
Trusted Execution, and the Impact of Security on Performance
Stefan Brenner
TU Braunschweig

brenner@ibr.cs.tu-bs.de

Michael Behlendorf
TU Braunschweig

m.behlendorf@tu-braunschweig.de

Rüdiger Kapitza
TU Braunschweig

rrkapitz@ibr.cs.tu-bs.de

ABSTRACT
Due to increasing success of cloud computing offerings, the demand
for sensitive data processing and security in the cloud has also
increased. By incorporation of trusted execution technologies such
as the broadly available Intel Software Guard Extensions (SGX),
applications can be secured. However, software engineers need to
align the development process with the capabilities and properties
of such a technology, in order to correctly secure applications while
achieving good performance.

In this paper, we identify relevant aspects for partitioning ap-
plications and discuss two complementary designs optimising for
performance or security respectively. Additionally, our contribu-
tion comprises a performance and security measurement, at the
example of two established real-world applications, that we both
partitioned according to the above two distinct design approaches.
We consider this paper as a guideline for the partitioning process
of mainly data-handling services for usage of trusted execution and
as a collection of relevant characteristics during the development
of applications with trusted execution environments.

CCS CONCEPTS
• Security and privacy→Trusted computing; Software security
engineering;

KEYWORDS
Intel SGX, Application Partitioning
ACM Reference Format:
Stefan Brenner, Michael Behlendorf, and Rüdiger Kapitza. 2018. Trusted
Execution, and the Impact of Security on Performance. In 3rd Workshop on
System Software for Trusted Execution (SysTEX ’18), October 15, 2018, Toronto,
ON, Canada. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3268935.3268943

1 INTRODUCTION
Cloud security has been an issue since the early cloud computing
offerings, preventing cloud adoption and especially sensitive data
processing in the cloud. Distributed application deployments in
hybrid models combining public and private clouds are one way to
tackle this problem. However, this at least partly impedes some of
the benefits of public clouds for the customer, such as the prevention

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SysTEX ’18, October 15, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5998-6/18/10. . . $15.00
https://doi.org/10.1145/3268935.3268943

of upfront investment in hardware. With Intel SGX, a new technol-
ogy for trusted execution has reached widespread availability, even
in commodity hardware. It allows sensitive data processing in an
encrypted region of main memory securely, requiring to trust only
the CPU package, not the whole hardware platform. Companies
have already started adopting this technology in real-world (cloud)
applications such as the private contact discovery of the Signal
messenger [13] or Microsoft’s Azure Cloud [16]. However, when
designing trusted applications to run securely in the cloud, they
need to align their development workflow to respect the character-
istics of this new technology.

Initially, software engineers tried to naively run whole legacy ap-
plications inside trusted execution environments for quite obvious
reasons: the existing application does not need to be changed in
the optimal case, and every part of it resides in the trusted environ-
ment. While this sounds appealing and approaches like SCONE [1],
Graphene [19] and Haven [2] have shown the feasibility of this para-
digm, the trusted code base is huge—Haven, for example, comprises
a whole (library) operating system in the trusted environment. This
not only constitutes quite a significant attack surface, and thus,
decreases security, but also leads to major performance problems
specifically with the Intel SGX technology. As of now, SGX limits
the memory space for its secure enclaves where transparent encryp-
tion and integrity checks are applied to, to a maximum of only
128MB. Memory consumption exceeding this so called Enclave
Page Cache (EPC) leads to a significant performance penalty of up
to 1000× in the worst case [1].

Hence, in contrast to the above holistic approaches, researchers
have already tried to partition applications into secure and insecure
parts—so called application partitioning. Thereby, they run only
sensitive processing of confidential data in a trusted environment
and try to decrease the footprint of the secure application, regarding
both, trusted memory consumption and the trusted code base. Our
earlier work, SecureKeeper [3], is one example for this approach,
where we partitioned the ZooKeeper [7] coordination service for
usage of trusted execution. The authors of Glamdring [11] even tried
to automate this partitioning process by static code analysis in order
to derive which source code fragments need to reside in the enclave.
While automatic partitioning as of now is not mature enough to
result in an optimal partitioning, evenmanual partitioning demands
from the developer to select wisely the design properties of the
partitioned application in order to achieve security while retaining
good application performance.

In this paper we first investigate various metrics and properties
during the partitioning process of an application for usage with
the Intel SGX trusted execution technology. We propose a set of
various properties that affect the performance and the overall level
of security of a partitioned application and discuss and evaluate
their impact on two real-world applications. For this purpose we
implemented two complementary partitioning approaches, both

© ACM, 2018. This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published on the 3rd Workshop on
System Software for Trusted Execution (SysTEX ’18). https://doi.org/10.1145/3268935.3268943

https://doi.org/10.1145/3268935.3268943
https://doi.org/10.1145/3268935.3268943
https://doi.org/10.1145/3268935.3268943
https://doi.org/10.1145/3268935.3268943

Application

Enclave

Priviledged System Code

Hardware

Create Enclave

Execute

Execute

Execute

1 3
2

Legend

Trusted

Untrusted

Entrypoint

Figure 1: SGX enclave interaction.

at the example of these two example applications and evaluated
their performance and security. Thus, the contribution of this paper
comprises the following aspects:

• Identification of performance- and security-critical proper-
ties relevant for application partitioning, and discussion of
their effects on two example applications.

• Suggestion of two different partitioning designs that opti-
mise performance or security as needed.

• Partitioning of two real-world applications—both accord-
ing to two distinct partitioning approaches—and evaluation
and discussion of their resulting performance and security
properties.

The paper’s structure comprises a background section (Section 2),
followed by the analysis of enclave design metrics (Section 3) and
a detailed description of two different enclave designs (Section 4).
Next, we describe our two use case applications that we partitioned
with the identified metrics in mind (Section 5), and evaluate their
performance and security (Section 6). Finally, we discuss related
work (Section 7) and conclude the paper (Section 8).

2 BACKGROUND
In this section we describe relevant background of this paper, com-
prising the Software Guard Extensions (SGX) technology, and the
two services we partitioned for using trusted execution.

2.1 Intel Software Guard Extensions
Intel SGX [15] is a processor instruction set extension that allows
the creation of an x86-based Trusted Execution Environment (TEE)—
a so called secure enclave. Confidentiality of enclave memory is
protected by transparent encryption done within the CPU, i.e.,
plaintext is only available inside the CPU package. Valid interaction
with an enclave is only possible via explicit enclave calls (ecalls) to
enter an enclave and outside calls (ocalls) to call out of the enclave.
Figure 1 depicts the interaction of an untrusted application part
with an enclave, comprising an ecall ①, an ocall ②, and finally, an
ecall-return ③ to the untrusted application.

In general, enclaves are bound to a user process—even multiple
enclaves in one user process are possible. However, if all enclaves on
a platform do not fit into the so called EPC a special form of memory
swapping to regular RAM is required. As this process requires re-
encryption of the page’s contents, as well as measures to ensure

integrity and prevent replay and rollback attacks, it induces a high
performance overhead to the application.

As enclaves can only be operated in user space, SGX-based ap-
plications still depend on the underlying Operating System (OS) to
cooperate. This includes the enclave’s memory management inside
the EPC by the untrusted OS. Hence, SGX naturally cannot prevent
denial of service attacks by privileged code.

Each thread requires an available Thread Control Structure (TCS)
page during enclave entry for storing the thread’s state inside the en-
clave. Depending on the number of TCS pages added to an enclave,
this allows simultaneous enclave entries from multiple threads.

Intel offers an SDK to handle the enclave’s life cycle and memory
management. It also comprises the Enclave Description Language
(EDL) that allows the specification of the ecalls and ocalls that
the enclave supports and the “Edger8r” tool which acts a code
generator for ecall and ocall stubs. Finally, enclaves are compiled
and linked together with the generated code to a shared object,
which is loadable as an enclave by using SDK functions.

2.2 An SGX-aware Threat Model
We assume a typical threat model for SGX enclaves [2], specifi-
cally in an untrusted cloud environment: an attacker has full—even
physical—control over the server hardware and software environ-
ment. This includes that the attacker can control the OS and all
code invoked prior to the transfer of control into the SGX enclave.
The attacker’s goal is to break confidentiality or integrity of the
enclave’s code running in the SGX enclave.

Availability threats such as crashing an enclave are not of interest,
as, inherently to the SGX paradigm, the hosting OS can stop enclave
execution arbitrarily and at any time.

We do not consider side-channel attacks [21] and trust the de-
sign and correct implementation of the CPU package and the SGX
instructions including all cryptographic operations done by SGX.
While the recent Meltdown [12] and Spectre [9] bugs have shown
that even hardware security is not impeccable, these bugs can be
fixed by microcode and system software updates, and investment
in future CPU generations.

Finally, clients can read, modify and delete service-provided data
and therefore are inherently considered to be trusted.

2.3 Apache ZooKeeper
Apache ZooKeeper [7] is a coordination service for distributed sys-
tems, and itself a distributed system. Coordination with ZooKeeper
is realised by implementation of coordination primitives such as
locks or barriers using the ZooKeeper API that allows management
of so called znodes. Znodes represent folders and directories of a
virtual in-memory file system at the same time, i.e. they can have
children and store payload data. Additional features (e.g. callbacks)
and consistency guarantees such as global write ordering allow the
implementation of more complex coordination primitives.

2.4 Voldemort
Voldemort is a high-performance key value store implemented
in Java, used at LinkedIn and an open source clone of Amazon’s
Dynamo store [5]. It supports distributed setups with sharding
of the stored data across multiple hosts and features a horizontal

scalability of both, read and write accesses. However, Voldemort is
not a relational database system, as to its clients it offers a relatively
simple get/put API. According to its authors it represents a “big,
distributed, persistent, fault-tolerant hash table”1.

3 METRICS OF ENCLAVE DESIGN
Securing services with SGX enclaves can be done in various differ-
ent ways. While in our earlier work [3] we proposed the application
partitioning approach, this paper builds upon that and aims at the
investigation of performance- and security-critical enclave design
aspects. In the following we discuss these aspects and their impact
when securing a service with the application partitioning approach.

3.1 Enclave Performance Metrics
The performance of a partitioned application with SGX significantly
depends on at least two properties: the memory footprint of the
enclave and the amount of context switches to and from the enclave.
In order to achieve high performance of partitioned applications,
both, the memory footprint of the enclaves and the frequency of
context switches to and from the enclaves should be minimised.

3.1.1 Trusted Memory Footprint. Current SGX architectures are
limited to 128 MB of EPC memory for all enclaves on a platform.
Therefore, the enclave footprint inside the EPC must me minimised
for good performance. Otherwise, the costly SGX paging mecha-
nism causes dramatic performance degradation of up to 1000× as
shown in earlier work [3].

Of special interest is the absolute working set size of an enclave,
as pages containing rarely used code can be swapped out of the
precious EPC memory range. But, if all frequently used pages do
not fit inside the EPC, the SGX paging mechanism starts swapping
pages in and out continuously, causing a huge performance drop.

Furthermore, (common) libraries that are frequently an ingre-
dient of all enclaves impose another problem: as sharing of pages
between enclaves is not possible in general [14], code pages hold-
ing the same libraries in multiple enclaves reside in memory as
duplicates. Especially, if such a library is frequently used, as it is
the case for the cryptographic library supporting TLS encryption
for example, the respective pages can not be swapped out as they
would soon be required again. This limits the maximum number of
enclaves that can be operated with good performance on a platform.

3.1.2 Enclave Execution Mode Changes. In addition to context
switches caused by the OS scheduler and interrupts in regular ap-
plications, partitioned SGX applications also experience delays by
execution mode changes: entering and leaving the enclave causes
a constant performance overhead. In SGX applications this hap-
pens for each ecall and ocall, and also for asynchronous enclave
exits due to interrupts. Therefore, improving the performance of
enclavised applications also requires minimising the ecall interface
and frequency of an enclave by implementing just the right subset
of the application logic inside the enclave.

Delays caused by entering and leaving an enclave are due to
necessary microarchitectural tasks of the CPU, such as additional
checking of enclave page permissions and flushing the TLB. There-
fore, the number of ecalls and ocalls per second is a parameter to
1http://www.project-voldemort.com/voldemort/

be considered when trying to achieve good performance. Not com-
pletely under control of the developer, however, is the number of
asynchronous exits of an enclave, as these are caused by interrupts
and CPU exceptions at runtime.

The performance penalty of these context switches is constant
and in the order of magnitude of a process switch—about 8000
cycles have been measured [18]. Therefore, in some cases it is even
beneficial to move insensitive code into an enclave to reduce the
number of enclave transitions [11].

Recently, Intel introduced so called switchless calls for enclaves in
their SGX SDK. This allows to circumvent the transition overhead
for frequent short-running calls by a set of threads that stay inside
the enclave to process requests from the outside. However, this
feature not only requires suitable workloads but also fine-grained
configuration and tuning to gain a stable performance benefit.

3.1.3 Exploiting Parallelisability. As multiple threads can enter the
same enclave when enough TCS pages are available, computation
can be accelerated by using multiple threads. Accesses to shared
data structures, however, naturally require the usage of synchroni-
sation primitives such as mutexes in order to ensure consistency.

The SGX SDK provides a mutex implementation allowing syn-
chronisation of critical sections in enclaves. However, as no system
calls are available inside an enclave, these are implemented as spin
locks inside the enclave, in order to prevent unnecessary enclave
exits. When waiting for the acquisition of a mutex, the spin lock
implementation will eventually cancel and exit the enclave falling
back to an untrusted system call-based mechanism. This prevents
exiting the enclave for short waiting periods and staying in the spin
lock forever in case of long waits. However, it inevitably imposes
higher cost of synchronisation in enclaves, especially on high lock
contention, and needs to be respected by the enclave developer.

3.2 Enclave Security Metrics
In the previous section, we described properties that affect an ap-
plication’s performance. Some of these properties also affect the
security of a partitioned application. We discuss these and other
security-specific properties in the following.

3.2.1 Size of Trusted Code Base. The size of the Trusted Code
Base (TCB) is an important security-related metric. As studies have
shown, more lines of code usually lead to more exploitable se-
curity vulnerabilities [4, 10]. Therefore, the amount of code in a
TEE should be minimised. This can be done by offloading only
security-critical parts of the application logic to a TEE, while keep-
ing everything else in the untrusted environment. In this context,
security-critical parts are characterised by explicitly requiring ac-
cess to the plain text of the data in order to function properly. This
applies to application logic that processes, alters or analyses the
user data, whereas platform functions such as the network stack,
do not need access to plain text to transmit it via the network but
can also work with cipher text.

3.2.2 Enclave Interface. Since the OS is untrusted in our scenario,
all ecall arguments as well as return values from ocalls must be
considered as potentially malicious (c.f. IAGO attacks [2]). Con-
secutively, bounds checking and other measures alike need to be
implemented for each ecall and ocall to ensure correct and defined

http://www.project-voldemort.com/voldemort/

behaviour of the enclave in the face of arbitrary or malicious in-
put from the untrusted world. Therefore, the attack surface of an
enclave is also dependent of the number of available ecalls and
ocalls and their signatures in the interface description, and should
be considered during the design phase of the enclave in order to
optimise security. In general, ecalls and ocalls should be as specific
as possible to allow only little margin for manipulation, at the same
time the number of available calls should be minimised as well.

3.2.3 Fault Isolation. When designing enclaves, sensitive code can
either be comprised in one single enclave or split up and spread
across multiple enclaves that interact with each other, and in their
entirety constitute the trusted application. Both approaches have
different pros and cons, however, splitting an enclave can be ad-
vantageous as vulnerabilities are isolated and the harm of their
exploitation is limited. Partitioning code for multiple enclaves leads
to hardware-based isolation between the enclaves in contrast to
only software-based isolation when consolidating all trusted code
in a single enclave. This allows the isolation of distinct shards of
application data, as well as isolating ramifications of software bugs.

4 SINGLE VS. MULTI USER ENCLAVES
According to the performance and security metrics introduced in
the last section, typical interactive cloud-based services for large
numbers of users and equipped with secure enclaves can be de-
signed in different ways. In this section we discuss the pros and
cons regarding security and performance of two possible enclave de-
signs: one that optimises security by minimising the TCB, and one
optimising performance by reducing the trusted memory footprint.

The prevailing attacker model for SGX applications, that we also
chose for this work, not only considers the network as untrusted
but also the OS. Consequently, when securing an Internet service,
exchanged network messages need to be protected, for example by
using TLS. For this to work, the encryption endpoint must terminate
inside the enclave, while a complete network stack is not required
to be trusted. For managing the context of those TLS connections,
there are two fundamentally different approaches with contrary
advantages and disadvantages, that we describe in the following.

4.1 Single User Enclave (SUE)
The simplest approach from an enclave development point of view,
instantiates for each client connection a new enclave which is
responsible for only a single client—we call this a Single User En-
clave (SUE). This design results in a low TCB and memory footprint
of the enclave, and isolates the individual clients from each other
in different enclaves. In this design the enclave is agnostic of client
connections as the connection management is done completely
outside of the enclave, i.e. the untrusted world assigns client con-
nections to enclaves. This does not pose a security issue, as only
the correct enclave possesses the right key for message decryption
and otherwise will simply not work.

4.2 Multi User Enclave (MUE)
An enclave can also be designed tomaintain connections of multiple
client connections at once—we call this Multi User Enclave (MUE).
In this design, the enclave is aware of individual connections and
stores their associated meta data in an appropriate data structure.

This, may comprise the negotiated TLS session parameters and
keys for each client, and other application-specific meta data.

The MUE approach allows the usage of multiple identical en-
claves handling distinct subsets of all connections. From a program-
ming point of view, this does not change the enclave design but
only the required heap usage per enclave. Except for exactly one
enclave, the MUE approach still requires the untrusted application
to assign connections to enclaves.

4.3 Trading Performance for Security
The above metrics for achieving high security or high performance
are sometimes conflicting. In this section we discuss the individual
properties and their conflict potential.

Single User Enclave. The SUE enclave design leads to a high level
of security due to the low TCB, and also high performance for
a small number of clients, at least as long as all enclaves still fit
inside the EPC. However, when the number of clients increases, the
performance does not scale well with this approach as the equal
code pages of the enclave instances can not be deduplicated in
memory. For example, each enclave will require EPC memory for
storing the cryptographic library, which is also necessarily part of
the working set as each received message needs to be decrypted.
Hence, the according pages can not be swapped out of the EPC—at
least not permanently—as they are actively used.

Multi User Enclave. The MUE design leads to a much higher and
also a more dynamic heap usage inside the enclave, as it is directly
dependant on the number of simultaneously connected clients. As
of now, the available enclave memory can not be changed once the
enclave is running. Therefore, this approach requires an estimation
of the maximum heap usage at compile time (more precisely at
enclave signing time) by the developer. An overestimation does
not immediately harm the performance as unused pages can be
swapped, but delays enclave start-up as even empty pages need to
be added to the enclave upfront.

Performance Metrics. An advantage of the MUE approach is,
that connected but inactive clients will not occupy large portions
of EPC memory with their personal enclave, but instead they re-
quire only some space on the heap for their stored context in the
shared enclave. This at the same time, is one of the most important
advantages of this approach as libraries in memory such as the cryp-
tographic library can now effectively be used for multiple clients.
Thus, the overall memory footprint of MUE enclaves is much lower
compared to SUE enclaves. However, synchronisation of multiple
threads inside the same enclave is more critical with MUE enclaves,
as more threads enter the same enclave simultaneously. This puts
more load on the synchronisation primitives—in the worst case
leading to more ocalls as mutexes may more frequently use the
untrusted scheduler outside of the enclave.

Security Metrics. In the MUE enclave design, an exploitable se-
curity vulnerability will inherently affect multiple clients as the
isolation between clients is only software-based, whereas the SUE
approach offers hardware isolation between clients as they reside
in individual enclaves. In addition, SUE can reduce the TCB as only
a single connection is handled, leading to less code and a leaner
attack surface, and thus, higher security. In contrast, MUE enclaves

require the implementation of data structures for management of
connection-specific data such as the TLS context. This increases
the enclave code base, but allows a more efficient memory usage
which improves the performance. In our two use cases the EDL
interface of the enclaves contains the same amount of ecalls for
both MUE and SUE enclaves. However, the MUE design requires an
additional parameter for indicating the connection ID potentially
leaving more opportunities to an attacker.

Summary of Discussion. From the above discussion we conclude,
that SUE enclaves will be smaller in memory and code size, with
client connection management code only outside of the enclave and
a predictable heap usage. With the leanest attack surface and TCB,
SUE enclaves offer the highest level of security. However, with this
approach EPC memory usage increases quickly with the number
of clients. In contrast, MUE enclaves require more trusted code and
a higher memory footprint per enclave. Therefore, MUE enclaves
provide a more stable and better performance especially for high
numbers of clients. Finally, MUE enclaves offer a lower level of fault
isolation, as exploiting a bug in one enclave endangers multiple
users at once. Hence, an enclave developer must always trade the
significance of security versus the performance requirements.

5 USE CASE APPLICATIONS
This section describes the implementation details of the two par-
titioned services that we chose as use cases to demonstrate the
effects of our defined metrics on a real-world service.

SecureKeeper. In earlier work we proposed SecureKeeper [3], a
secure variant of Apache ZooKeeper coordination service with
SGX enclaves. We initially implemented SecureKeeper following
the SUE principle with only one client per enclave.

In this paper, we augmented its design to additionally support
the MUE approach by integration of a hash table that stores con-
nection contexts of different clients in the enclave. Just as with the
original SecureKeeper implementation, the enclave still contains
only functionality that is imperatively required to be trusted in
order to offer strong security.

Dumbledore. Our second use case application is the Voldemort
key value store, that we partitioned for usage of SGX from scratch
for this paper and that we call Dumbledore.

In general, the partitioning process of Dumbledore is similar to
the one of SecureKeeper. However, in Dumbledore no application-
specific state is required due to the properties of the original Volde-
mort service. This also leads to no necessity of synchronisation
primitives inside the enclaves, as all data required for processing a
message can be held on the respective thread’s stack, which simpli-
fies the enclave implementation.

6 EVALUATION
In this section we present the evaluation of our two use case ser-
vices SecureKeeper and Dumbledore and display their characteristics
regarding the metrics we introduced in Section 3.

6.1 Methodology
In order to evaluate the performance of our two services, we have
implemented an evaluation tool allowing fine-grained evaluation

15,000
15,200
15,400
15,600
15,800
16,000
16,200
16,400

1 3 5 7 9 11 13 15 17 19

96,000
98,000
100,000
102,000
104,000
106,000
108,000
110,000

Se
cu

re
Ke

ep
er

 [R
eq

/s
]

D
um

bl
ed

or
e

[R
eq

/s
]

Number of enclaves handling requests

SecureKeeper
Dumbledore

Figure 2: SecureKeeper and Dumbledore performance.

parameter tuning. The measurements of our evaluation were made
using multiple threads on each client machine, simultaneously
issuing requests to the target service. Our graph visualises aggregate
values of multiple runs, each with its own warm-up time and a
freshly started test subject.

We ran our evaluation tool on machines with 24 E5-2430 v2
cores, and the SecureKeeper replica and the Dumbledore server
on an SGX-capable E3-1230 v5 server with secure enclaves in SGX
hardware mode and the EPC size set to the maximum of 128 MB.

6.2 Performance Evaluation
For both of our use case services we measured the performance
difference when using various numbers of MUE enclaves to handle
the same amount of client connections. We used one client thread
per available CPU core on each client machine (i.e. 24 threads per
client machine). The client connections were equally spread across
all enclaves using the modulo operator. Both services show quite
a similar behaviour as can be seen in Figure 2, which illustrates
the performance of the SecureKeeper coordination service and
the Dumbledore key value store. In both cases, the performance
decreases slightly with higher numbers of enclaves as the CPU
caches can be used less effectively then. As can be seen in the
graph, the performance of SecureKeeper drops by 3.2% from one
enclave to 20 enclaves, and by 3.1% for Dumbledore respectively.
High numbers of enclaves would eventually cause the SGX driver
to swap EPC pages leading to dramatic performance drop, so we
can conclude that the usage of fewer enclaves per platform is faster.

In Figure 2, usage of the SUE approach would resemble the spe-
cial case of using 72 enclaves to handle the connections (not visible
in the graph), as in that case each client connection is mapped to a
dedicated enclave responsible only for this single connection. Obvi-
ously, in this case the overall throughput is much lower compared
to the MUE approach with a reasonably (low) number of enclaves.

6.3 Enclave Memory Footprint
By monitoring segmentation faults after removing all permissions
to the enclave pages, we obtained the working set size of the target
enclave in the EPC. After the system has warmed up and all connec-
tions are established, the working set memory footprint decreases
compared to a higher EPC memory usage during enclave start-
up. While SecureKeeper requires 322 during start-up and drops to
94 later (1.26 MB/0.37 MB), the Dumbledore KV store starts with
295 and falls back to 67 (1.15 MB/0.26 MB). Our measurements
emphasise the small memory footprint of enclaves in partitioned

applications in general, and the low working set memory footprint
compared to the larger binary size of the compiled enclave which
is quite close to the start-up memory usage outlined above. In ad-
dition to the code pages from the compiled enclave binary, the
TCS pages, the enclave stack and heap are also part of its runtime
memory footprint. For both services we also measured an increase
of the enclave’s memory footprint of about 5% when a new client
connects, which leads to the conclusion that the MUE approach
offers a favourable EPC usage efficiency. Note that an increase of
memory usage of only 5% in the MUE approach, is analogous to
the creation of a completely new enclave in case of SUE.

6.4 TCB Evaluation
In order to quantify the overhead for implementing MUE enclaves
instead of SUE enclaves, we also measured the TCB of the enclaves.
The application logic of the enclaves is relatively small with 4239
SLOC for SecureKeeper and 702 SLOC for Dumbledore. Due to
required message serialisation code from the original ZooKeeper
project in the enclave (c.f. SecureKeeper [3]), the SecureKeeper’s
TCB is larger. For both applications the SDK libraries are required
inside the enclave adding roughly 18k SLOC. We conclude that
the additional trusted code required to implement the multi-user
capability is relatively small (only 83 SLOC for Dumbledore), and
is worth it despite the increased TCB. In both use cases, the MUE
enclave requires an additional map data structure for storing con-
nection contexts and individual encryption keys per client.

7 RELATEDWORK
Existing works can be categorised into platforms for legacy ap-
plications and partitioning approaches. Haven [2] and Graphene-
SGX [19] feature execution of unchanged binaries in enclaves
based on a Library Operating System (LibOS) inside the enclave.
SCONE [1] offers a container abstraction inside SGX enclaves sim-
ilar to Docker. However, these approaches lead to a very large
enclave size, both, regarding their TCB and their memory footprint,
which will impact performance negatively.

The authors of Ryoan [8] try to limit the enclave size targeting
execution of generic modules in an enclaved sandbox. Panoply [17]
is also a LibOS approach focusing on the reduction of the TCB to
provide stronger security. Glamdring [11] offers support for par-
titioning applications on the source code level in order to design
minimal enclaves. Weisse et al. [20] propose a faster enclave in-
teraction scheme by relying on threads inside the enclave polling
memory shared with the untrusted world using spin locks.

The above approaches comprise various approaches for running
legacy and new code components inside enclaves and speeding
up interaction with enclaves. The goal of our investigation and
discussion of enclave security and performance metrics, however,
is a guideline regarding enclave design principles and is orthogonal
to these approaches.

Additional details regarding the characteristics of the SGX hard-
ware and the official SGX kernel module are given by Gjerdrum et
al. [6]. In their paper, the authors present measurements of enclave
transitions and properties of the SGX kernel module’s eviction
strategies. However, neither do they evaluate the performance of
real-world applications as we do, nor do they investigate scalability

behaviour and multi-threading scenarios which are particularly
important in a cloud setting as we do in this paper.

8 CONCLUSION
In this paper, we identified and discussed metrics affecting the secu-
rity and performance of applications incorporating SGX enclaves.
Derived from these metrics we presented two possible enclave de-
sign approaches for mainly data-handling services, applied them
to two different use cases and evaluated their characteristics. By
this we conclude that an enclave designer has to pay for security
by sacrificing performance—at least to a certain degree.

9 ACKNOWLEDGEMENT
This project received funding from the German Research Founda-
tion (DFG) under grant no. KA 3171/9-1.

REFERENCES
[1] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Mar-

tin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark
Stillwell, et al. 2016. SCONE: Secure Linux Containers with Intel SGX.. In OSDI.

[2] Andrew Baumann,Marcus Peinado, and GalenHunt. 2014. Shielding Applications
from an Untrusted Cloud with Haven. In OSDI.

[3] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias Lorenz,
Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza. 2016. SecureKeeper: Confi-
dential ZooKeeper using Intel SGX. In Middleware.

[4] Coverity Report 2014. Coverity Scan Open Source Report 2014. http://go.coverity.
com/rs/157-LQW-289/images/2014-Coverity-Scan-Report.pdf.

[5] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-value Store.
In SOSP.

[6] Anders T. Gjerdrum, Robert Pettersen, Håvard D Johansen, and Dag Johansen.
2017. Performance of trusted computing in cloud infrastructures with Intel SGX.
In CLOSER.

[7] Patrick Hunt, Mahadev Konar, FP Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-Free Coordination for Internet-Scale Systems. In ATC.

[8] Tyler Hunt, Zhiting Zhu, Yuanzhong Xu, Simon Peter, and Emmett Witchel. 2016.
Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data. In
OSDI.

[9] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. (January 2018).
arXiv:1801.01203 http://arxiv.org/abs/1801.01203

[10] Anil Kurmus, Sergej Dechand, and Rüdiger Kapitza. 2014. Quantifiable Run-time
Kernel Attack Surface Reduction. In DIMVA.

[11] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis
Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rudiger
Kapitza, Christof Fetzer, and Peter Pietzuch. 2017. Glamdring: Automatic Appli-
cation Partitioning for Intel SGX. In ATC.

[12] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. ArXiv (2018). arXiv:1801.01207 http://arxiv.org/abs/1801.01207

[13] Moxie Marlinspike. 2017. Technology preview: Private contact discovery for
Signal. https://signal.org/blog/private-contact-discovery/.

[14] Frank McKeen. 2014. Intel Software Guard Extensions (Specification).
[15] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,

Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative Instructions
and Software Model for Isolated Execution. In HASP.

[16] Mark Russinovich. 2017. Introducing Azure confidential computing. https:
//azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/.

[17] Shweta Shinde, D Le Tien, Shruti Tople, and Prateek Saxena. 2017. PANOPLY:
Low-TCB Linux Applications with SGX Enclaves. In NDSS.

[18] Hongliang Tian, Yong Zhang, Chunxiao Xing, and Shoumeng Yan. 2017. SGXK-
ernel: A Library Operating System Optimized for Intel SGX. In CF.

[19] Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. ATC.

[20] Ofir Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining Lost Cycles with
HotCalls. In ISCA. ACM Press.

[21] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In S&P.

http://go.coverity.com/rs/157-LQW-289/images/2014-Coverity-Scan-Report.pdf
http://go.coverity.com/rs/157-LQW-289/images/2014-Coverity-Scan-Report.pdf
http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01207
http://arxiv.org/abs/1801.01207
https://signal.org/blog/private-contact-discovery/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/

	Abstract
	1 Introduction
	2 Background
	2.1 Intel Software Guard Extensions
	2.2 An SGX-aware Threat Model
	2.3 Apache ZooKeeper
	2.4 Voldemort

	3 Metrics of Enclave Design
	3.1 Enclave Performance Metrics
	3.2 Enclave Security Metrics

	4 Single vs. Multi User Enclaves
	4.1 Single User Enclave (SUE)
	4.2 Multi User Enclave (MUE)
	4.3 Trading Performance for Security

	5 Use Case Applications
	6 Evaluation
	6.1 Methodology
	6.2 Performance Evaluation
	6.3 Enclave Memory Footprint
	6.4 TCB Evaluation

	7 Related Work
	8 Conclusion
	9 Acknowledgement
	References

