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ABSTRACT
The cloud computing paradigm enables the flexible and scalable
outsourcing of workloads. However, cloud customers are often re-
luctant to entrust their sensitive data with cloud providers. This is
due to the fact that the infrastructure is owned by another company
and a resulting loss of control. With the recent advent of powerful
ARM hardware targeted for data centres, there is the opportunity of
using trusted execution technology provided by ARM TrustZone to
enhance the protection of cloud customer’s data.

In this paper we propose TrApps, a secure platform for general-
purpose trusted execution in an untrusted cloud with multiple iso-
lated tenants based on the ARM TrustZone technology. Our system
targets the parallel execution of partitioned applications of distinct
tenants with lean security-sensitive components, and is based on a
minimal trusted code base in the secure world of ARM TrustZone
when compared to similar systems. In our evaluation we show the
feasibility of our approach, and demonstrate its performance with
trusted execution of memcached with an overhead of only 36.9%
compared to the vanilla implementation and execution.
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1. INTRODUCTION
The economic impact of the cloud computing paradigm is ever-

growing, due to benefits such as cost-efficiency, scalability and
flexibility for both, cloud providers and customers [1]. However,
in many cases a cloud deployment is not a suitable option: legal is-
sues, geographical constraints as well as business secrets contained
in the data are just a few of many reasons. The lack of trust in
cloud providers by their customers is due to the providers ability
to access and even change all code and data processed within the
scope of their infrastructure [2, 3].
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One way to tackle this problem is the use of trusted execution
technology. ARM TrustZone provides trusted execution on the
ARM architecture, by splitting the execution environment in a se-
cure and an insecure compartment [4]. This technology also allows
a cloud customer to establish trust in applications running in the
secure world of TrustZone by the usage of remote attestation. Even
though the ARM architecture has been more popular for embed-
ded and mobile devices in the past, there has been a recent push
towards powerful server-class platforms [5, 6]. For example, the
AMD Opteron A1100 features a powerful multi-core 64 Bit ARM
platform [7], and cloud providers have already started to adopt the
ARM platform due to its cost and energy efficiency [8–10].

Remote attestation is key in establishing trust into a remote
trusted execution environment, by measuring the code running in-
side it and proving the result to a remote party. However, naively
attesting the whole software stack is impractical in a cloud sce-
nario: the cloud provider would be forced to publish the source
code of all his management and infrastructure software including
the hypervisor to allow this. However, this is problematic since the
competition between cloud providers results in highly-customized
software [11]. In addition, any updates to attested software would
require remote attestation again. Furthermore, the attested soft-
ware stack would be huge, resulting in a higher probability for ex-
ploitable security vulnerabilities [12].

Opposed to that, our goal is to minimize the Trusted Code Base
(TCB) by partitioning the application’s code base, and running only
small sensitive application components in a trusted environment.
Hence, we aim at excluding the cloud provider’s software stack
from the TCB, in order to significantly reduce the TCB and avoid
the above outlined security and flexibility issues.

In this paper we propose TrApps (Trusted Apps), a platform
for partitioned applications, tailored to an untrusted cloud envi-
ronment. Our approach is based on the ARM architecture and
makes use of TrustZone as an implementation of trusted execution.
The TrApps platform comprises the lightweight micro kernel-based
Genode Operating System (OS) framework [13] and features mul-
tiplexing TrustZone’s secure world to run multiple secure applica-
tion components simultaneously and isolated from each other. In
contrast to the slim secure OS which is part of the TCB, we have a
Linux system running in the untrusted environment, which is sup-
posed to host the cloud provider’s software stack. Our approach
also contains an efficient solution to the technically challenging
cross-world communication between the two worlds of TrustZone.
The resulting system allows the execution of partitioned applica-
tions with small trusted compartments protecting sensitive data. We
have proposed the application partitioning approach in our earlier
SecureKeeper project [14]. In the evaluation of TrApps, we show
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Figure 1: ARM TrustZone System Architecture.

the feasibility of our approach and measure its performance by the
example of memcached1 as a use case application of TrApps.

This paper is structured as follows: firstly, we provide the re-
quired background of our work in Section 2, followed by a detailed
description of the design and implementation of TrApps in Sec-
tion 3. Next, we describe our use case application memcached in
Section 4 and show the results of our evaluation in Section 5. In
Section 6 we summarise existing work and compare it with TrApps,
and conclude the paper in Section 7.

2. BACKGROUND AND THREAT MODEL
In this section we briefly describe the fundamentals of the ARM

TrustZone technology and the Genode OS framework that we used
as a secure world operating system.

2.1 ARM TrustZone in a Nutshell
ARM TrustZone [4] is a security hardware extension for ARM

processors that implements two virtual processors, each assigned to
either the normal world or the secure world. This allows hardware-
based isolation between these to worlds, comprising the system bus
and peripheral’s configuration. By this, two software components
can run in parallel on the system, with the secure world being the
more powerful one. The secure world is able to access normal
world memory, while the normal world can only access the mem-
ory regions designated to normal world usage at system boot time.

During the early boot process, the processor first starts in secure
mode and boots the secure operating system kernel which can be
measured by hardware means for future attestation. Afterwards,
the so called monitor must be initialised to support world switch-
ing. This involves switching processor registers during the world
switch in order to resume the suspended execution. Finally, the
boot process continues in normal world and a normal world OS
can be booted, running concurrently with the secure world OS.

Depending on the configuration of the TrustZone Interrupt Con-
troller (TZIC), interrupts can be assigned to one of the two worlds.
Then, interrupts cause a world switch to the according world allow-
ing interrupt handling by the respective world’s software. For ex-
ample, a timer interrupt can be assigned to secure world, to ensure
liveness of secure world, while Network Interface Controller (NIC)
interrupts may be assigned to the normal world.

Apart from implicit world switches caused by interrupts, there is
also a mechanism that allows explicit world switches. This can be
done by issuing a secure monitor call using the smc instruction as
part of the TrustZone CPU extension. Once smc is called, the CPU
switches to monitor mode, which is implemented by the system
architect and responsible for saving and restoring the CPU context
of normal and secure world, respectively.

During the boot process, the available system memory can be
assigned to either the secure or the normal world. Any accesses

1http://memcached.org/

from normal world to secure world memory are prevented by the
architecture. However, the secure world can freely access all mem-
ory of the normal world. Hence, communication between the two
worlds of TrustZone can be done via shared memory, which must
be part of the normal world memory space as it is accessible by
both worlds. Furthermore, shared memory between worlds must
be CPU cache-agnostic, as the secure world and normal world CPU
contexts maintain individual caches.

2.2 Genode OS Framework
The Genode OS framework [13] allows building secure special-

purpose operating systems based on a micro kernel architecture.
While initially supporting the L4 family of micro kernels, recent
releases include Genode’s independent micro kernel base-hw.

Genode provides strong process isolation by imposing a strict
organizational structure on processes. By implementing capability-
based security [15], Genode enforces security policies. Addition-
ally, Genode enables secure Inter-process Communication (IPC)
based on capabilities, while interfaces are defined in a Remote pro-
cedure call (RPC)-like fashion: one process announces an RPC
server providing functions that can be called by other processes.

TrustZone support is implemented by running the normal world
as a Virtual Machine (VM) represented as a process within Gen-
ode which is managed by the scheduler just like any other process.
The TrustZone VM involves a user-level Virtual Machine Moni-
tor (VMM) running on top of Genode, which controls and manages
world switches, and handles hypercalls from the normal world. The
amount of normal world memory can be configured by Genode and
defines the size of available memory of the VM representing Trust-
Zone’s normal world.

2.3 Assumptions and Threat Model
In this paper we assume a cloud provider offering a cloud plat-

form to their users. The cloud provider operates her infrastructure
but is untrusted, she can install arbitrary software in the cloud and
eavesdrop and alter the network traffic. As the cloud provider of-
fers a multi-tenant cloud and users may have conflictive interests,
users distrust each other mutually.

We assume the attacker of TrApps being the cloud provider, an-
other user or an external party. Thus, we allow certain (basic) phys-
ical attacks including boot loader replacements or booting other
systems for example. However, we exclude cold boot attacks as
TrustZone does not support transparent memory encryption like
Intel SGX [16]. Same as for other trusted execution technologies
such as Intel SGX, we explicitly exclude Denial of Service (DoS)
and any kind of side channel attacks.

3. DESIGN AND IMPLEMENTATION
In this section we give an overview of TrApps and describe its

system architecture, which has been designed with our threat model
in mind (See Section 2.3). Additionally, we describe the program-
ming model of secure application compartments built on top of the
TrApps platform.

With the TrApps platform we target securing applications and
services in an untrusted cloud environment in order to allow sensi-
tive data processing in the cloud without trusting the cloud provider.
The usage of trusted execution environments (TEEs) allows estab-
lishing trust into application components by means of remote at-
testation, and storage of secrets in the trusted environment after
successful verification of the TEE. TrustZone allows the creation
of such TEEs, however, it only supports one TEE per platform—
the secure world. Therefore, with TrApps we aim at circumvent-
ing this limitation which is crucial in a multi-tenant cloud scenario

2
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Figure 2: Architecture Details of TrApps.

and allow multiple isolated components inside the secure world of
TrustZone. This allows parallel execution of applications of vari-
ous cloud tenants each with their own secure and strongly isolated
compartments on TrustZone platforms. Hence, our notion of se-
cure compartments is very similar to enclaves in the context of Intel
SGX [16] applications.

Compared to Intel SGX, the TrApps approach on TrustZone has
several advantages: available memory for Intel SGX enclaves is
currently limited by the architecture to 128 MB for all enclaves
on a platform, exceeding this limit causes high performance penal-
ties [14]. In case of TrustZone an arbitrary share of system memory
can be dedicated to secure world, allowing large trusted execution
environments. However, ARM TrustZone does not support trans-
parent memory encryption like Intel SGX or AMD SME [17].

3.1 System Architecture
The architecture of TrApps comprises the Genode OS running in

secure world and multiplexing the secure world in order to support
trusted compartments by various individual cloud customers. In the
normal world, we run a standard Linux system which manages the
majority of peripherals and especially the network card, and thus,
is the only entity with network access.

Large parts of secure TrApps applications are supposed to run
in normal world, where they can easily create sockets and receive
connections from the internet, while very small parts of their ap-
plication logic are offloaded as a secure compartment to the secure
world—implemented as a Genode child process. This requires the
partitioning of applications and leads to a very small TCB, and
thus, a small attack surface and a high level of security. The ra-
tionale of this partitioning approach has been shown in our earlier
work already: our SecureKeeper [14] project is a secure Apache
ZooKeeper [18] instance for execution on an Intel SGX platform
by offloading small parts of its application logic to enclaves.

For our TrApps platform we introduce the notion of Divided
Applications (DivAs), that comprise a regular Linux application—
called Normal Application (NormA)—with one or multiple trusted
compartments called Secure Application (SecA). A NormA is able
to upload a SecA binary to secure world and can communicate with
it by using the message queues provided by TrApps (Section 3.3).

Figure 2 illustrates the architecture of our TrApps platform and
shows the Genode OS together with various SecAs running in se-
cure world, and the Linux system with the TrApps kernel module
and multiple NormAs running in normal world.

Interaction with TrApps from a user space application of the nor-
mal world is done via a Linux kernel module that provides the
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Figure 3: MQueue Memory Range.

above described functionality via ioctl operations. This allows
multiple DivAs on a platform to use trusted execution capabilities
simultaneously and isolated from each other. The TrApps Linux
kernel module maintains a distinct connection for each SecA held
by a normal world application. For each connection, the interaction
with TrApps from the NormA, is done via ioctl calls to our Linux
kernel module. The TrApps kernel module features a simple inter-
face that allows opening and uploading a SecA binary, and closing
a SecA, as well as reading and writing data via the message queue
as illustrated in Listing 1.

int fops_open(struct inode* inode , struct file* fp);
long ioc_put(put_args_t* args , struct file* fp);
long ioc_read(read_args_t* args , struct file* fp);
long ioc_write(write_args_t* args , struct file* fp);
int fops_close(struct inode* inode , struct file* fp);

Listing 1: TrApps Kernel Module Interface.

In the secure world, SecAs run in process isolation as provided
by Genode. Their lifecycle and the message queues for cross-world
communication are managed by the Secure World Manager (SWM)
of TrApps. A SecA can access the SWM and wait for messages
from its associated NormA by using RPC calls provided by the
SWM for reading and writing data from and to the message queues.

3.2 TrApps in the Cloud Context
The idea of TrApps is to integrate orthogonally into the exist-

ing software stack of a cloud provider: during the boot process of
a TrustZone hardware platform, secure world is initialised before
normal world. After Genode has finished booting in secure world,
the boot process will continue initialising the normal world, which
is supposed to host the software stack of a cloud provider compris-
ing their custom Linux kernel and management and virtualisation
software such as Docker2 for example. This allows to keep the
whole cloud provider’s software stack out of the TCB, and thus un-
trusted, and also allows updates of the cloud provider’s software
without the need of anew remote attestation of the secure world
software. Furthermore, with this approach the business secrets that
a cloud provider’s kernel or management software may contain are
not subject to remote attestation and not required to be published
by the cloud provider.

3.3 Cross-world Communication
TrApps establishes a bidirectional cross-world communication

channel by allocating a pair of message queues (read- and write-
queue) per DivA. As depicted in Figure 2, the memory used for
message queues resides in normal world memory, thus is accessi-
ble from both worlds. We use cache-agnostic DMA memory, to
prevent cache conflicts between both worlds since the secure world
and normal world CPU contexts maintain distinct caches.

In addition to the messages themselves, message queues hold
meta data and state information within their memory range (Fig-
ure 3), consisting of 8 fields: Relative read and write pointers rd
2http://docker.io
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and wr, that point to the memory location of the next message to
be read/written. Pointers to semaphores sem_* for synchronization
purposes, and the dma_address, a pointer to the virtual address of
the DMA memory for the message queue. The kernel_address

points to the same address, but is kernel-virtual.
As a new message is written to the message queue, in order to

minimise response time we immediately notify the respective re-
ceiver about the new message. This is done using a hypercall when
notifying a SecA—strictly speaking the SWM—about a new mes-
sage, and by injecting an interrupt which is handled by the TrApps
kernel module when notifying a NormA about a new message.

3.4 Programming Model
When creating DivAs for the TrApps platform, the developer is

supposed to identify critical parts of application logic processing
sensitive data, which have to be offloaded to a SecA—we called this
application partitioning approach in earlier works already [14].
The majority of an application’s code base should remain in the
NormA in order to keep the TCB of the resulting DivA as small as
possible as this increases the security of the application by limiting
the attack surface and probability of exploitable vulnerabilities.

In general, a DivA can launch an arbitrary number of different
SecAs at any time during its life cycle, and communicate with each
of them using our TrApps kernel module by exchanging arbitrary
messages on the message queue. The SecA life cycle always starts
with opening a connection to the TrApps kernel module and up-
loading a binary with the respective SecA code. Also, SecAs can
be stopped and terminated, releasing their memory at any time dur-
ing the NormA life cycle, and will be killed when the connection
to the kernel module closes (e.g. in case of a crash of the NormA).

4. USE CASE: SECURE MEMCACHED
In order to demonstrate usage of our TrApps platform for se-

curing real-world applications we partitioned memcached3. Mem-
cached is an excellent example for a protagonist service featuring a
simple key-value database which can be used in cloud applications.

In order to secure the data stored inside memcached, we use the
“black box”-approach, that we have proposed in previous work
for securing Java-based services in an untrusted cloud environ-
ment [14]. The rationale of the approach is to re-encrypt the data
right after receiving it from the network before inserting it into the
data store. By this, the service only sees encrypted data and han-
dles it as a black box. The re-encryption of the data is done in
a TEE and comprises decryption of whole network packages (c.f.
Transport Layer Security (TLS)) and re-encryption of the individ-
ual keys and values after parsing the received message.

Essentially, two different types of encryption are used in the
black box approach: while complete data packets are encrypted
during transmission via the network (c.f. TLS), only sensitive parts
of the requests and responses are encrypted when the data is pro-
cessed and stored on the server-side.

When porting memcached onto the TrApps platform, we for-
ward received network packages to a SecA. These packages are
encrypted for transmission via the network and contain complete
memcached requests (e.g. get(), set()). Inside the SecA we first
decrypt the complete message and analyse it in order to identify
sensitive data. Next, the sensitive data is encrypted by the SecA
which comprises the key and value of a data set in case of mem-
cached. Finally, the request is forwarded to the memcached ap-
plication which is untrusted and outside of the SecA running as a
NormA. As all sensitive data is encrypted, but except for that still
3http://memcached.org/
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is a valid memcached request, it can be safely handled by the un-
trusted code of memcached. This procedure is done after the arrival
of each request and before transmitting a response, and essentially
replaces the TLS endpoint in order to keep the data encrypted until
it reaches the secure execution environment of the SecA.

We implemented the memcached use case application based on
the original memcached code where we placed hooks to the SecA
after client requests are received from the network before they are
processed by memcached, and before responses prepared by mem-
cached are sent to the client via the network. All trusted appli-
cation logic is implemented as one SecA running in the secure
world, which processes the exchanged packets (all requests and re-
sponses) as described in the previous paragraph. In order to im-
plement the cryptographic operations we have used the libsodium4

cryptographic library in the secure world. By using TrApps, our
secure memcached use case application is able to protect the con-
fidentiality and the integrity of all data stored in memcached at a
minimal of the SecA of only 481 Source Line of Code (SLOC).

5. EVALUATION
To measure the performance overhead when using TrApps to se-

cure real-world applications, we partitioned memcached (See Sec-
tion 4) and measured the resulting performance impact.

The evaluation has been done on the i.MX53-QSB development
board by NXP—formerly Freescale—with an open ARM Trust-
Zone implementation. We ran our TrApps platform on the board
and hosting the Secure Memcached application with an integrated
SecA. Then, we measured the performance of Secure Memcached
from another machine connected via the network. In order to mea-
sure the performance, we used the benchmark application pro-
vided by memcached, called memslap, which executes a mixture
of get() and set() operations. This experiment has been re-
peated for various payload sizes between 0 and 8192 Bytes, ex-
ecuting several thousands of requests for each individual payload
size for which memslap calculates the throughput per second.

The results of our experiment are illustrated in Figure 4. As
can be seen, the relative overhead decreases for larger payloads,
as the overhead is mostly due to the constant world switching time
of ARM TrustZone. On average, usage of TrApps imposes an over-
head of 36.9% on Secure Memcached, however, for larger payloads
the overhead is much lower (only 21.7% for 8k payloads). Equally,
the network traffic of Secure Memcached is lower, as less requests
are transmitted per second.

4https://download.libsodium.org/doc/
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6. RELATED WORK
Protecting the rich OS against userland threats: A few sys-

tems using TrustZone do not support general-purpose secure com-
partements, but only aim at protecting the normal world from user-
land threats. ARMLock proposes a TrustZone architecture aiming
at software fault isolation [19], while SPROBES [20] instruments
the normal world OS kernel to protect against rootkits by imple-
menting normal world kernel introspection mechanisms protected
by TrustZone. Azab et al. propose an approach that implements
monitoring the normal world kernel from secure world to increase
security [21]. It follows a very different goal than TrApps, and
while targeting an embedded scenario, does not support trusted
execution for user-defined general-purpose components in secure
world but only protects several parts of the normal world OSs from
the secure world. Finally, SeCReT [22] includes special protection
of the communication channel between normal and secure world
components. However, this is unnecessary in the case of TrApps, as
the normal world is completely untrusted, including the untrusted
kernel and the cloud provider’s software stack. Furthermore, in
contrast to the above approaches, TrApps does not aim at protecting
the normal world, but secures the application components running
in secure world from each other and the cloud provider.

Secure Runtime Systems: Various existing approaches target
generic secure runtime platforms. Firstly, Winter et al. [23] pro-
pose a trusted computing approach on ARM TrustZone, but op-
posing our principle of minimising the TCB they use a full-blown
Linux kernel in secure world. Nokia proposed On-board creden-
tials [24] which is implemented on M-Shield technology instead of
ARM TrustZone and targets mobile and embedded scenarios. In
contrast to Winter et al. [23], Luo et al. [25] in fact use a very small
secure OS, but their cross-world communication scheme does not
offer the benefits and guarantees of our message queue implemen-
tation, as it relies on the developer to take care of synchronisation
of cross-world message exchange. In 2013, Samsung presented the
Knox [26] system which uses ARM TrustZone, but it isolates two
environments based on Android from each other and targets mo-
bile usage, for example isolating business and personal use of the
same smartphone. The Trusted Language Runtime (TLR) by San-
tos et al. [27] goes beyond the system by Luo et al. [25], offering
a more controlled cross-world communication mechanism, how-
ever, while their TCB is much larger than ours, they do not support
multi-tenant isolated cross-world communication. With the advent
of the Intel SGX technology, Baumann et al. proposed a system that
allows the execution of unchanged legacy applications with their
Haven system [28]. While the benefits of running legacy applica-
tions unchanged in a secure environment may sound appealing, the
system suffers from a very large TCB due to the included library
OS and other dependencies inside the secure container which de-
creases the level of security and results in a large attack surface.
Similarly, SCONE [29] proposed by Arnautov et al., that allows
running Docker containers in Intel SGX enclaves, comprises a sig-
nificantly sized TCB. Brito et al. [30] proposed a secure image pro-
cessing system in a cloud scenario based on ARM TrustZone. In
contrast to TrApps, their approach does not allow general purpose
execution and independent multi-tenant cross-world communica-
tion. Rubinov et al. [31] propose an approach which is also similar
to TrApps, but targeting an embedded environment with Android
running in normal world. This in turn requires all normal world
applications to be written in Java and interact with the secure com-
ponent using Java Native Interface (JNI). TrApps is more generic
in this regard and does not limit normal world applications to Java.

Also the TCB of their secure OS comprising SierraTEE5 is about
two times larger compared to TrApps’s Genode. Finally, Lee et al.
proposed a TrustZone-based platform for securing small applets in
personal home routers [32]. Apart from targeting cloud scenarios
instead of home routers, TrApps features high resource efficiency
by dynamically scheduling secure and normal world instead of pin-
ning CPU cores statically to one of the two worlds.

While most works in ARM TrustZone target embedded and mo-
bile scenarios, to the best of our knowledge, TrApps is the first
platform featuring a low TCB while supporting efficient general-
purpose execution of secure compartments with strong isolation in
a multi-tenant cloud scenario without trusting the cloud provider.

Trusted Hypervisors: Existing works comprise many different
forms of trusted hyervisors (most of them) based on ARM Trust-
Zone targeting various goals. Terra [33] is one of the earlier trusted
hypervisors and allows the creation of trusted VMs which in turn
contain a whole trusted OS leading to an enormous TCB. McCune
et al. proposed TrustVisor [34] that allows the trusted execution of
small pieces of sensitive code. One step further advances CloudVi-
sor [35] in a cloud scenario, using nested-virtualization to put an-
other tiny hypervisor underneath the commodity hypervisor, but the
system focuses on securing complete VMs instead of small compo-
nents only, again leading to a large attack vector and TCB. Not in
the cloud context but in the environment of a untrusted OS, Ink-
Tag [36] aims at the integration of high-assurance processes using
virtualization technology. Recently, Jang et al. [37] proposed Pri-
vateZone, a system very similar to our TrApps. While they also
support small trusted components, their system comprises a larger
TCB than our TrApps and requires hardware supporting the ARM
virtualisation technology. Furthermore, in contrast to the above
trusted hypervisors, the goal of TrApps is the transparent integra-
tion into the existing cloud software stack, and support for small
manageable trusted components. As described in our design sec-
tion (See Section 3), our goal is to enhance the existing software
stack of the cloud provider, even allowing updates to the untrusted
software stack that do not affect the secure world, instead of replac-
ing the cloud provider’s software stack.

7. CONCLUSION
Tackling the security and privacy issues of modern cloud com-

puting environments, we have shown TrApps, a secure TrustZone-
based cloud runtime for partitioned applications. While the parti-
tioning approach minimises the TCB, our architecture allows multi-
tenant execution of various secure components owned by different
tenants in parallel. To the best of our knowledge TrApps is the first
ARM-based platform featuring trusted execution tailored for un-
trusted clouds, and incorporating highly efficient cross-world com-
munication at the same time. Our evaluation shows the feasibility
of our approach and a low performance overhead of only 36.9% in
our use case application memcached.
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