

3.2 Data Download
If a MN comes into the communication range, the stored

data is transferred to the BS (Figure 1, 2 ). For this rea-
son, each BS sends out a Base Station Beacon (BSB) to in-
dicate that a BS is present. When such a BSB is received
by a MN, all collected data is sent to the BS. In order to
prevent collisions, the MN checks if another ongoing trans-
mission is available (this information is encoded in the BSB
since the BS can communicate in full-duplex). If an ongoing
data transmission is detected, the MN does not send its data
to the BS.

For further analysis it is mandatory to keep track on how
long a bat spent its time in this area. Therefore, a Pseudo Lo-
calization Packet (PLP) is sent, independently to the acquired
data, to the BS. This is important, as other data downloads of
other MNs can prevent a data transmission of this particular

Figure 1. System overview, containing the base stations
(BS 1 - BS 3) and two bats with attached sensor-nodes.
Circle numbers representing points of interest which are
important for the software design.

MN or if no data is available on the MN. Thus, it is assured
that a bat is localized if it comes into a receiving range of
the BS. During daytime, the biologist can remotely connect
to the BSs in order to download the received data. The data
is then processed offline with a decoder, which decodes the
data and stores all received events in a MySQL data base.
From this point on, the biologist is able to analyze the events
acquired by the system.

4 Hardware Architecture
The biologist’s requirements dictate a strict size, weight

limit with a maximized runtime of the nodes. This also im-
pacts the available energy of the circuitry as the battery con-
stitutes a significant amount of the overall size and weight
budget. Therefore, energy efficiency is of great importance
as the battery capacity (55.5 mWh at a weight of 0.46 g) can-
not be extended due to weight limits. For the hardware we
chose components with a high energy efficiency and low
quiescent currents that are as light weight as possible. The
whole MN consists of an energy distribution system, differ-
ent transceivers, microcontroller and an accelerometer which
is depicted in Figure 2 and explained in the following.

In order to keep the nodes energy demand as low as possi-
ble, the energy distribution system is used to supply the most
energy demanding devices with its minimal supply voltage.
As the software follows a strict duty cycle, in that most of
the time the transceiver can be switched off, the energy dis-
tribution system is partly turned off in order to save energy.
The energy distribution system consists of a Direct Current
(DC)-DC-converter TPS62261 from Texas Instruments and
a Low-Dropout Regulator (LDO) ADP160 from Analog De-
vices. The LDO supplies all components with 2.1 V, with the
exception of the main transceiver which runs at 1.8 V pro-
vided by the DC-DC-converter. However, in order to save
energy the DC-DC converter is turned off during idle times.
During this times, we power the main transceiver via the mi-
crocontroller to ensure a permanent power supply. Doing
so, offers power savings determined by the ratio between the
output voltage of the DC-DC-converter and the battery volt-



Figure 2. Graphical overview of the hardware and its
connections between each module (left). Manufactured
and assembled PCB of the Node (right).

age. The efficiency of the converter is more than 90 % at tens
of mA which is the transceiver’s active supply current. This
results in a high efficient power supply for the transceiver
as quiescent currents are minimized and a high efficiency is
achieved during active times.

A low power accelerometer ADXL362 from Analog De-
vices is used to detect whether a bat is hanging upside down
or not. This is important, as this devices delivers data on
the activity state of the bat which is used by the biologists
and it can be used to save energy. If a bat is hanging upside
down, it can be assumed to be resting or sleeping and thus
the systems functions may be executed at a reduced rate.

The communication between the MNs and the BSs is han-
dled by a sub gigahertz front-end from Silicon Labs, the
Si4460. Furthermore, a WuRx is used for the communica-
tion among the MNs. The WuRx allows a pure asynchronous
communication and makes it obsolete to turn on the main
transceiver in order to check if another node is in communi-
cation range. Therefore, the energy demand is decreased as
the main transceiver can stay in idle for a longer period. The
WuRx that is used is an AS3933 from AMS in conjunction
with an envelope detector which makes the device suitable
for the detection of signals in the 915 MHz band. However,
for the communication to the BS, the WuRx is not sufficient
as the sensitivity is too low as a bat can fly with a high ve-
locity. Therefore, if a BSB is recognized late, a reliable
data transmission cannot be ensured. In order to receive a
BSB we exploit the higher sensitivity of the main transceiver
which is turned on to receive data for a small amount of time.
In order to use one single antenna for the WuRx and the
main transceiver, we used the Radio Frequency (RF) switch
SKY13350 from Skyworks Solutions.

All devices are controlled by a Cortex M0+ microcon-
troller KL05 from NXP which supports different interrupt
priorities, small sleep currents and an internal Low-Power
Oscillator (LPO). Interrupt priorities allow an event driven
task execution. Between these events the microcontroller can
be set into an efficient sleep mode that consumes only 2.5 µA.
Additionally the energy efficient internal LPO, makes an ex-
ternal oscillator obsolete. This saves space and weight on the
printed circuit board (PCB). However, using the LPO results
in a high clock drift (±10%), [14]. As the desired runtime

of a node is approximately 15 days, this clock drift results
in a difference of 1.5 days at maximum per MN. Further-
more, the clock drift between two MNs can accumulate to
a drift of ±20% which makes a drift compensation by the
software necessary. Without countermeasures the clock drift
will propagate into the timer modules of the microcontroller,
leading to a drift in the estimated time in all MNs up to
±10% of its runtime.

The whole circuitry is assembled on a flexible substrate.
This provides enough area for all components and allows for
a compact setup of the node by folding the circuitry around
the battery. The assembled PCB weighs only 0.55 g. The
node is encapsulated by a 3D-printed housing adding another
0.58 g. So in total the node’s weight adds up to 1.65 g includ-
ing wiring the battery to the PCB.

5 Software Architecture
The software needs to fulfill several requirements of the

biological and the electrical engineering part. This includes
especially the low energy demand, a minimal set of data
and also a robust data acquisition. To meet these require-
ments which may stay in conflict to each other, the software
needs to implement a good trade-off between them. Our ap-
plication uses the SLOTH operating system [8], which al-
lows an energy efficient task switch. However, as the used
Cortex-M0 provides only four different interrupt priorities,
which are not enough for our application, we used a state-
machine to dispatch more than four tasks. This gives us
additionally the opportunity to port our software to other
operating systems easily.

The general software layout is depicted in Figure 3
and shows the most important modules for our applica-
tion. The main data path (marked with yellow arrows) be-
gins with the WuRx and ends at the Base-Station Handler
which directly interacts with the Main Transceiver. Al-
most every module inside the data path is decoupled by
First In First Outs (FIFOs)-buffers to allow an asynchronous
operation of each module.

Figure 3. Graphical overview of the software and the
data flow between all components.

Our software basically reacts on data packets, received
by the transceiver, and wakeup-sequences received by the
WuRx. An overview of all message types are depicted in



Figure 4. Graphical overview of exchanged data between
mobile nodes and base stations.
Figure 4. We firstly describe how a meeting is generated
and downloaded to a BS. Afterwards, we describe the other
communication packets. In order to generate a meeting, our
software requires a received MN-beacon. Each beacon con-
sists of two parts, a wakeup sequence in order to wake up the
microcontroller and a data packet which is sent with a small
delay after the wake up sequence.

If two nodes come into a receiving range, an interrupt is
generated by the WuRx in order to wake the microcontroller.
As the WuRx is only able to trigger interrupts without re-
ceiving any data, the main transceiver is enabled to receive
the ID and active state of the encountered bat. Afterwards,
the Encounter Detection is invoked, which derives meeting
information from this data.

Firstly, the Encounter Detection looks up if a meeting
with the same identifier exists. If no meeting with the same
identifier is available, a new dataset is created for this partic-
ular meeting. Otherwise, the meeting is updated. In order to
prevent a high number of generated meetings, we accumulate
subsequent beacons.

However, packet losses are common which prevents a
successfully received beacon due to a multitude of influences
like the antenna orientation or fading effects. Therefore, we
implemented a timeout allowing several packets to be lost
until a meeting is closed. As all MNs send their beacons in
a predefined period, we can define a timeout which must be
expired until a meeting is closed.

If the time out is exceeded in which no beacon has been
received, we do a post processing of the data in order to keep
the memory effort low. This in particular includes a com-
pression of the meeting duration as we do not limit how long
a meeting can last. In order to keep the error low, we suc-
cessively adapt the granularity of the meeting durations to fit
into a 16 Bit value. For example, if a meeting lasts longer
than 1h, the resolution can be decreased to a granularity of
15 seconds. This leads to an error of less than eight sec-
onds (0.2 %) of the meeting duration. After the post process-
ing, the data is stored into a FIFO and the data acquisition
is finished.

For downloading the stored data to the BS the data is en-
coded with an erasure coding [4] to increase the number of
received meetings on the BS. For this purpose, the module
Erasure-Coding is used which encodes two original packets
to two redundant packets. Additionally to the erasure coding,
we concatenate multiple packets to a so-called burst in the
Interleaver module. As all packets in a burst is send in one
transmission, only one message header and one transceiver

start is needed. Together, this decreases the energy demand
of the data transmission per packet from 1.8 mJ to 0.94 mJ.

The Base-Station Handler is the last module inside the
data path. Its purpose is to detect whether a BS is avail-
able or not. After receiving a BSB (Figure 4), the Base-
Station Handler decides upon the received RSSI whether a
burst transmission should be performed or not. In order to al-
low a drift compensation, the Base-Station Handler sends a
time update after a predefined interval. A time update packet
(refer to Figure 4) contains the current local time of the MN
which is transmitted directly (without any buffering inside
the software). This way, the assumption: TMN = TBS is met.
The time TMN represents the local timestamp of the MN and
TBS is the timestamp of the BS which is synchronized to the
GPS time. Thus, the drift can be compensated while the data
is decoded. We use a similar technique as presented in the
work by Levin et. al. [13]. Besides, time updates, PLPs
(Figure 4) are generated by the Base-Station Handler in or-
der to indicate the presence of a bat independently to any
running data transmissions. These PLPs are only sent when
a BS is detected in order to keep the energy demand as low
as possible.

Our software provides various configuration parameters
like RSSI thresholds, timeouts and sample rates. These pa-
rameters highly influence the functionality of the system and
must be set carefully. However, ideal parameters highly de-
pend on the environment and the behavior of the bats that
is not known a priori. Furthermore, exchanging parts of the
software requires reprogramming of the microcontroller and
as a consequence physical access to the node. Once a MN
is deployed, catching the bats can potentially change their
behavior and must be avoided at any circumstance. There-
fore, a Configuration Handler is implemented, that allows
to change parameters of the system without physical access
to the nodes (refer to Figure 3, orange arrows).

All configuration updates are send to the MN as part of
the BSB. Therefore, the configuration data is received by the
Base-Station Handler and forwarded to the Configuration
Handler. In order to keep the length of a BSB low, the Con-
figuration Handler uses a set of predefined configurations
which are determined before deployment. However, upon a
reconfiguration, the Configuration Handler checks whether
an altered configuration will harm already collected data or
any running data acquisition. Only when it is save, the con-
figuration is updated. Furthermore, as the Configuration
Handler keeps track of all modules, it is used to collect sta-
tistical data about the system like memory usage and activity
times. This data is sent to the BS in form of status-updates
and is used to check if the system is working correctly. If the
system is misbehaving, this data may indicate which mod-
ule is misbehaving, thus allowing us to correct the issue. For
example, the RSSI thresholds for sending data to a BS are
determined before deployment. However, the channel prop-
erties can alter dramatically, depending on where the BS is
placed since not all channel characteristics can be acquired
beforehand. Therefore, an adaption of the thresholds may
become necessary after deployment of the nodes in order to
keep the number of lost packets low.



6 Evaluation
We evaluated our system in the rain forest in Panama to

check if our system is working correctly under real condi-
tions. This evaluation lasted for more than two months in
which biological relevant data was collected. In our evalua-
tion, we ran six campaigns with a different amount of MNs
and/or species which are depicted in Table 1. All campaigns
delivered data, albeit only a subset of the campaigns (espe-
cially campaign 4 and 6, which covered a wide range of good
and bad case scenarios) are discussed in our evaluation. As
in our campaigns it is not possible to acquire reference data,
our evaluation discusses the data without comparing the val-
ues to a baseline with the exception of Subsection 6.2.1.

The evaluation is structured into three subsections. In
Subsection 6.1 the energy demand of our system is dis-
cussed. Subsection 6.2 discusses the acquired events and
their properties. The following Subsection 6.3 discusses the
error rates of our data transmission to estimate the quality
of the acquired data. The last Subsection 6.4 presents the
sources of errors we discovered during our field test and
gives advices how to prevent such errors (if possible).

6.1 Energy Demand
The energy demand of our system is of particular im-

portance as it dictates the achievable runtime of our nodes.
However, an estimation of the energy demand in a fine
grained manner would require the Analog Digital Converter
(ADC) to sample the current and voltage over the time. The
current of the ADC exceeds our measured idle-current by a
factor of 170 (IADC = 1.7mA Vs. Isleep = 10µA). This makes
an energy estimation while the node is deployed counterpro-
ductive. In order to provide comparable results, we present
the worst case energy demand of our experiments. How-
ever, the estimated values are much higher compared to a
real-world scenario.

The software runs multiple tasks in a predefined order un-
til they repeat (cycle). The cycle time tcyc can be adapted dur-
ing the deployment and ranges from 2 s up to 255 s. Adapting
the tcyc changes only sleep times, as the number of executed
tasks remains unchanged. In each cycle, a MN-beacon is
sent and consumes ET XID = 208µJ. Furthermore, the node
checks whether a BS is in communication range by turn-
ing on the main receiver for 5 ms (ERXBSB = 171µJ). These
tasks are executed in every cycle and can be summarized to
ETasks = ET XID +ERXBSB = 379µJ.

At most once in a cycle, data is uploaded to the BS, which
consumes ET XDL = 115µJ. Furthermore, for each received
MN-beacon, the receiver is turned on in order to receive data
from the encountered bat and adds ERXID = 44µJ to the en-
ergy demand. With a power consumption during sleep times
Psleep = 37µW we can express the energy demand to:
ENode(n,b, tcyc) = ETasks + tcyc ·Psleep +b ·ET XDL +n ·ERXID .
In this equation, the n = [0,1,2, ...,29] represents the num-
ber of simultaneous encounters during a cycle and b = [0,1]
indicates whether a BS is available or not.

This simplified formula, gives a rough estimate on the en-
ergy demand for one cycle. Software overheads for process-
ing beacons or encoding data is negligible as the computa-
tions lasts in sum less than 0.5 ms. This in turn corresponds

to an energy demand of Ecomp < 5µJ at worst. Compared to
the base energy demand of at least ENode(0,0,2) = 453µJ
the error would be less than 1%. During our campaigns
we usually used the settings tcyc,act = 2s during active times
and tcyc,inact = 10s while the bat is considered to be inac-
tive. As the energy demand strongly depends on the be-
havior of the bats, we estimated the greatest possible en-
ergy demand, which can be reached for only short periods.
We assume 29 nodes to be in communication range (the
maximum supported by our system) and permanent pres-
ence of a BS. This translates into a maximum energy con-
sumption per cycle of Einactive = ENode(29,1,10) = 2.14mJ
and Eactive = ENode(29,1,2) = 1.844mJ for the aforemen-
tioned cycle times. The average power consumption dur-
ing a cycle is given by Pinactive = Einactive

tcyc,inact
= 214µW and

Pactive = Eactive
tcyc,act

= 922µW . Furthermore, we assume that a
bat is resting for at least 16 hours a day and is active for 8h at
the night. This results in an average current consumption of
450 µW per day ensuring a runtime of at least 5 days using
the aforementioned battery. As this pessimistic calculation
does not regard any generation rates of data within cycles,
the power consumption is expected to be much lower in a
real-world scenario. Therefore, we observed runtimes of 9
days or more.
6.2 Data Acquisition

In this subsection, we discuss the acquired data from our
MNs. The first part checks the accuracy of our activity de-
tection by comparing the accumulated activity to a baseline.
We furthermore, analyze the occurrence of different meeting
durations, which can be used for further applications. At the
end of this subsection, we analyze the memory utilization of
our MNs which depends on the individual bat.
6.2.1 Activity Detection

As described in Section 3, an activity detection is used
to decrease the granularity of collected data while the bat
is resting. Thus, activity detection is a critical element in
our application, as an unreliable activity detection would de-
crease the entropy of the collected data. Therefore, we evalu-
ated the activity detection via the collected data and a camera
which has been installed in front of a flight cage (campaign
3). In this cage, we put an already tagged common vampire
bat which has been filmed for three hours. Unlike other bat
species we have monitored this species, as these bats are able
to walk and to hang horizontal in a flight cage. Therefore, the
flight-cage can be much smaller which also enables the use
of a camera to check their activity.

The collected activity times for three hours are depicted
in Table 2. We, furthermore, collected the event count, to
get a rough estimation on how often the bat changed its
state from active to inactive and vice versa. In this experi-
ment, we got an accumulated error of 27 seconds (0.19 %),
compared to our baseline (video analysis), which is accept-
able for our application. The wrong activity detection is
mainly induced by the fact, that the acceleration sensor as-
sumes the bat as inactive when it is hanging upside down
(within an angle of ±37◦).

Within the last hour of our experiment, the bat spend ap-
proximately seven seconds in the active state. This was not



Table 1. Overview of all campaigns including important information like number of tagged individuals and anomalies,
which took place in Panama.

Campaign # Individuals Species Anomalies Runtime
1. 2 Trachops cirrhosus Bats left roosts 15 days

2. 1+4 1 Desmodus rotundus Two species Roost left after 9 days4 Trachops cirrhosus
3. 1 Desmodus rotundus Flight cage observation Captured in Campaign 2
4. 15 Desmodus rotundus - 13 days
5. 9 Trachops cirrhosus - 12 days
6. 6+2 Phyllostomus discolor Tagging on two days Aborted after 4 days

detected by our node as it showed an activity time of zero
seconds. A closer inspection of the bat’s behavior showed
repeated changes from horizontal to vertical hanging from
the ceiling. In this particular case, a bad timing can re-
sult in a false activity detection. This is, because the soft-
ware samples multiple acceleration values to switch to the
active/inactive state. If six samples show the same state, a
switch of the software state is performed. In this case, the
bat was active for approximately seven seconds and hung up-
side down for small periods. Thus, it is feasible that at least
one event was sampled as inactive and as a consequence no
switch to the active state was performed and eventually not
recognized by our software. To prevent repeated switches to
active mode when the bats show moderate movements, e.g.,
grooming or shaking, during resting the timeouts are recon-
figurable. Therefore, an adaption to the behavior of the bats
can be performed to increase / decrease the granularity of
these events.

6.2.2 Meeting Durations
For further applications, it becomes important to analyze

the commonness of the durations for each meeting. These
values can be used to decrease the amount of data to be sent
as field lengths for meeting durations can be adapted.

Figure 5 shows in sum two histograms for campaign 6 and
4. Both campaigns show a significant amount of meetings
that last zero seconds. In our implementation, this means
that only one beacon was received from another bat. In such
cases, the average RSSI value was -44.97 dBm, which is
close to the minimal RSSI value of the WuRx. Therefore,
small changes of the antenna orientation may cause a huge
difference of the received signal strength which causes a too
low signal strength at the WuRx. Since individual bats con-
stantly move and jiggle inside the roost, meetings may be
frequently interrupted.

In our datasets we observed that the bats were active for
51.15 % in the 4th campaign and 59.22 % in the 6th cam-
paign. This, in sum, indicates a high rate of generated
meetings due to variations in the antenna alignment among
Table 2. Comparison of the accumulated activity time of
a mobile node to a video captured baseline.

hour duration (video) events duration (tag) dif.
[h] [MM:SS] [MM:SS] [s]

1 2:28 4 2:34 6
2 1:26 3 1:12 14
3 0:07 1 0:00 7

acc 4:01 8 3:46 27

two animals. As the active and inactive state does not dom-
inate the other we also analyzed the distribution depending
on the state. For both cases, the distribution of the meetings
stayed the same, therefore, any further optimization can be
done for active and inactive states.

In the work, presented by Levin et. al. [13], it has been
mentioned that a meeting between two MNs does not neces-
sarily be the same on both MNs. This issue, occurred also
in our field tests. Table 3 shows an excerpt of our acquired
events where both recorded meetings are interrupted. If all
duration values are accumulated from Table 3, we also dis-
covered that both duration values are equivalent and differ
only in small values. In this example, the accumulated meet-
ing duration of node ID 4 is 26,820 seconds whereas the ac-
cumulated duration of node ID 2 is 27,915 seconds which
results in a difference of 4.08 %. This result confirms the ob-
servation, presented by Levin et. al. [13]. Therefore, a post
processing stage of this data is required to ensure a correct
interpretation of the data by joining both recorded meetings.

However, in further applications, it becomes handy to
limit the maximum meeting duration. If a long running meet-
ing lasts multiple hours the importance of this event may in-
crease. However, if a meeting lasts multiple hours, this event
is only observable after the meeting has ended and also the
likelihood increases to lose this event due to a bat leaving the
BS coverage area, damaged nodes, etc. Therefore, meetings
in further applications should be split until a meeting reaches
the maximum meeting duration. However, as our data shows,
a limited meeting duration bears the danger to increase mem-
ory utilization which exceeds the available memory. From
our data, we propose a time limit of 40 minutes as more than
90 % of all meetings fit into this range and does not increase
the memory utilization further. Albeit, this limit, a mecha-
nism must be implemented to merge already split meetings
because the impact of the remaining 10 % is very high.

Table 3. Excerpt of the decoded data, showing inter-
rupted meetings which are not necessarily equal albeit
both nodes collected the data under the same conditions.

Bat Enc. Bat Start [HH:MM:SS] Duration [s]
4 2 11:15:48 17100
4 2 16:10:24 1620
4 2 16:39:49 8100
2 4 11:04:38 945
2 4 11:21:55 1770
2 4 11:52:48 15300
2 4 16:13:17 9900



For example, we observed meetings which lasts more than
56700 seconds. Storing such meetings in chunks of 40 min-
utes would result in a 24 times higher memory effort. Judg-
ing on the data we have collected the introduction of a meet-
ing time limit of 40 minutes would result in a 120 % higher
memory demand in average for our system. This shows the
importance of a merging algorithm which must be consid-
ered in further applications.

4th Campaign

6th Campaign

Figure 5. Histograms of the meeting durations of all
meetings for each campaign

6.2.3 Memory Utilization
As described in the previous sections, we also collected

system statistics, which allows a better understanding of the
internal processing of each node. One of the most impor-
tant values is the maximum memory utilization, as it leads to
data losses if the amount of acquired data exceed the avail-
able memory. Therefore, this behavior should be avoided
since it decreases the coverage of our collected data. In or-
der to keep the communication effort and in turn the energy
demand low, we estimated the maximum memory utilization
within an hour. This data is stored locally and sent to the BSs
together with the collected meeting data.

Figure 6 shows an excerpt of one node of the 6th cam-
paign. The graph shows the maximum memory utilization
(red line). When a bat comes into receiving range of a BS, a
heat map is shown in the background. Otherwise a white
background is used. In order to get an estimation of the
communication effort, the transmitted data is displayed as
a yellow bar. As there might be packet losses causing that
no memory utilization can be displayed for this particular
period, a coverage bar is displayed above each diagram. It
shows the time slot when a memory utilization can be dis-
played (green) or not (red).

As depicted in our graph, the memory utilization in-
creases while the bat is absent from any BS. In this time
the MN accumulates meetings with other bats. When a bat
comes into the transmission range of a BS, the acquired data
is downloaded to the BS and the memory can be freed after-
wards. This leads to a decreased memory utilization. How-
ever, at the beginning of this graph no data or at least only
small amount of data is transmitted. In this case, the esti-

mated RSSI at the receiver is very low, thus, the minimal
threshold for sending data is not exceeded on the MN and
no data is transmitted. The shown RSSI values are esti-
mated at the BS of the received PLP, thus only the received
RSSI of the transceiver is displayed. Therefore, the dis-
played RSSI can be used as a rough estimation of the RSSI
estimated on the MN. Besides this, Figure 6 shows a high
communication effort while the bat is within the commu-
nication range of the BS. Since new meetings can be gen-
erated while a BS is present, the downloaded data can ex-
ceed the stored data. This results in a behavior, where all
generated data is downloaded to the BS immediately if at
least two events were acquired.

Besides staying at the roost nearby a BS, we also fre-
quently observed time periods where bats were absent of
a BS for approximately 20h or longer if individuals switch
between roosts during the observation. During this times
the memory utilization increases dramatically with different
slopes of the curve. These different slopes are caused by a
different amount of meeting data, generated within an hour.
As Figure 6 shows, the maximum memory utilization did not
exceed 519 Bytes, which is compared to the main memory
of 1848 low. However, with increasing periods away from a
BS, the memory usage will further increase and highly de-
pends on the behavior of the bat.

Figure 7 shows three different individuals of the same
campaign (6th campaign). In this graph, only the RSSI,
memory loads and the coverage of the system statistics, as
described at the beginning of this subsection, are displayed.
Similar to the first bat (Figure 6), different periods of the
presence and absence of the BS can be observed. Summariz-
ing Figure 7 and Figure 6 all four bats show a different be-
havior in terms of time spent in the roost. For example, the
node ID 8 left the roost rarely and for a short time. There-
fore, a small memory utilization can be observed which is
lower than 200 Bytes over almost the whole runtime. In con-
trast, node ID 2 is only rarely in transmission range of any
BS thus a high memory utilization can be observed.

As all individuals were the same species under the same
weather conditions, we can assume that each bat behaves dif-
ferently. The behavior of an animal is affected by the gender,
individual personality and age to name some of the possible
parameters which might affect the memory utilization. Thus,
the memory utilization highly depends on the behavior of the
tracked bat.

In the 4th campaign, we also discovered data losses due
to buffer overflows. Figure 8 shows two individuals with a
high memory utilization. The graphs shows an excerpt of
the memory utilization of one node, where the utilization ex-
ceeds the available memory. Especially, ID 27 suffers from
a too low data rate to the BS and the memory utilization
increases even if data is downloaded. In the middle of the
graph, it can be seen that the memory utilization is near the
available memory. Thus, data losses occurred due to the lack
of free memory. This in turn leads to a bad coverage of sta-
tus updates since data cannot be stored for later transmission.
Also ID 6 suffers from this issue. Even though if this bat
was in the receiving range of a BS, the memory utilization
remained high.



Figure 6. Graphical overview of the memory utilization, send data and the average received signal strength estimated
at the base station of one node.

To conclude this section, there is no general advice for
dimensioning the memory size. It depends on the expected
behavior of this particular individual, which is not known
a-priori and may need a reconfiguration of the system to
keep the memory demand of the collected information as
low as possible. During our field test we observed four times
a data loss due to a too small memory which lasts in sum
(all campaigns) approximately 65 hours. The majority of the
time is caused by one node (Figure 8, ID 27) with approxi-
mately 53h. Compared to the (pessimistic) estimated over-
all runtime of all nodes (5,766 hours) a coverage of about
98.90 % has been achieved during our field tests. Therefore,
the memory was enough in a retrospective view on our field
test. However, to prevent such cases a reconfiguration would
be more effective instead of increasing the memory as the
reconfiguration can be used to decrease the receiving range
of the node and in turn a decreased rate of generated meet-
ings. Furthermore, an increased memory also shows a higher
energy demand compared to a smaller one and as a conse-
quence may reduce the runtime of the node. In addition, an
increased data rate for sending data to the BS should be fa-
vored to decrease the memory utilization especially if no BSs
can be placed inside a roost.
6.3 Packet-Error Rate

In our field test, we deployed the BSs in several spots
where a bat might go foraging (1st campaign). We also
placed some BS inside the roost to increase the likelihood
of collecting all data from each node. From our received
packets (in sum 44,870), we derived a minimal number of
sent packets which sums up to 56,088 packets.

This corresponds to a packet loss of 20 % which is mainly
caused by multipath propagation and interference which was
an expected packet loss rate.

During our field test, we also discovered a weather de-
pendent multipath propagation inside the rain forest, which
results in a highly reduced communication range. On one
day, we were able to communicate up to 10 meters between
two MNs. After a rainy morning, on the next day, the com-
munication were only inside an area of three meters reliable
and small changes of one node in the range of two centime-
ters could cause a complete loss of all data. As the change
is within the range of < 10 ·λ, we can assume that multipath
propagation is the main root of error. However, we expected
a weather dependent channel albeit without a big impact.

Besides the multipath propagation, we also discovered
that the antenna orientation of the BS has a high influence on
the packet error rate. As explained in Section 5, the MN es-
timates the RSSI and decides on this value if a packet should
be send. In order to allow a full duplex communication of the
BS, two different antennas are used. One for receiving (RX)
and the other one to transmit (TX) the BSB to the MN. As the
TX-Side of the BS crosstalks into the RX-Side, we arranged
both antennas to be perpendicular to each other. Using this
configuration has the benefit that the crosstalk is highly re-
duced. However, there is always an antenna configuration
where the TX-antenna has the best orientation to the antenna
of the MN. This results in a higher estimated RSSI at the MN
when a bat receives a beacon of the BS. The perpendicular
orientation of the MN antenna to the RX-antenna of the BS
results in a loss of signal strength of around 30 dB on the
receiver side of the BS.

Figure 7. Graphical overview of the memory utilization of three nodes and the average received signal strength estimated
at the base station.



Figure 8. Graphical overview of the memory utilization of two different nodes which is very high, therefore, these nodes
are not able to acquire more data.

Figure 9. Graphical overview of the packet loss of two different nodes and the average received signal strength estimated
at the base station.

As the threshold on the MN to send its data is set to
-60 dBm this can cause the received signal at the BS to be
weaker than -90 dBm which is roughly the sensitivity level
of the receiver on the BS. Furthermore, in our measurements
a RSSI also translates to an average distance of 10 meters be-
tween MN and BS for our chosen threshold. Decreasing this
threshold further would decrease the average distance dra-
matically. For example, decreasing the threshold to a value
of -50 dBm, would result in an average distance between MN
and BS to two meters. As the bats are flying we also want to
cover a bigger area because of the movement. Therefore, the
-60 dBm is in our case the best trade-off between coverage
and packet loss.

Similar to the memory utilization the packet loss is also
an indicator of the coverage of our data during the runtime.
Therefore, we estimated the packet losses over the time for
our campaigns. The packet loss in Figure 9 is displayed by
the red line. We compute the packet loss from the packet
counter difference between two subsequent packets which is

accumulated within 10 minutes. We also determine the av-
erage RSSI of the PLPs within this time frame which is dis-
played as a heat map in the background. If no beacon is re-
ceived, a white background is displayed. Furthermore, a bar
above each diagram shows whether a data transmission took
place within this time frame (red/green) or not (black). If a
data transmission was successfully, e.g. all events are suc-
cessfully decoded a green bar otherwise a red bar is shown.

In our chosen 6th campaign, two individuals were picked
from the datasets for our good-case analysis and is depicted
in Figure 9. In sum 96 packets were lost in a uniform dis-
tribution which resulted in two not recoverable/restorable
events. The overall packet loss rate is 1,74 % which is quite
low in comparison to the average of 20 % indicating a good
coverage of our collected data for those nodes. In general
a relative high RSSI were observed during the data trans-
mission for all nodes with this small packet error rate. In
contrast to this good-case we also observed a relatively high
packet loss in the 4th campaign. Figure 10 shows one MN

Figure 10. Graphical overview of the packet losses of one node, which lost approximately all data during two days albeit
it worked fine before and after these two days.



where more than a half of the packets were lost within 1.8
days. This particular MN worked properly until the 5th day
of our campaign. After two days with high packet error rate
the number of lost packets returned to normal values again.
This behavior has been observed on three more individuals
of this campaign and is the reason, why the overall packet
loss is as high as 20 %. However, the effective data loss of
events is less than 20 % due to the erasure-code and also due
to the fact that two nodes are recording a meeting between
each other.

For this scenario we can exclude weather conditions as the
reason since all nodes showed a different behavior among
10 days. Furthermore, the periods with high packet losses
ranged between several hours up to two days and all cases
have in common that the RSSI is relatively low. This indi-
cates either a bad antenna orientation between MN and BS or
a bad matched high frequency network on the MN. The lat-
ter can be caused by excrements on the antenna or by water
condensation inside the housing. A bad antenna orientation
is also possible, as in this particular campaign we tracked the
Desmodus rotundus. Unlike Trachops cirrhosus which usu-
ally hangs vertically from the ceiling, Desmodus rotundus
may adopt posture that strongly derive from a vertical posi-
tion by leaning onto the inner walls of a hollow tree. This
will result in a less parallel antenna orientation among MNs
compared to the vertically roosting Trachops cirrhosus. Up
to this point we assume, that both aforementioned cases are
the cause for the increased packet loss.
6.4 Lessons Learned

During our field test we faced several problems, which
should be shared at this point.

Antenna Orientation: We discovered, that the antenna
orientation on the BS was not optimal for our tests. As the
transmitter antenna and the receiving antenna of the BS is
perpendicular to each other, there exists always an antenna
setup of the MN, where the RSSI of the receiving antenna
to the BS is up to 30 dB higher as it should be. The other
way round, this decreases the rate of sent data, as the an-
tenna orientation of the transmitter antenna to the MN causes
a reduced RSSI value on the MN. This can lead to not meet
the RSSI thresholds for sending data albeit the receiving an-
tenna would have a way better RSSI value. To tackle this
problem, a circular polarized antenna, where the loss would
be 3 dB, can be used. Alternatively, an increased distance,
for instance by using cables, between TX and RX-antenna is
also a feasible solution. All in all, a proper antenna design is
important, especially for the BSs.

Clock Drift Compensation: The clock drift of the MNs
also made it necessary to implement a drift compensation for
each node. This is implemented in the decoder which is in-
voked after a data download from the BS. During our field
test, we found out that some MNs performed a restart. This
made it hard to estimate the correct time for each node as
each node uses a time stamp relative to its startup. Further-
more, a packet with the actual time of the MNs were sent
like a normal PLP. As this type of message do not use any
RSSI thresholds only a small subset of sent time packets was
received. Therefore, the drift compensation was not able to
work as desired and some drifts could not be compensated.

In future designs, this issue is fixed as we send this time
stamp with a RSSI threshold similar to the thresholds to send
a data packet. Doing this way, the number of time updates
will increase which in turn improves our drift compensation.

Data Decoding: The use of synchronized BSs by GPS
turned out to be not as reliable as expected, resulting in over-
lapping timestamps for receiving multiple packets from one
node. This makes it impossible to decode the received data,
since we use a non unique packet counter were used to min-
imize the amount of data for each transmission. In extensive
unit-tests, the recovery from a non unique packet counter
worked perfectly, however, in the real environments it turned
out to be prone to errors. Therefore, a unique packet counter,
will be implemented in future systems.

Isolation and Fixing the Battery: Additionally, we also
encountered a problem in isolating and fixing the battery into
the housing during the 2nd campaign and in previous mea-
surements. The latter led into broken wires inside the hous-
ing due to the movement of the bat. Battery isolation is also
a critical task, as the small currents of the node can be ex-
ceeded by a cross current through the isolation material. The
humidity inside the rain forest can also increase the cross
flow current if the housing is not sufficient sealed, resulting
in a reduced runtime of the node.

Data Losses: Another root of errors lies in the behav-
ior of the animals itself, as they are highly unpredictable.
This results in lost MNs due to a bat which left the roost,
and in turn the collected data was also lost. For example, a
Desmodus rotundus did not leave its roost after been caught
in the 4th campaign. Individuals of Trachops cirrhosus were
more likely to switch their roosting sites after the disturbance
caused by the initial catching and tagging event. This re-
sulted in a pair of bats which left the roost, during the first
campaign, after we tagged them. In order to find these bats,
we placed multiple BSs on places which were a promising
foraging area inside the forest. We were able to find their
foraging habitats on the first try, but the second roost remains
undiscovered up to now. Therefore, a download of the data
was only possible while the bat was foraging, thus spend-
ing only small amount of time within the receiving range of
a BS. This scenario also shows the importance on a higher
data rate for downloading data from the MN to the BS.

7 Related Work
Extensive work has been undertaken to develop and im-

prove animal tracking technologies. Ossi et al. [15] gives
an overview of proximity sensor and GPS-based telemetry
systems. The weight of the tags is, besides the runtime of
the nodes, a major parameter for our field tests. Therefore,
we discuss systems of comparable weight to the proposed
system in more detail in the following.

The Camazotz [10] platform contains several sensors to
collect accessory data on-board. However, more hardware
comes along with an increase in energy demand and weight.
The Camazotz nodes weigh 30 g, which is a multiple of 18
of the weight of our proposed system.

In order to ensure prolonged runtime, a solar panel is used
to recharge the battery. Using a solar panel is not an option in
our system, as the tracked bats are night-active and are hiding



in a roost during daytime. One of the used sensors is a GPS-
module to track the movement of individuals. In order to
decrease the energy-demand of the module, an accelerometer
is used to decrease the energy demand by adapting the duty-
cycle of the GPS-module. However, with this technique, Ca-
mazotz still has an average power consumption of 5.7 mW
which is 12.6 times higher than our worst case estimation.

The closest work to our system is EncounterNet [13].
This work also uses beacons to identify who met whom and
does not rely on solar panels or GPS. EncounterNet uses
smaller sensor-nodes (1.3g) at the cost of a short runtime
of less than one day. Our presented system weights slightly
more (1.65g) but it comes with a much larger runtime of up
to 15 days. The observation of longer time periods gives
deeper insights into the plasticity of individual behavior and
creates more representative data sets.

Besides these works, Dressler et. al. [4] analyzed the
same scenario of moving bats and the data transmission to
BSs. This work presented erasure codes to add redundancy
to the original data resulting in an increased likelihood of
successful received data. In their work, different methods
were analyzed with regard to the energy demand and packet
loss. This method is to our knowledge the most energy effi-
cient way to send data at a high receiving probability (> 90%
of sent data have been recovered) and is, therefore, used in
our application.
8 Conclusion

Observing animal behavior, and especially bats, is impor-
tant for improved epidemic forecasts and preventions. How-
ever, mapping social interactions among multiple individuals
over longer time periods is not feasible without applying so-
phisticated tracking technology. To increase the coverage of
observable social interactions by simultaneously keeping the
disturbance of the animals to a minimum, we developed our
presented system.

The key features of this system are the light-weight
animal-borne mobile node and the energy aware software.
The mobile node collects data about encounters between
two or more individuals. This data is afterwards automat-
ically downloaded to base stations, thus reducing the dis-
turbances. As parameters like memory utilization or mini-
mal received signal strength indicator thresholds cannot be
known a priori we provide a subsystem to reconfigure the
nodes after deployment.

We introduced the hardware and the general software lay-
out. In our evaluation, which took place in Panama and
lasted more than 2 months, our system was extensively tested
and evaluated under real conditions. The results show, that
our system works well for the target application.
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