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ABSTRACT
The increasingly popular and novel Function-as-a-Service
(FaaS) clouds allow users the deployment of single functions.
Compared to Infrastructure-as-a-Service or Platform-as-a-
Service, this enables providers even more aggressive and
rigorous resource sharing and liberates customers from te-
dious maintenance tasks. However, as a crucial factor of
cloud adoption, FaaS clouds need to provide security and pri-
vacy guarantees in order to allow sensitive data processing.

In this paper, we investigate securing FaaS clouds for sen-
sitive data processing, while respecting their new features,
capabilities and benefits in a technology-aware manner. We
start with the proposal of a generic approach for a JavaScript-
based secure FaaS platform, then get more specific and dis-
cuss the implementation of two distinct approaches based on
(a) a lightweight and (b) a high performance JavaScript en-
gine. Our prototype implementation shows promising perfor-
mance while efficiently utilising resources, thereby keeping
the penalties of the added security low.

CCS CONCEPTS
• Security and privacy→ Systems security; •Computer
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1 INTRODUCTION
The increasing popularity of Function-as-a-Service (FaaS)
is due to its benefits as this approach allows cloud cus-
tomers the deployment of small standalone functions—often
called Lambdas—in a flexible way. It is the natural succes-
sion of cloud paradigms, shifting from Infrastructure-as-a-
Service (IaaS) towards Platform-as-a-Service (PaaS) clouds,
to reduce the maintenance tasks of a cloud customer and
offload more maintenance tasks to the cloud provider [7, 14].
This paradigm allows customers to liberate themselves even
more than with previous approaches from the burden of in-
vesting in and maintaining a compute platform, and delivers
flexible and fine-grained accounting, as only actually exe-
cuted Lambda invocations appear on their bill. Furthermore,
this paradigm simplifies the development, as scalability is
included automatically—the cloud provider will make sure
enough instances of a single function are created on different
machines to cope with the current demand.
Just like for IaaS and PaaS clouds, security is a crucial

factor that affects cloud adoption in case of FaaS clouds as
well [15, 18]. Only by providing a Trusted Execution Environ-
ment (TEE) inside the cloud—an execution environment that
protects code and data from unauthorised access—the cloud
customer is relieved from fully trusting the cloud provider.
This is of special interest when the cloud provider is a glob-
ally operating company that might not be bound geograph-
ically or legally to the customers environment. In general,
sensitive data processing as in medical applications with pa-
tient data or governmental or police authority’s IT services,
is only possible by guaranteeing confidentiality and integrity
in the cloud. In addition, a TEE in the cloud allows the re-
moval of huge amounts of code from the Trusted Computing
Base (TCB) of a cloud-based application, such as the cloud
provider’s software stack for managing the infrastructure
and controlling the accounting.
We believe that the demand for security and the nature

of FaaS clouds—the deployment of single standalone func-
tions in the cloud—are a natural fit for trusted execution
technology such as Intel Software Guard Extensions (SGX).
For example, an Intel SGX secure enclave was intended to
be akin to a library that comprises a few trusted functions
being called from the untrusted main application [21].

However, naively porting existing FaaS platforms to SGX
is not a valid solution as this would lead to major perfor-
mance problems and an inefficient design that does not scale
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for large numbers of Lambdas. For example, most existing
FaaS architectures work with interpreted languages (such
as JavaScript, Python or Java) and spawn each Lambda and
the required runtime system inside their own Docker con-
tainer [14]. This duplicates the runtimes in memory, even
for Lambdas written in the same interpreted language and
multiple instances of the same Lambda. While this approach
is already an inefficient memory usage without trusted ex-
ecution involved and only accepted for its strong isolation
guarantees between the Lambdas, due to the limited trusted
memory of Intel SGX this also leads to major performance
problems in such a trusted environment [6, 12].

In this work we target a secure and trusted FaaS platform
that maintains the original benefits of FaaS platforms and
exploits the trusted execution technology in an efficient way
tailored to its specific characteristics. Thereby, the challenges
to reach a secure FaaS platform that must be retained com-
prise the following: Function-level isolation is required to
isolate functions from each other; especially from mutually
distrusting customers. In addition, functions should be pro-
visioned on-demand and quickly, i.e. be able to perform a
fast cold start, with low user-facing latency especially for
rarely used Lambdas. Also, we need to be able to use avail-
able resources efficiently especially to support scalability
of the system to large numbers of customers that deploy
Lambdas, and many users simultaneously issuing requests.
Finally, we want customers to be able to establish trust in
the platform and allow sensitive data processing without
trusting the cloud provider.
Implementing Lambdas using a language that compiles

directly to native code would be desirable, as in that case no
large runtime like an interpreter is required and Lambdas
can be assigned to their own secure enclave, which leads to
a rather strong isolation. However, this prevents any shar-
ing of code because shared memory between enclaves is
not foreseen. Additionally, deploying multiple Lambdas into
the same enclave in order to allow sharing (e.g., sharing the
libc) is not possible, as native code would need to be isolated
in that case using a large and complicated sandbox mecha-
nism [16]. Also, any libraries used by native Lambdas would
need to be ported to run inside the enclave as well.

In contrast to native code, code written in interpreted lan-
guages is usually sandboxed by the respective runtime envi-
ronment. However, even then there are library dependencies
and most libraries rely on native components as for example
it is the case for Lua or Python. Due to its originating as a
self-contained language running small scripts in a Browser,
JavaScript is one interpreted language that has a lot libraries
written in pure JavaScript code without any native depen-
dencies. With that assumption, we can provide a platform
that runs multiple pure JavaScript-based Lambdas on top of
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Figure 1: SGX enclave interaction.

a single JavaScript engine inside the same enclave, and there-
fore shares the relatively large interpreter between multiple
Lambdas even from different Lambda providers. Google’s V8
JavaScript engine for example is written from the ground up
with the idea of mutually distrusting JavaScript components
in mind—isolated from each other by so called v8 Isolates[2].

The contributions of this paper comprise the following:
• Investigation towards the design and implementation
of a secure FaaS platform with trusted execution based
on Intel SGX that retains the benefits of FaaS and re-
spects the characteristics of trusted execution as of-
fered Intel SGX at the same time.

• Proposal of a generic architecture for a secure FaaS
platform supporting JavaScript Lambdas.

• Two implementation variants of this generic FaaS ar-
chitecture, (a) a lean platform based on the lightweight
Duktape JavaScript engine, and (b) a high performance
platform based on Google’s V8 JavaScript engine.

• The evaluation of the performance of those two plat-
forms, especially the latency overhead for trusted
Lambda requests compared to an untrusted platform
and the trusted platform’s overall throughput.

Our paper is structured as follows: In Sec. 2 we describe the
fundamentals, what Lambdas are and their characteristics,
followed by the description of our design decisions towards
a secure serverless cloud platform in Sec. 3 and a brief de-
scription of several implementation details in Sec. 4. Finally,
we evaluate our two platforms in Sec. 5, discuss related work
in Sec. 6 and conclude the paper in Sec. 7.

2 BACKGROUND
2.1 Intel Software Guard Extensions
Intel SGX [21] is a processor instruction set extension that
allows the creation of an x86-based Trusted Execution En-
vironment (TEE)—a so called secure enclave. Confidentiality
of enclave memory is protected by transparent encryption
done within the CPU, i.e., plain text is only available inside
the CPU package. Valid interaction with an enclave is only
possible via explicit enclave calls (ecalls) to enter an enclave
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and outside calls (ocalls) to call out of the enclave. Fig. 1
depicts the interaction of an untrusted application part with
an enclave, comprising an ecall ①, an ocall ②, and finally, an
ecall-return ③ to the untrusted application.

In general, enclaves are bound to a user process—evenmul-
tiple enclaves in one user process are possible. However, if all
enclaves on a platform do not fit into the so called Enclave
Page Cache (EPC), a special form of reserved memory of
at most 128 MB that backs all enclave pages on a platform,
swapping to regular RAM is required. This process induces
high performance overhead, as it requires re-encryption of
the memory page’s contents, as well as measures to ensure
integrity and prevent replay and rollback attacks.

As enclaves can only run in user space, SGX-based applica-
tions still depend on the underlying Operating System (OS)
to cooperate. This includes the enclave’s memory manage-
ment by the untrusted OS. Hence, SGX naturally can not
prevent denial of service attacks by privileged code.

Programming Support with Intel’s SDK Intel offers an SDK
to handle the enclave’s life cycle and memory management.
It also comprises the Enclave Description Language (EDL)
that allows the specification of the ecalls and ocalls the en-
clave supports and the “Edger8r” tool which generates code
for ecall and ocall stubs. Finally, enclaves are compiled and
linked together with the generated code to a shared object,
which is loadable as an enclave by using SDK functions.

SGX Remote Attestation Intel supports remote attestation
of SGX enclaves without requiring physical access to the
hardware, in order to verify genuine SGX-capable CPUs that
run secure enclaves [5]. The procedure requires the enclave
to generate a report of its properties such as the creation
process of the enclave and a hash of the code running in-
side it (MRENCLAVE), that is signed by a Intel-provided service
enclave running on the same platform. This is called Local
Attestation and results in a Quote that is forwarded to the
attester, who is then able to verify the Quote at the Intel
Attestation Service (IAS) provided by Intel. Inside the mes-
sages exchanged between the enclave and the attester, a
small amount of arbitrary payload data can be enclosed as
well, that is also covered by the security mechanisms of the
attestation procedure ensuring authenticity and integrity of
the data. This can be used for example to exchange a key
between the enclave and the attester.

2.2 An SGX-aware Threat Model

We assume a typical threat model for SGX enclaves [8],
specifically in an untrusted cloud environment: an attacker
has full—even physical—control over the server hardware
and software environment. This includes control over the OS
and all code invoked prior to the transfer of control into the

SGX enclave. The attacker’s goal is to break confidentiality
or integrity of the code running in the SGX enclave.

Availability threats such as crashing an enclave are not of
interest, as, inherently to the SGX paradigm, the hosting OS
can stop enclave execution arbitrarily and at any time. Also,
we assume there are no replay attacks on sealed data of our
enclave, or withholding of sealed data, as these problems
belong to their own research field of state-continuity [10].
We do not consider side-channel attacks [13, 19, 29] and

assume that enclaves do not possess any security-relevant
vulnerabilities that may lead to data leakage or integrity
breaches. Also, we assume that basic building blocks running
inside secure enclaves such as the Intel SGX SDK are bug-
free, and trust the design and correct implementation of
the CPU package and the SGX instructions including all
cryptographic operations done by SGX. While the recent
Meltdown [20], Spectre [17] and Foreshadow [25] bugs have
shown that hardware is not impeccable, we assume such
bugs are fixed by microcode updates.

2.3 The Lambda Model—What are Lambdas
FaaS can be seen as the successor of earlier cloud computing
approaches like IaaS and PaaS. While those provide virtual
machines or containers to their users, the FaaS paradigm han-
dles single standalone functions. In this paper we call those
Lambdas, inspired by the first FaaS platform by Amazon.
Initially, the idea of IaaS was to increase resource utilisa-

tion and provide ease of scalability to customers, while at
the same time taking the risk of high investments off their
shoulders. This idea evolved in PaaS that further shifted
the management overhead off the cloud users to the cloud
provider and allowed more efficient resource sharing. FaaS
builds upon that thought and allows the customers to com-
pletely stop thinking about single server machines and their
management—thus, it is also called the serverless paradigm.
Lambdas are small inherently stateless functions, usu-

ally written in interpreted languages like JavaScript or
Python [14]. They are provided by the FaaS user or cus-
tomer, and executed in isolated environments like Docker
containers on the cloud provider’s machines [27].
Large Lambda applications are comprised of multiple

Lambdas forming a holistic application by interconnecting
the Lambdas that can use a common database or other forms
of persistent storage. Lambdas can be called directly or trig-
gered due to events, such as storing a file in a data store.
Essential to Lambdas is their ability to be started quickly
and also to automatically scale across multiple machines
according to the current demand.

3 TOWARDS SECURE FAAS
In this section we describe our approach of a secure FaaS
platform using Intel SGX. In particular we discuss how the
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trusted computing resources can be used efficiently, while
preserving the characteristics and advantages of FaaS over
other cloud computing paradigms like IaaS and PaaS.
We first analyse the requirements of such a platform, re-

garding the user-facing features and the provider-facing ca-
pabilities. Then, discuss crucial aspects like scalability, cold
start latency and resource isolation and efficiency. Next, we
investigate the suitability of various interpreted languages
for usage in such a platform, before we describe our proposed
platform’s architecture for the lightweight Duktape and the
fast Google V8 JavaScript engine. Finally, we outline how
attestation of Lambdas can be done by users of our platform.

3.1 Secure FaaS Requirements
In general, a Lambda platform should be able to run larger
numbers of Lambda scripts in parallel and isolated from each
other, also supporting auto-scale depending on the current
load. Lambdas should quickly be spawned if not already
running, in order to achieve low response times for Lambda
requests. Also, available system resources should be used
efficiently, therefore a low memory footprint of each single
Lambda and its context is favourable, in order to be able to
hold many Lambdas in memory before being forced to evict
them. In addition, execution of many Lambdas in parallel
should be supported not only to fully use multi-core CPUs
but also smoothen IO delays.

For a Lambda platform to become trustworthy, a few more
aspects need to be considered. Firstly, the confidentiality and
integrity of network communication must be ensured, other-
wise there would be no point of using trusted execution on
the server-side. Secondly, as the cloud provider is not trusted
and the data that is processed is considered sensitive, the
Lambda’s execution state and all processed data must be pro-
tected. Usage of trusted execution technology like Intel SGX
naturally leads to this, as the enclave memory is encrypted,
and thus, not available to the cloud provider. But even in
case of using other (weaker) trusted execution technology
like ARM TrustZone, the data processed by a Lambda would
not be (easily) accessible by the cloud provider, except for
physical attacks such as cold-boot attacks.
In order to achieve good performance with a trusted

Lambda platform as outlined above, a few new factors need
to be incorporated which are specific to the trusted execution
technology being used—Intel SGX in this case. In general,
the enclave size should be as small as possible in order to pre-
vent SGX paging as long as possible, as this induces a high
performance impact [6, 12]. Also, Brenner et al. [11] have
shown, that using lesser number of enclaves with the same
code and responsibility improves the performance, not only
because libraries can be shared but also due to a more effi-
cient CPU cache usage. Furthermore, as Lambdas are usually
written in interpreted languages and comprise of relatively

little code compared to the required runtime, sharing the run-
time between multiple Lambdas is quite beneficial regarding
memory usage. This leads to an architecture that executes
multiple (competing) Lambdas inside the same runtime in the
same enclave, and thus, additional strong isolation between
Lambdas is required in order to ensure they can not access
each other’s data and monopolise resources. This includes
isolation of subsequent requests to the same Lambda as well.

3.2 Suitability of Interpreted Languages

In the previous section we described generic requirements of
any FaaS platform and additional aspects specific to a trusted
FaaS platform. This section discusses the individual suitabil-
ity of various programming languages and their runtimes if
applicable as the basis of our secure FaaS platform.

In principal, Lambdas implemented in compiled languages
(e.g., C/C++ and Rust) would be advantageous, as their re-
source footprint is relatively small compared to interpreted
languages that do require a full interpreter in order to execute.
However, Lambdas are traditionally written in interpreted
languages and we would like to support execution of ex-
isting Lambdas with minimal or at least automatable effort
on top of our platform. In addition, native Lambdas would
have to be ported and recompiled to be executable inside a
secure enclave, as no system calls are available there without
further measures. Even though we assume that Lambdas do
not establish their own socket connections or access the file
system directly, even simple actions like requesting the cur-
rent time (gettimeofday()) may require system calls. This
poses a problem also for library dependencies of Lambda
code, as those libraries would have to be ported as well. Only
approaches like Haven [8], Graphene [24] and SCONE [6]
do allow execution of unchanged native applications inside
secure enclaves, at the cost of a large runtime for example
comprising a library OS inside the enclave. Also, isolation
of native code is hard, as arbitrary memory locations can be
accessed if no complex sandboxing is implemented inside
the secure enclave as well.

Code components written in interpreted languages could
run without further changes inside a secure enclave, as long
as the interpreter is available there. In addition to that, if the
interpreted code has no library dependencies with native
code parts, pure interpreted execution can be isolated from
code in the same address space relatively easily, as memory
access is controlled by the runtime. However, interpreted
code is usually much slower than native code, especially if
not accelerated by Just-In-Time (JIT) compilation.
Due to the above advantages of interpreted languages,

their popular usage in FaaS systems, and the security issues
of native code, we investigated several interpreted language
environments and their suitability for usage in a secure FaaS
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scenario. Even though most runtimes for interpreted lan-
guages offer at least some notion of a “context” to isolate
code and share the runtime with others, they heavily rely on
libraries and most of those libraries contain large fractions
of native code components. This applies for example to Lua
and Python. However, JavaScript has been originating from
web browsers initially, that by design required the code to
be platform independent and more or less self-contained.
Therefore, many available JavaScript libraries are written in
pure JavaScript code without any native dependencies. In ad-
dition, many serverless applications are written in JavaScript
as JavaScript is a trending and popular language and all
existing FaaS platforms (e.g. OpenWhisk1) support at least
JavaScript amongst other languages [14]. For those reasons,
we aim at supporting JavaScript-based Lambdas in the archi-
tecture that we describe in this paper. However, we limit our
platform to the execution of pure JavaScript code without
any native components, due to the negative side effects of
native code in shared enclaves as described above.

Nevertheless, even for JavaScript as a promising Lambda
language candidate, there are still multiple options to ex-
ecute JavaScript code. MuJS2 was the first interpreter we
looked into. While being extremely small and resource-
efficient, MuJS has only quite limited ECMAScript 2015 sup-
port thereby inhibiting the use of modern JavaScript pro-
gramming idioms. In contrast, the Duktape3 JavaScript en-
gine provides good—but still partial—support of ECMAScript
2015 and other features such as the ES2015 TypedArray
and Node.js Buffer bindings, for example. Supporting EC-
MAScript 2015 would be beneficial, as regular JavaScript
code can be automatically transpiled to ECMAScript 2015,
but not necessarily to older versions as well. Finally, there is
Google V8 as one of themost modern JavaScript engines with
features for high performance such as JIT compilation and
more sophisticated garbage collection approaches. While
providing the most holistic language support, Google V8
with ≈ 1.3 million Source Line of Code (SLOC) is by far also
the largest of the engines we investigated in terms of its TCB
and memory footprint. However, according to our measure-
ments (3dcube and base64 benchmark of the JetStream suite4)
Google V8 performs about 30× to 84× better than Duktape.

3.3 Lambda Library Dependency Bundling
It is unrealistic to assume Lambdas will get along without
any dependencies. Hence, there must be a way to support
library dependencies of Lambdas running on our platform.
Instead of loading libraries on demand from the outside,

dependencies could also be bundled with the Lambda code

1https://openwhisk.apache.org
2MuJS JavaScript Engine http://mujs.com/
3Duktape JavaScript Engine https://duktape.org/
4JetStream JavaScript Benchmark Suite: http://browserbench.org/JetStream/
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Figure 2: Secure FaaS Platform Generic Architecture.

into a standalone script. The advantage of this is, that the
Lambda is represented by a single file with a signature inside
the Lambda storage system, and can easily and quickly be
loaded into the enclave with a single call. Also, in that case,
the signature naturally includes the libraries used by the
Lambda. In order to achieve this, we usedwebpack5. Webpack
allows automatic resolving of calls from JavaScript code
to the require() function, and downloads and bundles all
required library dependencies recursively with the Lambda
into a single standalone file.

3.4 Generic Secure FaaS Architecture
The generic architecture of our secure FaaS platform shown
in Fig. 2 is in principle independent from the JavaScript in-
terpreter being used. Still, the interpreter is the heart of
the platform, running once inside the enclave, and is shared
between all Lambdas executed within that enclave. All Lamb-
das are executed in their own context, in order to be able to
execute Lambdas in parallel and provide reasonable isolation
between them, even if the same Lambda script is executed
multiple times in different contexts in order to improve per-
formance by parallel execution in high load situations.

In general, Lambdas are stored outside the enclave in the
form of a signed (or even encrypted) bundle of the Lambda’s
JavaScript code. This bundle is being loaded on demand by
the platform from the untrusted storage into a newly created
context and prepared for being called by users. On load, the
Lambda bundle’s signature (The Lambda bundling process
is described in Sec. 3.3) is being verified by the platform in
order to ensure that only Lambdas correctly signed by valid
customers are executed on the platform.
After a Lambda is loaded and verified a new context is

created for its execution with the JavaScript interpreter. This
ensures the Lambda is executed independently and isolated
from other Lambdas and can run in parallel with other Lamb-
das. On high load on a single Lambda it may also be benefi-
cial to instantiate multiple contexts for the same Lambda, in
which case the Lambda is only loaded once from the outside,
but multiple independent contexts are created from it.
5webpack.js https://webpack.js.org/

https://openwhisk.apache.org
http://mujs.com/
https://duktape.org/
http://browserbench.org/JetStream/
https://webpack.js.org/
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A Lambda is loaded only on-demand, when a request for
this Lambda arrives from a user and the Lambda is not yet
present in the enclave. A new connection also requires a con-
nection context to be created that stores connection-specific
data such as the TLS session keys amongst others. Such a
connection context is not bound to a specific Lambda and a
Lambda context is even independent from a user connection.

3.5 Adjustment to Current System Load
In order to adjust the number of created Lambda contexts
to the current load situation on the system, we introduce
a µ-value, that describes the pressure on a Lambda context.
The µ-value is calculated by the number of requests for each
individual Lambda script in a given time frame, divided by
the amount of “waits” that are required to find an avail-
able Lambda context. When a request for a specific Lambda
script is being processed, the platform will first try to find
an unused context for this script and wait until a context is
being released by another thread if none is available. If too
many “waits” are required, the µ-value will decrease, and the
platform can spawn new contexts for a Lambda script once
the µ-value falls below a configurable threshold. This en-
sures the optimal amount of contexts is created for a Lambda
script, which varies depending on how much computation
the Lambda does and the number of requests per second.

The above µ-value adjusts the concurrent contexts of one
Lambda on a single host. Coarser-grained adjustment on
a larger scale is additionally supposed to be done by the
untrusted cloud platform, balancing load across different
machines and enabling scalability of Lambda applications.
This can be done by the untrusted cloud provider using
traditional technical means, and respecting properties like
locality in established placement policies.

3.6 Using the Duktape JavaScript Engine
This section details the implementation of our generic archi-
tecture with the Duktape JavaScript engine as the interpreter
of the Lambdas—this system is called Secure DukTape Lambda
Platform (SecureDuk) throughout this paper. In this case, the
Duktape engine is embedded into an Intel SGX SDK enclave
as a library, and is being used by our platform application
to interpret the Lambdas that are loaded from the outside
Lambda store. This instance of our generic architecture uses
Duktape JavaScript contexts for Lambda isolation.
Requests issued by users are transmitted via a TCP

socket opened by our application and are integrity- and
confidentiality-protected during their transmission by TLS—
the TLS endpoint resides inside the enclave.
The so called LambdaManager component inside the en-

clave is responsible for managing the life cycle of our Lambda
contexts. When a context is required for a specific Lambda
script, the script is only loaded from the outside Lambda

store if not yet available inside the enclave. Contexts are
also created on demand and reused for multiple invocations
of the same Lambda. In case of very high load, even multi-
ple contexts for the same Lambda can be instantiated (See
Sec. 3.5 for more details on the µ-value).

3.7 Using the Google V8 JavaScript Engine
This section describes the implementation details of our
generic architecture with the Google V8 JavaScript engine—
which we call Secure Google V8 Lambda Platform (SecureV8)
in this paper. Its architecture is a specific case of our generic
architecture with the Google V8 JavaScript engine running
on top of SGX-LKL, both inside the enclave. To achieve this
we used the SGX-LKL6 project that combines the Intel SGX
technology and Linux Kernel Library (LKL), which is the
Linux kernel as linkable library. SGX-LKL resembles other
approaches for execution of legacy applications inside en-
claves (e.g., by using a library-OS) such as [6, 8, 23, 24]. The
enclave is not created by the Intel SGX SDK but a custom
re-implementation of the SGX enclave creation and manage-
ment process. With SGX-LKL there is user-level threading
inside the enclave, as well as support for synchronisation
and coordination of multi-threaded applications by using
mutexes and conditional variables solely inside the enclave.
In addition, SGX-LKL allows its guest application to issue
system calls, that are processed asynchronously by threads
outside the enclave. We built our SecureV8 platform on top
of SGX-LKL and linked it against the Google V8 JavaScript
engine compiled for the musl libc7 library, as this is required
to run the application inside an SGX-LKL-based enclave.

Similarly to SecureDuk, also SecureV8 opens a TCP connec-
tion in order to listen to user requests. However, in this case
the system calls related to the socket are handled by the asyn-
chronous system call queuing mechanism of SGX-LKL and
issued to the host kernel running outside the enclave. Still,
confidentiality and integrity is protected by a TLS encryption
that terminates inside the enclave.
The SecureV8 application also maintains a LambdaMan-

ager component, just like SecureDuk. However, Lambdas are
not only isolated by V8 contexts, but by V8 isolates that
each comprise exactly one context in our case. This leads
to a stronger isolation of Lambdas in contrast to SecureDuk,
as V8 isolates have originally been designed for mutually
distrusting scripts running in different web browser tabs.

3.8 Key Management & Bootstrapping
In Fig. 3 we describe key management and trust relationships
of our platform. The figure introduces the following entities:
the cloud provider owns the hardware and runs the enclave
and the platform software (either SecureDuk or SecureV8).

6SGX-LKL at Github: https://github.com/lsds/sgx-lkl
7musl libc https://www.musl-libc.org/

https://github.com/lsds/sgx-lkl
https://www.musl-libc.org/
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The Lambda providers run their own Lambdas on top of the
platform. The platform provider is the entity that develops
and distributes the secure Lambda platform’s software. Fi-
nally, the users issue requests and use the Lambdas via secure
TLS connections terminating inside the enclave. Not all enti-
ties must strictly be distinct, but some of them may be the
same, for example, a Lambda provider can also be a Lambda
user at the same time (i.e., in case of Lambda chaining).
Furthermore, we define the following two keys: the

Enclave Master Secret (EMS) is a symmetric key used for
confidentiality protection of data stored in the untrusted
key-value store (KVS) hosted by the cloud provider. This
EMS key is generated by the enclave and can be migrated
from one enclave instance to another after successful mutual
attestation, allowing the cloud provider to scale the platform
to multiple instances. The EMS is stored itself inside the KVS
(after sealing) to allow correct enclaves to automatically boot-
strap the system. In addition, an enclave will generate (at
enclave start) the Enclave Key Pair (EKP) used for securing
the connection between Lambda providers and the enclave.
The cloud provider initially acquires the source code of

the platform software from the platform provider and veri-
fies it to ensure it will not harm her infrastructure. After a
successful verification, the cloud provider builds and deploys
the platform software and maintains its availability.
In order to establish trust into the Lambda platform, the

Lambda provider acquires the platform’s source code and ver-
ifies and builds it in order to generate the expected hash value
(MRENCLAVE) of the platform’s binary. Then, the Lambda
provider attests the platform running in the cloud by re-
mote attestation with a nonce (for freshness) and the known
hash value of the binary. The platform returns an SGX attes-
tation quote (c.f. Sec. 2), comprising the public key of the EKP
and a signature that can be verified using the IAS containing
a hash over the above mentioned nonce from the attester
and the EKP’s public key. Afterwards, the Lambda provider
can send a key encrypted with the EKP public key to the
platform. This establishes a secure connection between the
enclave and the Lambda provider, which allows uploading

Lambdas and TLS keys stored by the platform inside the
untrusted KVS encrypted with the EMS.
After a Lambda is uploaded and stored inside the KVS

along with at least one TLS key per Lambda provider, a
Lambda is ready to process user requests. Requests are ad-
dressed to a specific subdomain identifying the Lambda
provider, which allows the user to implicitly detect that the
Lambda provider has successfully attested the platform, as
only then a valid TLS connection is possible. In addition, this
approach even supports multiple different Lambda providers
in the same enclave, as each Lambda provider uses her own
TLS key. By using Server Name Indication (SNI) the platform
canmaintain multiple TLS endpoints for distinct subdomains
under the same socket, all terminating inside the enclave.
The above approach allows the execution of Lambdas

that are implicitly attested by the users issuing requests.
Integrity of the Lambda code can be protected by an Keyed-
Hash Message Authentication Code (HMAC) stored with
the Lambda code inside the KVS. Note that the Lambda is
already integrity-protected during transmission by TLS and
inside the enclave by the Intel SGX memory encryption.
In our concept the cloud provider is not to be trusted by

any other entity. We allow multiple Lambda providers on the
same platform with distinct keys, and enable users to only
trust selected Lambda providers. Derived from the funda-
mental trust into the platform, we support Lambda-specific
sealing of data (into the KVS) using a Lambda-specific key
derived from the EMS and a hash value of the Lambda’s code.

3.9 Security Considerations

Lambdas must be detained from reaching outside their pro-
jected environment and harm the cloud provider or the plat-
form. Furthermore, it is crucial to ensure that one Lambda
can not access any data of another Lambda. For this reason,
Lambdas are isolated from each other using container-based
isolationmechanisms in many existing FaaS platforms—AWS
and OpenLambda use Docker containers for example [14, 26].

In addition, besides the high porting effort of native code
to enclaves, one of the strongest arguments against native
code even in the form of library dependencies of Lambdas
is the required isolation of Lambdas. As native code com-
ponents work with pointers, a large and complex sandbox
or hardware mechanism must be brought in place to isolate
them from each other [16]. By abandoning support for native
components, isolation becomes much easier as almost all ex-
isting runtimes for interpreted languages already posses a
notion of (isolated) contexts to run multiple scripts indepen-
dently from each other. Even though previous executions of
Lambdas will leave pre-owned objects behind, there is no
way to access them from interpreted code before the garbage
collector eradicates them due to the lack of references.
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The problem with existing FaaS platforms in an SGX sce-
nario is that the interpreter can not be shared between multi-
ple Lambdas and must be instantiated for each Lambda. This
leads to high memory consumption which is particularly
difficult as SGX can only maintain good performance of the
transparent memory encryption for small memory ranges
(≈128 MB as mentioned in Sec. 2). The only option with SGX
to achieve good performance is to co-locate multiple Lamb-
das inside one enclave using the same interpreter, however,
isolation between Lambdas is essential in this case. For isola-
tion, process-based isolation would be the best option, as this
is considered the strongest mitigation against a Speculative
Side-Channel Attack (SSCA) [3], but this prevents sharing
of the interpreter between Lambdas.
Our vision is to resolve this dilemma with policies ne-

gotiated by cloud customers and the provider that specify
the required security-levels of Lambdas. For highly sensitive
Lambdas the provider could be advised to start dedicated en-
claves while other less sensitive Lambdas may be co-located
with (a) Lambdas of the same provider or (b) Lambdas of
other Lambda providers. Obviously, highly sensitive Lamb-
das will lead to higher cost in that case as they require more
resources, so the cloud provider can assign a price tag to
the required level of security. Enforcing those policies relies
on an attested and trusted base platform inside the enclave
which is independent from other Lambdas running in the
same enclave, as described in Sec. 3.8.
In addition to the above policies of Lambda security re-

quirements, there are newly introduced mechanisms of the
V8 JavaScript engine especially for isolation of untrusted
JavaScript code and SSCA mitigation available since Google
V8 v6.4.388.18 (we used Google V8 v6.7.77.0), but they add a
performance degradation of up to 15%[3]. Furthermore, we
make excessive use of v8 Isolates, and never execute two
Lambdas inside the same v8 Isolate. This is important to
benefit from the isolation capabilities of v8 Isolates and also
accepted by commercial providers, e.g. Cloudflare abandoned
Node.js due to its lack of v8 Isolate support and implemented
a custom application with an embedded Google V8 [1, 2].
Due to the transparently encrypted and integrity-

protected enclave memory by using Intel SGX, even the
cloud provider, and privileged software such as the OS can
not access or manipulate the secure enclave’s contents. This
leads to an inherent protection of the Lambda code and data
inside the enclave at runtime. In addition to that, Lambdas
can store data persistently outside the enclave in a secure
way by applying sealing (see Sec. 3.8). Finally, communica-
tion of Lambdas with the outside world is protected by TLS,
which completes the chain of protection mechanisms for
Lambdas and their sensitive assets.
Another relevant security property is performance isola-

tion of Lambdas that ensures Lambdas can not stall execution

and jeopardise liveness of the platform. This can be guar-
anteed by a small patch to the JavaScript interpreter, that
calls yield() regularly. In case of SecureV8 this triggers the
internal scheduler of the user-level threading of SGX-LKL
inside the enclave and allows a renegotiation of resource
assignment. In case of SecureDuk each request is handled
by a distinct connection thread, therefore, liveness can be
guaranteed by the untrusted cloud platform with established
and mature procedures. Since a denial of service by the cloud
provider can not be prevented, this poses no additional risk.

4 IMPLEMENTATION DETAILS
The implementation of our Intel SGX SDK-based SecureDuk
platform partly utilises the node-secureworker8 project, that
allows offloading small parts of JavaScript applications run-
ning on Google V8 to a Duktape JavaScript interpreter run-
ning inside an SGX v1 enclave.

TLS encryption is implemented using mbedTLS library for
both, SecureDuk and SecureV8. In case of SecureDuk, we used
the mbedTLS-SGX9 port that allows usage of the library for
Intel SGX SDK-based applications. In case of SecureV8, we
linked the mbedTLS library to our platform application that
is running on top of SGX-LKL. Messages from clients are
expected to be secured by TLS and contain JSON data.

Besides the required calls of the mbedTLS-SGX library, the
interface of the Intel SGX SDK-based SecureDuk platform to
the untrusted world comprises ecalls to initialise the enclave,
call a Lambda function, load a Lambda’s JavaScript code from
untrusted storage and thread management functions.

SecureV8 is based on the Google V8 JavaScript engine
which amongst other things uses a JIT compiler to increase
performance. In order for JIT to work, respective memory
ranges must first be writeable to store the generated code as
well as later be readable and executable in order to be able
to execute that code. Since SGX v1 does not allow changing
permissions of enclave pages after enclave initialisation, SGX-
LKL marks all pages rwx at the moment to be able to support
JIT. As soon as SGX v2 becomes widespread available, this
behaviour can be changed to only grant the minimal set of
required permissions, i.e. only readable and writeable during
code generation and readable and executable for execution.

5 EVALUATION
In this section we show the results of our evaluation of
the two secure Lambda platforms, SecureDuk and SecureV8,
based on the Duktape and Google V8 JavaScript engine. The
evaluation comprises the TCB of our two platforms, their
throughput and response times, as well as the working set
memory footprint of the enclaves.

8node-secureworker https://github.com/luckychain/node-secureworker
9mbedTLS-SGX https://github.com/bl4ck5un/mbedtls-SGX

https://github.com/luckychain/node-secureworker
https://github.com/bl4ck5un/mbedtls-SGX
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Table 1: Size of Code Base in Lines of Code.

Duktape V8

Interpreter 185,392 1,308,702
Environment 214,156 17,193,624

Platform 1,529 1,002

Sum 401,077 18,503,328

Subject to our evaluation are several different Lambdas:
The echo Lambda only returns its input back to the platform,
while the jpeg Lambda decodes a JPEG image provided as
base64-encoded JSON as its input and returns the image as
decoded bitmap as its output and the fibonacci Lambda cal-
culates the 1250th Fibonacci number. In addition, we also ex-
tracted scripts from the official JetStream benchmark suite10
and ran them as Lambdas on top of our platform (base64
and 3dcube). All Lambdas are bundled prior to their deploy-
ment with all the required libraries using webpack into one
standalone JavaScript file as described in Sec. 3.3.

5.1 Trusted Code Base
In Tab. 1 we show the number of lines of code of our two
platforms. In this table, Interpreter represents the code of
the JavaScript engine itself that is being used to interpret
the Lambda’s JavaScript code. Environment stands for the re-
quired SGX SDK libraries in case of SecureDuk, and SGX-LKL
in case of SecureV8 inside the enclave in order to run the ap-
plication. The Platform line shows the amount of code of our
platform application (SecureDuk and SecureV8 respectively)
which bridges the gap between the environment and the
engine and takes care of all management tasks like manag-
ing JavaScript contexts, loading Lambdas from the untrusted
storage and managing their life cycle, as well as the client
connection management.

As can be seen from the table, SecureDuk is much smaller
in terms of the required source code when compared to the
SecureV8 platform. This is mainly due to the much smaller
(and slower) Duktape interpreter used in SecureDuk, but also
due to SGX-LKL required to run Google V8 in SecureV8which
is much larger than the SGX SDK. In total the source code
of the Duktape-based platform is approximately 46× smaller
than the Google V8-based platform.

5.2 Working Set Memory Footprint
In order to measure the working set memory footprint of our
SecureV8 enclave, we used sgx-perf 11 [28]: the tool expects
the enclave start address and size, and then removes all page
permissions from that range and registers a custom page
10JetStream JavaScript Benchmark Suite: http://browserbench.org/
JetStream/
11sgx-perf at Github https://github.com/ibr-ds/sgx-perf
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Figure 5: Throughput of SecureDuk and SecureV8.

fault handler. Once the enclave accesses a page, the custom
page fault handler is notified and resets the page permission
for that page. We exclude the enclave pages touched during a
warm-up phase of 60 seconds and collect the measured work-
ing set footprint for various fixed numbers of contexts. Fig. 4
shows the memory footprint of our Lambdas and proves the
low memory footprint of the platform being far below the
SGX paging threshold of up to 128 MB, except for the base64
Lambda which leads to SGX paging.

5.3 Lambda Request Throughput
This section shows the comparison of the throughput of our
two platforms against the baseline. In this case, the baseline is
the Google V8-based application running on bare hardware
(in an Alpine Linux Docker container in order to provide the
application with the musl-libc library), and it is compared
against the SecureDuk and SecureV8 platform. In contrast
to the earlier presented benchmarks with fixed number of
contexts in Sec. 5.2, here the platform decides how many
contexts are created using the µ-value as described in Sec. 3.5.

http://browserbench.org/JetStream/
http://browserbench.org/JetStream/
https://github.com/ibr-ds/sgx-perf
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The results of this benchmark are illustrated in Fig. 5 cre-
ated using the h2load12 HTTP benchmark application with
12 parallel client threads and a separate warm-up phase to
stabilise the results. As can be seen, the SecureV8 platform is
much faster than SecureDuk which achieves approximately
6% of the performance of SecureV8 for the complex Lamb-
das (jpeg, base64, 3dcube) and 67.2% for the fibonacci
Lambda. However, in case of the echo Lambda, the SecureDuk
application is even 5× faster than the baseline, emphasising
the benefits of the lean SecureDuk platform.

5.4 Response Times
We also evaluated the requests latency of our two platforms
in various cases and show the results in Tab. 2. All measure-
ments compare the same baseline as before against SecureV8
and SecureDuk. We compare the warm latency with the
Lambda script already loaded into the enclave and a con-
text already created for it, with the cold latency where the
Lambda script has to be loaded from untrusted storage and a
context must be first created for it. In the last row of the table,
we also show the plain overhead of the platform including
TLS encryption, enclave entering and exiting and context
lookup, but except for the actual execution of the Lambda’s
JavaScript code. In addition, all measurements are done a) for
a new connection, thereby including the TLS handshake, and
b) with an already open connection to measure the overhead
of creating a new connection. All measurements are average
values of multiple test runs on the 3dcube Lambda with an
additional warm-up phase for more stable results.
As can be seen in Tab. 2, keeping a connection alive is

quite beneficial, as well as keeping and reusing contexts. Also,
while all platforms have a similar overhead, SecureDuk has
much higher latency as the actual Lambda processing by the
Duktape JavaScript engine is slower. In most cases SecureV8
has a slightly higher latency than the baseline except for
new connections on a warm Lambda. This is due to the
asynchronous system call processing of SGX-LKL that even
outperforms the application outside the enclave, as there is
a high number of system calls during the TLS handshake.

5.5 Conclusion of Evaluation
Our evaluation of the two platforms shows, that SecureDuk
is by far a more lightweight platform with regards to the
TCB, but SecureV8 provides much better performance as it
supports advanced features like JIT compilation. A more
security-focussed cloud provider might want to prefer the
more lightweight platform, as lower TCB usually implies
less exploitable security vulnerabilities, while the SecureV8
platform is clearly more suitable for high performance envi-
ronments, therefore, a trade-off has to be made.

12h2load https://nghttp2.org/documentation/h2load.1.html

Table 2: Request latency (3D Cube Lambda).

Baseline SecureV8 SecureDuk

New connection
Cold 120.7ms 144.7ms 265.8ms
Warm 101.0ms 94.0ms 265.5ms

Overhead 93.6ms 76.4ms 93.0ms

Open connection
Cold 46.4ms 82.2ms 172.3ms
Warm 16.7ms 18.1ms 170.9ms

Overhead 0.9ms 0.9ms 1.0ms

6 RELATEDWORK
Ryoan [16] allows users the processing of sensitive data
in an untrusted cloud platform. The project builds upon
Google’s NaCl sandboxingmechanism to protect the OS from
the content of the user-defined containers. This approach
would be required if Lambdas contained native components
or dependencies. However, this work focuses on providing a
trusted FaaS and the aspect of efficient resource utilisation
as well as the execution of JavaScript-based Lambdas as the
common denominator in this domain.
Shen et al. [22] try to approach the inherent tension be-

tween isolation and sharing, especially in SGX applications,
and propose a single-address-space solution comprising their
library OS as well as all user-level applications in a single en-
clave. In their case, isolation is achieved by leveraging Intel
MPX to support isolation between distrusting applications.

Boucher et al. [9] propose a FaaS architecture that focuses
on small entities and language-based isolation, achieved by
compiled micro services written in Rust. In contrast to their
work, we focus on supporting legacy Lambdas without re-
quiring them to be ported for the Lambda platform.

Alder et al. [4] propose a trusted FaaS architecture based
on the Duktape JavaScript interpreter. Their work is orthogo-
nal to this paper as they focus on the accounting of Lambdas
in such a platform. Furthermore, this work focuses on the
resource efficiency by comparing the use of two engines.

7 CONCLUSION
In this paper we proposed a novel design for a secure FaaS
architecture that is tailored towards efficient resource us-
age by utilising the isolation capabilities of recent JavaScript
engines. We validated our approach by two distinct imple-
mentations with different characteristics: the lightweight
SecureDuk platform that is based on the Duktape engine and
offers a relatively low TCB, and the SecureV8 platform with
much higher performance based on the Google V8 engine.

https://nghttp2.org/documentation/h2load.1.html
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