
This is the authors’ version of an article published in the Proceedings of the 47th International
Conference on Dependable Systems and Networks (DSN ’17), Denver, USA, 26–29 June 2017.

Rollback and Forking Detection for Trusted
Execution Environments using Lightweight

Collective Memory
Marcus Brandenburger
IBM Research - Zurich

Christian Cachin
IBM Research - Zurich

Matthias Lorenz
TU Braunschweig

Rüdiger Kapitza
TU Braunschweig

Abstract—Novel hardware-aided trusted execution environ-
ments, as provided by Intel’s Software Guard Extensions (SGX),
enable to execute applications in a secure context that enforces
confidentiality and integrity of the application state even when
the host system is misbehaving. While this paves the way towards
secure and trustworthy cloud computing, essential system support
to protect persistent application state against rollback and
forking attacks is missing.

In this paper we present LCM – a lightweight protocol to
establish a collective memory amongst all clients of a remote
application to detect integrity and consistency violations. LCM
enables the detection of rollback attacks against the remote
application, enforces the consistency notion of fork-linearizability
and notifies clients about operation stability. The protocol exploits
the trusted execution environment, complements it with simple
client-side operations, and maintains only small, constant storage
at the clients. This simplifies the solution compared to previous
approaches, where the clients had to verify all operations initiated
by other clients. We have implemented LCM and demonstrated
its advantages with a key-value store application. The evaluation
shows that it introduces low network and computation overhead;
in particular, a LCM-protected key-value store achieves 0.72x –
0.98x of a SGX-secured key-value store throughput.

I. INTRODUCTION

Despite numerous efforts by industry and academia cloud
computing suffers still from trust issues [24], [33]. This is
not surprising as companies possess limited control once their
applications and data enter the cloud. Users have to trust the
operating personal and a complex software stack composed
of management software, virtualization layers, as well as
commodity operating systems. On top, cloud providers are
typically reluctant to share their exact system details because
this information is critical for their business.

The recently released Software Guard Extensions
(SGX) [31] technology of Intel is expected to make a
change, as it addresses trust issues that customer face when
outsourcing services to off-site locations and still gives
cloud providers the freedom to not disclose their system
details. SGX offers an instruction set extension that allows
to establish trusted execution contexts, called enclaves.
These enclaves might be tailored and comprise only a small
dedicated fraction of an application [21], [8] or can contain an
entire legacy application and the necessary operating system
support [4], [2]. Thereby, the plaintext of enclave-protected
data and code is only available for computation inside the

CPU, and encrypted as soon as it leaves the CPU package
again. In this way, enclave-residing data is even guarded
against unauthorized accesses by higher privileged code and
from attackers with administrative rights and physical access.

While SGX can be considered as a big step forward towards
trustworthy cloud computing, some attack vectors nevertheless
remain. One important open issue are rollback and forking
attacks on stateful applications that make use of persistent
storage. Whereas SGX provides mechanisms against main-
memory replay attacks, persistent storage is not under the
direct control of SGX and therefore harder to secure. The need
to handle system restarts, operating system crashes, and power
outages makes a completely secure solution for state continuity
difficult to achieve. Baumann et al. [4] who pioneered the field
by proposing application enclaves acknowledge this issue and
suggest to use a central external service that is contacted on
every request. However, this only delegates the problem to an
external entity, demands additional remote communication and
adds another single point of failure. Strackx and Piessens [38],
on the other hand, proposed abstractions on top of hardware-
based trusted counters. This and similar approaches [14], [26],
[32], [38] enable immediate detection of forking attacks but
suffer from bad performance, as writing and reading trusted
non-volatile counters for every request is time-consuming.
Finally, there are a number of approaches that do not rely
on secure execution contexts, such as enclaves, but utilize
only plain resources of an untrusted provider [7], [10], [11],
[17], [30], [35]. These systems typically require cooperating
clients to verify each server response. In particular, this comes
with additional communication overhead between clients and
server, and requires costly cryptographic verification.

In this paper we present Lightweight Collective Memory
(LCM) – a distributed protocol to establish a collective mem-
ory amongst all clients of a remote application to detect
integrity and consistency violations. By leveraging trusted
execution environments (TEEs), such as SGX, LCM keeps
client interaction and service state confidential. It ensures
fork-linearizability [30], which denotes the strongest consis-
tency notion among the clients that can be achieved in the
presence of rollback attacks without direct client-to-client
communication and in absence of trusted non-volatile memory.
Furthermore, LCM notifies clients about operation stability.
This criteria refers to stable operations where a client can be

Server (S)

Stable
storage

Clients Trusted execution environment (TEE)

load
store Persistent

state

Trusted execution context (T)

Protected
memory (M)

invoke
operations

Fig. 1. System model comprising trusted clients, a potentially misbehaving
server S that hosts a trusted execution context T .

sure that its request has been acknowledged by a designated
number of other clients. A typical size would be the majority
of clients. Finally, compared to previous approaches that rely
on trusted counters, applications secured by LCM can be
migrated across physical TEEs and maintain their capability
to detect rollback attacks and to enforce fork-linearizability.

We implemented LCM as a Java and C++ framework and
demonstrate its advantage by securing a key-value store. We
evaluated the performance of the prototype by using the YCSB
benchmark and compare with native execution and SGX-
secured approaches. It turns out that a SGX-secured key-value
store achieves 0.42x – 0.78x performance of unprotected native
execution. However, the performance of LCM is 0.72x – 0.98x
of the SGX-secured key-value store throughput, while on top
enabling rollback and forking detection.

The remainder of the paper is structured as follows. Sec. II
provides a detailed problem description and outlines the neces-
sary background. In Sec. III, past solutions for state continuity
are discussed and the goals of LCM are stated. Next, the
overall architecture and the LCM protocol are introduced in
Sec. IV. Sec. V provides the details of our implementation
using SGX. Subsequently, Sec. VI explains the evaluation
results. Finally, Sec. VII outlines related approaches while
Sec. VIII concludes the paper.

II. PROBLEM DESCRIPTION

A. System model

We consider an asynchronous distributed system with n
clients C1, ..., Cn and a server S. The server contains a trusted
execution environment (TEE), which hosts a trusted execution
context T ; this is an isolated, protected container that runs an
application protocol and is trusted by the clients. A protocol P
specifies the behavior of the clients, the server S, and the
trusted execution context T . All clients are correct, follow P ,
and mutually trust each other; clients and the server may
crash but are able to recover with the help of stable storage,
which they can access through load and store operations.
In contrast, T is correct but runs under the control of S as
explained in detail later; T does not have direct access to stable
storage and may lose its state. The server is either correct and
follows P or is Byzantine, deviating arbitrarily from P .

The clients and T interact by exchanging messages as
specified by P . They communicate indirectly through the
server which should forward messages among them. If S is
correct, then their communication is reliable and respects first-
in first-out (FIFO) semantics; otherwise, S may arbitrarily
interfere with their messages. Clients have limited communica-
tion capabilities beyond this and do not interact with each other

normally. The clients invoke a stateful application functional-
ity F , which provides a set of operations; F defines a response
and a state change for every operation. The operations are
executed by T inside the TEE and, therefore, the state of
F is protected from a potentially malicious S. We use the
standard notions of executions, histories, sequential histories,
real-time order, concurrency, and well-formed executions from
the distributed-computing literature [3]. In particular, every
operation execution is represented by an invocation event and a
response event. An operation is called complete when a client
receives a response event. Two operations are concurrent if
the invocation event of one of them occurs before the other
operation is complete.

B. Trusted execution context

A TEE provides a secure context for executing applications,
isolated from the server that hosts the TEE. It protects the
confidentiality and integrity of code and data for the applica-
tion running inside the execution context. More specifically, a
trusted execution context T is instantiated with a protocol P ,
which defines the program code executed by T . After server S
has created some T , S may start, terminate, and restart T at
its discretion. Once T has been created, P running within T
cannot be modified anymore nor may any other protocol P ′ be
executed in T . The server may also create and run multiple
instances of T concurrently. The time between instantiation
and termination of T is called an epoch. The entire lifetime
of a trusted execution context can span multiple epochs.

The TEE provides access to a secure random number
generator that allows to build cryptographic primitives, such as
key generation, encryption and digital signatures. The TEE op-
erates a cryptographic key-management infrastructure rooted
in a secret key protected by the TEE, which may provide
a program-specific key to a trusted execution context. That
is, a function get-keyT,P is available to T when it executes
protocol P and returns a secret key k that is specific to P
and the TEE. Another T ′, which is also instantiated with P ,
obtains the same k, but any T running P ′ 6= P or any other
TEE obtains a key different from k.

The clients can verify that a trusted execution context
has been instantiated with a certain protocol P and that P
is indeed running inside the TEE. This is essential for the
assumption that T is trusted. For this purpose clients leverage
a procedure called remote attestation [1]. In short, a client
with prior information about P sends a challenge to T and
in return receives a cryptographic proof φ that reflects P and
the underlying TEE. The client then verifies φ and becomes
convinced that T runs P , based on the cryptographic protocol
and on its trust in the TEE.

Furthermore, T is equipped with a small protected memory
area M that can only be accessed by T . It holds the execution-
specific state as defined by P . Neither the server nor any
other trusted execution context can access or modify M . The
protected memory is volatile, thus M is only accessible within
an epoch of T . In other words, when T stops, crashes, or
restarts, then M is lost. This is not an issue for stateless

protocols, but services without state are generally not very
useful; in realistic applications, where the server maintains
some state, M must be restored after T has been restarted.
For this reason M is stored externally on stable storage using
load and store, so that T can access state from another epoch.

C. Threats

Normally server S is correct, but it may become malicious
and behave incorrectly, when corrupted by an attacker or
affected by a software bug. A malicious server has full control
over the operating system, applications, and the data residing
in memory and stable storage, but it cannot tamper with code
and data in the trusted execution context. This means T is
correct and follows P even though S is malicious.

However, S controls every interaction of T with the envi-
ronment. A malicious server may intercept, modify, reorder,
discard, or replay messages to and from T . Although some
of those attacks can be prevented by establishing a secure
channel between a client and T , a malicious S may simply
discard their messages; such a denial-of-service (DoS) attack
is outside the scope of this work, however.

The trusted execution context must consider anything that it
receives as untrusted. In particular, this holds when T accesses
the stable storage through load and store, in order to persist
its state M . With a correct S, load always returns the state
that has been stored most recently. For protecting against a
malicious S, the trusted execution context uses encryption and
authentication to protect M before it leaves T . Yet, a malicious
server may still return a correctly protected but outdated state
to T . We call such a consistency violation a rollback attack.
In particular, a malicious server may restart T at any time and
load its memory from some state that T has stored earlier.

Furthermore, a malicious server may start multiple instances
of a trusted execution context and let the clients interact with
different instances over time. In this way, clients may be sepa-
rated so that they only see operations of other clients talking to
the same instance. Even if the TEE can run only a single T at
a time, S can multiplex different copies of the trusted context.
The malicious server might supply a different, but valid state to
each trusted execution context instance, similar to a rollback
attack. This clearly violates the consistency of the data, so
that the responses from different trusted execution contexts to
the clients diverge. We call this a forking attack; it is more
general than a rollback attack because multiple instances of T
answer concurrently to the clients. Note that with a single
instance of T a forking attack always involves at least one
rollback attack. It is well-known that clients cannot detect
rollback and forking attacks in asynchronous systems, unless
they communicate directly with each other [30].

III. PROTECTING AGAINST FORKING ATTACKS

A. Trusted monotonic counters

For defending an execution context T against a forking
attack, we need to assure state continuity, i.e., that the state
of T evolves continuously and is never rolled back. One might
think that T could simply maintain a cryptographic hash of M

inside the TEE whenever it stores M and verify that upon
a load operation. However, this does not work because the
memory of T and the TEE is volatile and disappears when
the epoch ends.

To overcome this, T will need non-volatile storage that
survives reboots. Such defenses have been proposed in the
form of an attested append-only memory (A2M) [15] or a
trusted incrementor (TrInc) [26]. These works demonstrate
that the functionality needed from the trusted non-volatile
storage can be reduced to a trusted monotonic counter (TMC).

In more detail, suppose T has access to a TMC that is
located in the TEE, the TMC uses a non-volatile storage
location that survives power loss, and the TMC’s state and
its communication with T are protected from S. Whenever T
stores M at the untrusted server, it increments the counter and
includes the counter value with the state. When T is restored,
e.g. after a reboot, it loads its state from S, extracts the
counter value, reads the TMC, and compares it to the extracted
counter. Since T protects all stored data cryptographically
with a key known only inside the TEE, the server cannot
tamper with the counter attached to M . This allows T to detect
rollback attacks. However, this approach suffers from several
disadvantages as we argue now.

First, it is not easy to tolerate concurrent crashes and
maintain liveness [32] at the same time; that is, when T
has incremented the TMC but the server crashes before the
counter value has been saved to the non-volatile trusted area,
then T might falsely accuse the correct server of performing a
rollback attack. The reason is T cannot differentiate between a
rollback attack and a server crash. In order to tolerate crashes,
one can resort to complex schemes that ensure state continuity,
which increment the TMC, save it persistently, and write
state to disk atomically; they either need hardware modifac-
tions [36] or perform a variation of 2-phase commit [32], [38],
but the latter only works for deterministic operations, which
can be replayed by T and always give the same output.

Second, TMC-based solutions often suffer from limited
performance. Typically, TMCs are implemented using TPMs
which are well known to be slow [32]. The reason is that
in order to prevent a counter overflow, the TMC artificially
increases the time to increment the counter to several mil-
liseconds. Although a response time of a several milliseconds
is acceptable for, say, digital right management (DRM), this
has a negative impact on the throughput of a server application
that processes requests at a high rate.

Finally, the main disadvantage of any TMC-based approach
is the lack of location transparency. That is, the TMC is
normally bound to one trusted execution environment within
one server. However, in modern cloud-computing platforms,
applications must be able to scale and run on different servers
during their lifetime. This may already be caused by system
maintenance. For the end-user this should be completely
transparent, but a trusted execution context cannot be stopped
on one server and restarted on a different server with the same
TMC; this is exactly what trusted hardware should prevent.
Therefore this would require a migration protocol that needs

the help of a trusted party.
For these reasons, we do not consider any solution that

requires extra hardware or restricts the application to be
deterministic in this paper. Instead we exploit the guarantees
available with standard TEEs.

B. Ensuring consistency at the clients

In the model considered here the TEE does not prevent a
malicious server from mounting rollback and forking attacks
and from isolating the clients from each other. The best possi-
ble option is to ensure that the clients remain “synchronized”
with each other as much as possible and to mitigate attacks
through this.

1) Fork-linearizability: Fork-linearizability [30] denotes
the strongest consistency notion among the clients that can be
achieved in the presence of rollback attacks and without client-
to-client communication. This well-established notion ensures
that whenever the malicious server has separated two clients,
they can never be joined again to see mutually inconsistent
responses from the server, without one of them detecting
the attack. In essence, the server has to pretend that the
inconsistency remains forever. Clearly, the clients can detect
this though a lightweight, out-of-band mechanism.

Protocols that ensure fork-linearizability work by embed-
ding information about the causal past of each operation into
the requests from client to servers [30], [11], [7]. They use
hash chains, Merkle trees, and vector clocks for representing
the past history of operations and their context. Such protocols
are very similar to the use of hash chains in blockchain
platforms [6], cryptocurrencies such as Bitcoin, and Certificate
Transparency [25].

The standard notion of linearizability [20] requires that the
operations of all clients appear to execute atomically in one
sequence, and that the atomic sequence respects the real-time
partial order of the operations that the clients observe. Fork-
linearizability is defined as an extension of this, which relaxes
the condition of one sequence to permit multiple “forks”
of an execution [30], [12]. Under fork-linearizability, every
client observes a linearizable history and when an operation is
observed by multiple clients, the history of events occurring
before the operation is the same. In this context, the view of
a client Ci denotes a correct, serialized history of operations
for the functionality F , which includes all operations of Ci.
For a more formal treatment we refer to the literature [12].

Unfortunately, fork-linearizability cannot be achieved with-
out taking into account that some client operations on a
correct server are blocked until other, concurrent operations
terminate [12]. This inherent limitation has led to the relaxed
notions, such as weak fork-linearizability. In FAUST [10], for
instance, an operation returns a response to the client that is not
guaranteed to be immediately fork-linearizable or linearizable,
but the protocol notifies the client later when it knows that
other clients have observed the operation as well. This is
captured by the notion of stability, discussed next.

2) Operation stability: We now define a way to inform
the client about those of its operations that have reached

some level of consistency with respect to other clients. More
precisely, we call an operation o by a client Ci stable with
respect to another client Cj if the views of Ci and Cj both
include o. In other words, Ci knows that Cj has observed o
and that S was forced to take into account any effects of o in
later service responses to Cj .

Operation stability has also been used by [39], [10]. Here
we use it as follows. We augment the response event of every
operation with two numbers: a sequence number, which is
assigned by the protocol to the operation that completes; and
a stable sequence number, which denotes the latest stable
sequence number of this client. The sequence numbers re-
turned at one client are strictly increasing; the stable sequence
numbers never decrease.

Definition 1 (Operation stability). Let o be a complete
operation of Ci that returns sequence number t. We say that
o is stable w.r.t. a client Cj 6= Ci after Cj completes any
operation that returns a sequence number that is bigger than t.
Operation o of Ci is always stable w.r.t. Ci.

For a set of clients G that includes Ci, an operation o
of Ci is stable w.r.t. the set of clients G, when o is stable
w.r.t. all Cj ∈ G. An operation that is stable w.r.t. all clients
is simply called stable.

One may use different strengths of stability; for example,
an operation might take a long time until it becomes stable
(because all clients must observe it), but it might already be
stable at a subset of the clients much earlier. A particularly
useful subset is a majority quorum of the clients.

Definition 2 (Operation stability among a majority [35]).
An operation o of Ci is stable among a majority of clients,
when o is stable w.r.t. a set of clients C, where |C| > n/2.

Note that any subsequence of a history that contains only
operations that are stable among a majority is linearizable.

IV. LIGHTWEIGHT COLLECTIVE MEMORY

This section introduces Lightweight Collective Memory
(LCM), a protocol that allows a group of mutually trusting
clients to run a service on a (potentially malicious) remote
server. It benefits from a trusted execution context T that runs
on the server and executes the operations on behalf of the
clients. LCM facilitates the detection of forking and rollback
attacks against T by ensuring fork-linearizability for every
client operation. Moreover, LCM indicates which operations
are stable among a majority; this permits clients to infer when
their operations are linearizable. The LCM protocol benefits
from the security guarantees of the TEE; in contrast to all
previous protocols in the line of work originating with Maz-
ières and Shasha [30], aiming at fork-linearizable semantics,
the clients do not verify operation results here. Clients only
handle metadata and rely on the TEE for producing correct
responses.

A. Overview
LCM executes a stateful functionality F inside a trusted

execution context T that is instantiated with the LCM protocol

Client Server TEE
invoke

send

return

forward

forward

store

INVOKE	msg

REPLY	msg

send

INVOKE	msg

REPLY	msg

Process

state

op

op

result

Fig. 2. Protocol messages in Lightweight Collective Memory

and also runs F . The trusted T constructs a hash chain from
the history of all operations that it executes and embeds this
information in its responses to the clients.

A client invokes an operation by sending an encrypted
INVOKE message to the (untrusted) server S, which forwards
all incoming messages to T . After T has decrypted this, it
first verifies that the view of the client is consistent with T ’s
own history. Then T executes the operation and assigns a
sequence number to it. The operation produces an output for
the client and may modify the state of F . The output is
returned to the client in a REPLY message, together with the
sequence number and the latest stable operation (represented
as a sequence number). When the client receives the REPLY
message, it completes the operation and returns the result, the
assigned sequence number, and the majority-stable sequence
number. The latter informs the client about the stability of its
earlier operations.

Fig. 2 shows the protocol interaction. For simplicity we
assume that each client invokes operations sequentially, that
is, it invokes a new operation only after completing the
previous operation. For protecting T against a malicious S,
three cryptographic keys are used:

1) To safeguard the protocol’s consistency data in the hash
chain and the service state, T encrypts it with a protocol-
state encryption key kP before storing it in the server’s
stable storage and decrypts it again after a load. This
key is generated by an admin during bootstrapping and
required for migrating T to another server.

2) A sealing key kS is initially generated by the TEE using
get-keyT,LCM when T starts. It encrypts the protocol-
state key kP when T stores this in persistent storage to
tolerate crashes.

3) A communication key kC protects all messages ex-
changed between the clients and T . The key is also
generated by an admin and made known to all clients
and to T .

All encryption operations use authenticated encryption with
a symmetric-key k and two functions auth-encrypt(m, k) and
auth-decrypt(c, k) for a message m and ciphertext c. Au-
thenticated encryption produces a ciphertext integrated with
a message-authentication code (MAC); it protects the content
from leaking information to S and prevents that S tampers
with messages or stored data by altering ciphertext. The hash
function in LCM, denoted hash(), can be any cryptographically
secure collision-free hash function; it maps a bit string x of

arbitrary length to a short, unique hash value h.

B. Protocol

1) Invocation at the client (Alg. 1): The client uses vari-
ables tc and ts to hold sequence numbers for the last operation
by Ci and the last operation stable among a majority, respec-
tively. In addition, the client stores hc, the hash chain value
computed by T corresponding to its most recent operation
(with sequence number tc). When Ci invokes an operation o,
it buffers o in a variable u and sends an encrypted INVOKE
message containing i, o, tc, and hc. The latter two values
represent the context in which Ci invokes o; they result from
Ci’s last operation.

2) Execution at T (Alg. 2): The trusted execution context T
maintains the sequence number of the most recently executed
operation in a counter t and a corresponding hash-chain value
in h. T processes the operations of the clients sequentially.
When T receives an INVOKE message from Ci, it decrypts the
message with kC and signals a violation if the message does
not have valid authentication. Then T verifies that (tc, hc)
sent by the client correspond to the last operation response
that T has returned to Ci. For this purpose, T maintains a
map V indexed by client identifier, where entry V [i] holds
the sequence number of the last acknowledged operation by
Ci, the sequence number and corresponding hash chain value
after the last operation by Ci. Again, when an inconsistency
is detected, then T halts. This verification is essential for
the protocol and has three goals: First, it acknowledges the
previous operation by Ci in the sense that T learns that Ci has
actually received the reply for its last invocation. Second, this
detects message-replay attacks. When a malicious S forwards
the same INVOKE message multiple times, T can easily filter
these out with V . Finally, the verification detects rollback or
forking attacks because the client sends the condensed view
of its own history contained in tc and hc.

If sequence number and hash chain value verification is
successful, then T increments the sequence number t, and
calls execF , which applies the operation o to state s and yields
the corresponding result r according to F . Next, T extends
the hash chain h by setting this to hash(h‖o‖t‖i). With the
information from the INVOKE message, T also determines if
more operations have become stable. It uses the data in V and
a function majority-stable that returns q, the highest sequence
number of an operation stable among a majority.

Then T sends a REPLY message to Ci encrypted with kC ,
containing the sequence number t, the hash chain value h,
the result r, the stable operation q, and the client’s previous
hash chain value hc. Before sending REPLY, T also needs to
store the current state for recovering from a crash. For this,
T encrypts the service state s, the protocol state V , and the
key kC using auth-encrypt with kP and stores this as a blob
through S.

3) Verification at the client: When Ci receives a REPLY
message, it uses kC to decrypt the contents and extracts t, h,
r, q, and h′c. The client verifies that the previous hash chain
value h′c is equal to its own hc, in order to match the REPLY

message to its most recent INVOKE. Next, Ci stores the new
sequence number and hash chain value (t, h) and outputs the
operation result r and the majority-stable operation q. These
two sequence numbers allow the client to keep track of the
operation history. In particular, a majority of clients have
observed all operations with sequence numbers up to q. Any
operation of Ci with the sequence number t′ ≤ q is now stable
among a majority. For correct functioning of the protocol, the
state of each client must be recoverable from stable storage if a
client crashes. For simplicity this is not part of the pseudocode.

4) Server: The (correct) server S runs a TEE and hosts T ,
which is initially created by an admin. Whenever S reboots or
crashes, it restarts T . Recall that a malicious S may restart the
trusted execution context at any time or even spawn multiple
instances. Furthermore, a correct S forwards all messages
between the clients and the trusted execution context in FIFO
order. A malicious server, in contrast, can discard, reorder or
delay messages.

5) Protocol details: In the pseudocode in Alg. 1–2, the
symbol ‖ denotes the concatenation of bit strings, and the
assert statement, parameterized by a condition (where ∗
matches any value), immediately terminates the protocol when
the condition is false. The clients and T use this to signal that
the server misbehaved. Note that auth-decrypt may also signal
an error; this is equivalent to an assert FALSE statement.

Algorithm 1 LCM Protocol for client Ci

state
tc ∈ N0: last sequence number, initially 0
ts ∈ N0: last majority-stable sequence number, initially 0
hc ∈ {0, 1}∗: last hash chain value, initially hc = h0

kC ∈ K: protocol key

function invoke(o)
invoke← auth-encrypt([INVOKE, tc, hc, o, i], kC)
send message invoke to S

upon receiving message reply from S do
[REPLY, t, h, r, q, h′c]← auth-decrypt(reply, kC)
assert h′c = hc

(tc, ts, hc)← (t, q, h)
return (r, t, q) // response of operation

C. Bootstrapping

Bootstrapping sets up the necessary cryptographic keys and
security contexts for trusted execution. It consists of three
phases: (1) creating a trusted execution context T on a remote
server; (2) remote attestation and provisioning of T ; and (3)
key distribution among the group of clients.

In the first phase, a special admin client instructs the server
to create a new trusted execution context T for running
protocol LCM (Alg. 2). When T starts this protocol, it enters
init first. Function init is also executed after a reboot, where
it first loads the encrypted state from stable storage. During
initialization no such state exists yet.

Second, the admin initiates the remote attestation process,
to verify that T has been started correctly and is running
LCM. Remote attestation is a core function of the TEE and

Algorithm 2 LCM Protocol for trusted execution context T
state

t ∈ N0: sequence number, initially 0
h ∈ {0, 1}∗: last hash chain value, initially h = ⊥
V : N→ N0 × N0 × {0, 1}∗: current protocol state, init. [0]N

s ∈ S: state of the service, initially s = s0
kS ∈ K: sealing key, initially kS = ⊥
kP ∈ K: state encryption key, initially kP = ⊥
kC ∈ K: communication encryption key, initially kC = ⊥

function init
kS ← get-keyT,P // get sealing key
(blobkey, blobstate)← load // possible rollback attack
if blobkey = ⊥

perform bootstrapping as described in the text
else

kP ← auth-decrypt(blobkey, kS)
(s, V, kC)← auth-decrypt(blobstate, kP)
(·, t, h)← V [argmax(V)]

upon receiving message invoke from Ci do
[INVOKE, tc, hc, o, i]← auth-decrypt(invoke, kC)
assert V [i] = (∗, tc, hc)
t← t+ 1
(r, s)← execF (s, o)
h← hash(h‖o‖t‖i)
V [i]← (tc, t, h)
q ← majority-stable(V)
blob← auth-encrypt((s, V, kC), kseal)
store(blob)
reply← auth-encrypt([REPLY, t, h, r, q, hc], kC)
send message reply to Ci

produces a cryptographic proof, which convinces the admin
that T indeed runs LCM. If a malicious S would instantiate T
with some P 6= LCM this verification will reveal it. Note
that the remote attestation protocol also convinces the admin
that T is actually executed on the TEE and protected against
a malicious server.

Finally, the admin generates two secret keys, kC for securing
the communication and kP for storing the protocol state, and
injects them into T through a secure channel provided by
the TEE. After T has received the keys, it initializes the
protocol and service states, and retrieves a sealing key kS =
get-keyT,LCM from the TEE. Recall that kP is used to encrypt
the state, and that kP and kC together are stored encrypted kS .
Since kS is generated in a deterministic way in the trusted
hardware of the TEE, T can recover its state from an earlier
epoch using the stable storage of S after a crash. And because
every T running on a different physical TEE obtains a different
sealing key, this binds the state of T to the hardware. The
admin also distributes the communication key to the clients
using a secure channel to each of them.

D. System reboot and recovery

The server S controls starting and stopping T . As argued be-
fore, the TEE is stateless and, therefore, T cannot distinguish
a reboot after a crash from an attack by S. In order to tolerate
server crashes and reboots without administrative intervention,

but also to facilitate planned restarts, the application state is
stored on stable storage.

When the server reboots after a crash, it recreates the trusted
execution context T that runs LCM. T then enters init, which
first tries to load a previous state and resumes from there when
it exists. As T obtains kS = get-keyT,LCM from the TEE, it
can decrypt and authenticate kP and the state with kS ; the
state also contains kS for communicating with the clients.
T recovers V form the state and can easily derive (t, h)
from V by looking up the client which executed the last
operation in V . Formally, V is an array of (ta, t, h) triples,
and argmax(V) returns the index of the triples with the highest
sequence number t.
T has now entered a new epoch and is ready to continue

request processing without remote attestation. The clients trust
that T runs LCM from the initial verification step during
bootstrapping and from the binding of the sealing key (kS)
to the TEE through the secure hardware. Recall that T
recovers the communication key kC via the sealing key. Once
a client can engage in encrypted and properly authenticated
communication, protected through kC , to some TEE, the trust
of the client from the initial attestation extends to the current
holder of kC .

E. Stability

For determining the stability of operations, T maintains
the map V with two sequence numbers for every client.
One sequence number of the last acknowledged operation,
and another sequence number of the last operation. The
function majority-stable(V) returns the sequence number of
the operation that is stable among a majority, that is, the largest
acknowledged sequence number in V that is less than or equal
to more than n/2 sequence numbers in V . Stability indicates
to the clients when their operations have been observed by
others and helps detecting forking attacks. When the server is
correct and all clients periodically invoke operations, then all
operations become stable eventually. In the case of a forking
attack, where one or more clients are separated, the operations
of the forked clients will cease to become stable.

The client protocol returns the sequence number t and the
majority-stable sequence number q together with the operation
result. This enables the client to track the progress of the
operation history. Depending on the application, a client might
want to verify that some critical operation has become stable
or wait until it does before invoking new operations. Note that
the client protocol as described in Alg. 1 only receives stability
updates when it invokes new operations. If the client needs to
be informed earlier about the stability of past operations, it can
simply invoke dummy operations periodically, as introduced
by FAUST [10]. Alternatively, Alg. 1 could be extended to
support a callback mechanism, where clients can register for
notifications of stability updates, as also used in Venus [35].

F. Extensions

1) Tolerating server crashes: As the server might crash,
we now extend the protocol to allow T to recover and

continue processing. In the simple case where T crashes
while it is idling, the correct server restarts it and continues
with the protocol as described before. On the other hand,
when T crashes during the processing of a client request,
we differentiate between two cases: either it crashes before
the store operation returns and has saved the application and
protocol state or afterwards.

Therefore, we equip the client with a retry mechanism:
When the client has not received a reply until a timer expires,
it sends the message again, but marks it as a retry attempt. In
the first case (T crashes before successfully stores), the server
will restart T and it eventually receives the retry message.
The verification of the sequence number tc and the hash chain
value hc ensures that the lost message has not already been
processed. T simply continues processing and returns the reply
to the client. In the second case (when T crashes after stores),
the verification of tc and hc fails since ti stored in V [i] is
bigger than the value received from Ci. The retry marker
instructs T to not consider this as a rollback attack. Therefore,
we extend the protocol state V to store the last operation
result r as well. Then T can retrieve the result from V and
(re)send the REPLY message.

2) Server migration: Since location transparency is a major
advantage in cloud computing, we also include a migration
mechanisms that allows to move a trusted execution context T
to a different host system. There are two trusted execution
context instances involved, T on the origin system and T ′ on
the target system to which the protocol migrates. Migration
requires cooperation between the two machines and that the
server’s stable storage can be accessed from the origin and the
target system, for instance by using shared remote storage.

The migration works as follows. The (correct) origin server
signals the target server to start a trusted execution context T ′

and to prepare it for migration. Normally, T ′ would try to
retrieve a state encryption key kP from stable storage but
since it was encrypted with the sealing key of T on the origin
system, T ′ cannot obtain it. For this reason, T takes over the
role of the admin and bootstraps T ′ according to the earlier
description. After a successfully remote attestation, T injects
the state encryption key kP via a secure channel. At this point,
T stops processing requests and provides its current state to T ′;
then T ′ restores the application and protocol state, resumes
executing requests, and is still able to uphold the guarantees
of LCM against rollback and forking attacks.

This migration mechanism does not require a trusted party
and works completely transparently for the clients. However,
when the origin system crashes without any possibility to
recover, e.g., when the TEE hardware malfunctions, then an
intervention by a trusted admin is required. In contrast to
the solutions based on a TMC mentioned in Sec. III-A, this
migration mechanism is more robust to server failures. In
particular, the migration of a TMC always requires an admin to
read the last TMC value from the origin system and to update
the TMC on the target system with the correct counter value.
Clearly, this fails if the origin system becomes inaccessible.
LCM still allows migration because the TEE is stateless and

because the state is stored on remote storage. Our proposed
migration scheme is similar to [37].

3) Group membership: In a practical system, the group of
clients will dynamically change, as clients may be removed
from the collaboration group and new clients may join. Al-
though the protocol formulation uses a static client group, it
is easy to extend LCM for handling dynamic changes. When
a new client joins the group, the admin sends the shared
secret kC for secure communication with the trusted execution
context to the new client and instructs T to include the client in
the protocol state. For removing a client, the admin generates
a new fresh communication key k′C and distributes it to all
remaining clients. Then the admin sends a removal request
with k′C to T , which uses the fresh key afterwards.

V. IMPLEMENTATION

The LCM protocol relies on our assumptions as described
in Sec. II and can be implemented with any TEE technolgy
such as Intel SGX.

A. Intel SGX

Intel’s Software Guard Extensions (SGX) [31] adds hard-
ware enforced security to the Intel CPU architecture. SGX
enables applications to execute certain code in a trusted exe-
cution context, also called enclave. Enclaves are isolated and
a hardware enforced mechanism guarantees the confidentiality
and the integrity of an enclave even if the entire system is
compromised. Moreover, the SGX platform checks that an
application has not been tampered with when loading code and
data at initialization into an enclave. SGX offers an attestation
mechanism [1] for enclaves that allows to prove to a remote
third party that an enclave runs a given application on an
actual SGX platform. For utilizing the system’s persistent
storage and at the same time preserving data confidentiality
and integrity, SGX supports data sealing. It permits to unseal
data only by the origin enclave or another enclave by the same
enclave developer. In the SGX programming model, applica-
tions in an enclave are considered to be trusted whereas all
other applications (even the operating system) are untrusted.
Typically, those enclave applications are small, hence, it is
less likely to expose vulnerabilities. Using the SGX Software
Development Kit (SDK) [23], [22] enables developers to di-
vide their applications into a trusted component (enclave) and
untrusted component. The trusted component is signed by the
developer. For bridging the trust border between enclaves and
untrusted components, SGX provides the Enclave Definition
Language (EDL) that is used by enclave developers to specify
an interface and generate “gateway” code comprising Enclave
calls (ecall) and Outside calls (ocall).

1) Enclave protection: SGX features two properties that
are essential to execute code securely in an enclave. First,
SGX verifies that an enclave is instantiated with the correct
application. The enclave code contains an Enclave Signature
(SIGSTRUCT) produced by the enclave developer that allows
the SGX platform to detect whether the code of the enclave
has been tampered with. In particular, SIGSTRUCT comprises

an enclave measurement (a cryptographic hash that identifies
the code and data), a signature over the measurement, and the
enclave developer’s public key, that serves as the identity of
the enclave developer. When the enclave is loaded, the CPU
verifies the signature and calculates the enclave measurement
and compares it to the measurement in SIGSTRUCT; if they
match the enclave completes its instantiation successfully.
Second, SGX protects against any access and modification
from untrusted components. To this end, the enclave resides in
an isolated memory area called enclave page cache (EPC) that
can not be accessed from outside an enclave. This is enforced
through a memory access control mechanism. The EPC size is
limited to 128 MB, thus, when enclave reaches that limit or a
context switch occurs, pages are moved to DRAM. A memory
encryption engine [19] protects pages when swapping between
EPC and DRAM in terms of confidentially, integrity, as wells
provides replay attack prevention. Those two mechanisms
prevent any untrusted component from accessing or modifying
the enclave memory. Note that this mechanism only protects
the in-memory state but not persistent state of an enclave.
When an enclave is terminated, all in-memory state is lost.

2) Enclave attestation: SGX supports remote attestation [1]
that demonstrates to a remote client that an enclave runs a
given application inside a SGX platform and therefore can be
considered to be trustworthy. This is vital for establishing trust
in an enclave application and is required prior provisioning
any secrets or protected data. The remote attestation briefly
works as follows: A remote client sends a challenge to the
enclave including a nonce. The enclave produces a report that
comprises some metadata including a short hash value of the
application code, the enclave developer identity, and additional
user data. The user data contains the nonce. Note that enclave
developers may also include custom values in the user data,
for instance, some information about the current enclave state.
Additionally, the report comprises a MAC that is produced
using a report key provided by the SGX platform. A special
enclave, so called Quoting enclave, receives the report and
validates it by using the same report key. The SGX platform
enforces that only enclaves are able to retrieve this report
key, thus, are able to create and verify report structures. If
the verification succeeds, the Quoting enclave signs the report
with a platform specific key and replaces the MAC with the
signature. SGX leverages a group signature scheme (EPID [9])
that does not reveal the identity of the platform. In other words,
the signature states that some SGX platform has produces that
signature. The signed report (Quote) is sent to the remote client
which then validates signature (using an EPID infrastructure),
verifies integrity of the attest, and finally checks that that the
Quote matches the challenge using the nonce.

3) Data sealing: Application code and data are secured
while residing within an enclave. However, when an enclave
is terminated the data is lost and can not be recovered when
the enclave restarts again. Therefore, SGX features a sealing
mechanism [23], [22] based on AES-GCM-128 that allows to
encrypt and authenticate data before it leaves an enclave by
using a special sealing key provided by the SGX platform.

In particular, SGX provides two types of sealing: An enclave
identity based sealing that only allows enclaves running the
same application to unseal the data; and enclave developer
based sealing where all enclaves, which are developed (signed)
by the same developer, can unseal the data.

B. LCM framework

We implemented LCM as a framework in Java and C++
consisting of a client-side and a server-side library that can
be integrated with SGX-enabled applications which require
rollback and forking detection for persistent state. The LCM
client-library is implemented in Java and follows the descrip-
tion as presented in Alg. 1. It uses AES-GCM with 128-bit
keys provided by the Java Cryptography Extension to protect
the confidentiality and integrity of all protocol messages. The
LCM client-library uses a simple network interface including
methods for sending and receiving protocol message. This
allows to reuse an existing application network stack instead of
handling the communication with the server by our library. The
LCM server-side library is implemented in C++ using the Intel
SGX SDK (Version 1.6) [23]. It only utilizes trusted libraries
provided by the SGX SDK, such as libsgx_tcrypto for crypto-
graphic hashing and encryption. In particular, we use SHA-256
for constructing the hash chain and AES-GCM with 128-bit
keys for encrypting the protocol messages, as well as the proto-
col and application state. The state encryption key is encrypted
using the SGX sealing function before storing persistently.
We defined two interfaces that must be implemented by the
enclave application. First, an operation processor, that receives
a client operation and returns the operation result; and second,
a serialization interface that returns the application state as a
byte sequence. The implementation does not strictly follow the
Alg. 2 as presented in Sec. IV. That is, we optimized the code
in order to eliminate the ocall when storing the application
and protocol state at server’s persistent storage. Instead, we
piggyback the encrypted data together with the reply message.
Furthermore, we implemented operation batching mechanism
where the LCM protocol receives multiple invoke messages
with a single ecall. In contrast to Alg. 2, the application and
protocol state is stored once per batch. Our current proof of
concept does not make use of remote attestation. However,
this can be easily extended using the mechanisms as provided
by the SGX SDK.

C. Building applications with LCM

In order to demonstrate our LCM framework we integrated
LCM with a simple persistent key-value store (KVS) running
in an enclave on a remote server. The prototype architecture
is shown in Fig. 3. Clients and the server communicating
via TCP socket connections. A KVS stores data objects
in a flat namespace, where each object is identified by a
unique name or key. The KVS is implemented using trusted
libraries provided by the SGX SDK. In particular, we use
std::map for storing key-values pairs as strings of arbitrary
length. The current version of the SGX SDK does not support

Stable storage

Server application
Trusted execution context

LCM
protocol

Key-value
Store

Request
batching

ReplyN
et

w
or

k

LCM client

KVS client

LCM client

KVS client

LCM client

KVS client

2
1

3

4

5

6

Fig. 3. The prototype architecture of an enclave based key-value store
protected with LCM.

std::unordered_map which would be our first choice due to
its constant access time.

Clients invoke GET, PUT and DEL operations through the
KVS client which instantiates the LCM client-library. A server
application handles the socket communications, implements
an interface for stable storage (disk), and hosts an enclave
running the server-side LCM protocol and the KVS. When the
server application receives a client request (INVOKE message),
it collects the message in a bounded queue (batch). Once
the queue has reached the limit or no more client request
are available, the server application performs an ecall and
passes the collected (batched) messages to the enclave. The
LCM protocol processes them sequentially and returns the
corresponding REPLY messages for each client request and
the aggregated application and protocol state. The server
application then, writes the encrypted states to disk and
forwards the REPLY messages to the clients. Note in order
to achieve crash tolerance, the server application has to write
the state synchronously to disk (fsync), this clearly decreases
the performance. Our prototype implementation of a LCM-
protected key-value store comprises about 4000 sloc, where
enclave components comprise around 2200 sloc. The rest is
for the untrusted server implementation including the storage
and network code. The KVS client and the LCM client-library
add additional 1600 sloc to the prototype.

VI. EVALUATION

We evaluated the overhead of LCM with a set of bench-
marks using YCSB and compare it against a SGX-secured key-
value store without rollback and forking protection. Further-
more, we compare the performance of LCM against a trusted
monotonic counter approach and unprotected Redis.

A. Experiment setup

The experiments use a Dell Optiplex 7040 desktop ma-
chine with an i7-6700 Intel CPU that is SGX-capable to run
the server. It is equipped with 8 GB of memory, 1 Gbps
network connection and a SSD drive. We simulate clients
on a virtual machine with 24 virtual CPUs and 8 GB of
memory, running YCSB as workload generator using Oracle
Java (JRE 8, build 1.8.0_111-b14). All machines run Ubuntu
Linux 14.04.4 Server with the generic 4.4.0-47 Linux kernel.
The evaluation is driven by YCSB [16], an extensible tool for
benchmarking key-value stores. It supports many different key-
value stores, such as Redis (http://redis.io), Cassandra (https:
//cassandra.apache.org/) and many more. YCSB comes with a
set of core workloads spanning different application scenarios.

For the evaluation we use workload A with a mix of 50/50
PUT and GET operations and show the overall throughput
of all clients. Every reported data point is taken over a
period of 30 seconds. We integrated the KVS client including
the LCM client-library with YCSB. As a baseline for our
experiments we use our KVS (see Sec. V-C) protected with
SGX. For the comparison with Redis and our native KVS
implementation we use Stunnel (https://www.stunnel.org) to
secure the communication with the clients. Redis has been
originally designed for deployment in private networks, thus,
it does not support TLS connections. LCM and the SGX-
based KVS prototype establish a secure communication with
the clients by using AES-GCM encryption with 128 bit keys.
In order to simplify the evaluation process we use predefined
encryption keys.

B. Enclave memory

In a preliminary experiment we evaluated the memory
consumption of the SGX key-value store. We inserted one
million objects and measured the enclave heap allocation
using sgx-gdb. Each object with a key size of 40 byte
and 100 byte values. For 300000 objects we measured an
allocation of 93 MB enclave memory whereas we expected
only about 40 MB. It turned out that the KVS implementation
based on std::map<std::string, std::string> comes with a
memory overhead of about 134%. In particular, the string
key-value pairs consume about 280 byte whereas the map
data structure allocates additional 48 byte for each object
for maintaining an internal search structure. Moreover, we
measured the latency of PUT and GET operations for different
number of objects. As the EPC is limited, we expected a
performance drop when the number of objects increases and
the SGX driver starts swapping EPC pages as also reported
in [2], [8]. We observed that the latency increases up to 240%
when the KVS holds more than 300000 objects. We refrain
from showing the graph due to page reasons. We assume
that this hardware restriction will be addressed in future CPU
releases and thus choose our further evaluation workloads to
fit into the EPC.

C. LCM protocol message

We first study how the LCM protocol message overhead
affects the throughput. As described in Sec. IV-B, LCM sends
additional metadata, such as the sequence number and hash
chain value, along with a client request. In particular, our
LCM implementation adds 45 byte to an operation invocation
and 46 byte to a result. This overhead remains constant for
varying operation and result sizes. In order to evaluate this,
we run the experiment with 8 clients for 1000 objects of
size 100 to 2500 byte. Fig. 4 shows that the throughput of
LCM behaves similar to the plain SGX KVS. As expected,
we observe that LCM introduces an overhead but it decreases
with bigger object sizes. In particular, for objects with the size
of 100 byte the throughput is 20.12% and for objects with size
of 2500 byte it is 10.96% lower compared to the plain SGX
KVS.

●

●

●

●

●

●

5

10

15

20

100 500 1000 1500 2000 2500

Object Size

T
hr

ou
gh

pu
t [

ko
ps

/s
ec

]

● SGX

LCM

●

●

●

●

●

●

5

10

15

20

100 500 1000 1500 2000 2500

Object Size

T
hr

ou
gh

pu
t [

ko
ps

/s
ec

]

● SGX

LCM

Fig. 4. Throughput with different object sizes with async disk writes.

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

40

50

60

1 2 4 8 16 32

of Clients

T
hr

ou
gh

pu
t [

ko
ps

/s
ec

]

●

●

SGX

SGX with batching

Native

LCM

LCM with batching

Redis TLS

SGX + TMC

●

●

●

●

●

●

●

●

●

●

●

●

10

20

30

40

50

60

1 2 4 8 16 32

of Clients

T
hr

ou
gh

pu
t [

ko
ps

/s
ec

]

●

●

SGX

SGX with batching

Native

LCM

LCM with batching

Redis TLS

SGX + TMC

Fig. 5. Throughput with different numbers of clients with async disk writes.

D. The throughput of LCM

We also study the overall throughput of LCM by increasing
the number of clients. This workload uses up to 32 clients,
1000 objects with a fixed size of 100 byte. Each object key
is 40 byte. In this experiment we compare two variants of
LCM against a KVS without SGX (“Native”), SGX-secured
KVS (“SGX”), Redis, and SGX-secured KVS with emulated
trusted monotonic counter (“SGX+TMC”). We run LCM and
SGX without batching enabled and with batching of up to 16
operations. We configured Redis to use an append log strategy
for persistence. We also disabled fsync (synchronous disk
writes) for Redis as well as for our KVS prototypes. As Fig. 5
shows, the throughput of Redis and the Native KVS scale
almost linear. In contrast, LCM and SGX reach saturation
already with 8 clients. We observed that the SGX KVS reaches
0.42x – 0.78x the throughput of the Native KVS. LCM, on the
other hand, reaches 0.67x – 0.95x the throughput of the SGX
KVS, with batching even 0.72x – 0.98x. The reason is, LCM
and SGX are single threaded applications and perform the
encryption of every client request inside the enclave. Although,
Redis and Native KVS are also single threaded, they leverage
Stunnel that uses multiple processes to encrypt/decrypt client
communication. That way, secure communication becomes a
bottleneck.

E. The performance impact of Trusted Monotonic Counter

In this experiment we investigate the performance impact
of Trusted Monotonic Counters (TMC) when used to protect
against rollback and forking attacks. The current version
(Version 1.6) of the SGX driver and SDK do not yet support
Intel’s Trusted Monotonic Counter [23] on Linux. However,
on Windows [22] they are available provided by the Intel
management engine (ME) that stores the counter in non-
volatile memory. We measured an average latency of 60ms to
increment a SGX TMC on Windows, whereas [38] reported

● ●● ●● ●●

●

●

●

●

●

0

500

1000

1500

2000

1 2 4 8 16 32

of Clients

T
hr

ou
gh

pu
t [

op
s/

se
c]

●

●

SGX

SGX with batching

Native

LCM

LCM with batching

Redis TLS

SGX + TMC

● ●● ●● ●●

●

●

●

●

●

0

500

1000

1500

2000

1 2 4 8 16 32

of Clients

T
hr

ou
gh

pu
t [

op
s/

se
c]

●

●

SGX

SGX with batching

Native

LCM

LCM with batching

Redis TLS

SGX + TMC

Fig. 6. Throughput with different numbers of clients with sync disk writes.

even higher latency of about 95ms. We emulated the TMC
on Linux by using a simple counter followed by setting the
thread to sleep for 60ms when incrementing the counter. As
Fig. 5 shows, the throughput remains constant for the emulated
TMC with an average of 12 operations per seconds, wheres
LCM with batching, on the other hand is 96x – 2063x faster.
However, by using trusted monotonic counters rollback and
forking attacks can be detected immediately but this comes
with low throughput.

F. The costs of crash tolerance

Finally, we study the performance overhead induced by
synchronous disk writes when storing the application and
protocol state that is necessary to support crash tolerance. We
performed the same experiment as in Sec. VI-D but enabled
fsync for our KVS prototypes as well as for Redis. We expect
much lower performance compared to asynchronous writes.
Fig. 6 shows the throughput with different number of clients
with synchronous storing. As expected, fsync introduces high
latency when writing to disk. In particular, we observed that
throughput of Native, SGX, LCM, and SGX with TMC remain
constant whereas Redis, SGX and LCM with batching scale.
SGX KVS achieves 0.98x of the Native KVS throughput
and LCM without batching achieves 0.69x of SGX KVS
throughput. In contrast, LCM with batching reaches 0.72x –
9.87x the throughput of the SGX KVS and 0.71x – 0.75x
the throughput of SGX KVS with batching. The experiment
shows, that expensive storing operations reduce the relative
overhead introduced by SGX but can be reduced by leveraging
batching mechanisms.

VII. RELATED WORK

With the advent of SGX, trusted computing has achieved a
new level of practicality with the aim of wide-spread deploy-
ment. Recent publications detail how legacy applications [4],
micro services [2], data intensive programming [34] but also
specific services [8] can be secured on top of an infrastructure
where only the CPU needs to be trusted. While SGX provides
special means to detect memory replay attacks against the
enclave [19], external memory remains unprotected. Accord-
ingly, additional measures are necessary to prevent rollback
and forking attacks mounted through external memory and
secondary storage. The latter is especially complicated if an
enclave is restarted (e.g. due to crashes or system mainte-
nance reboots). As a pragmatic solution, the Windows SGX

SDK [22] offers trusted counters that are linked non-volatile
memory inside the Intel management engine (ME). However,
trusted non-volatile counters as provided by a TPM are slow,
e.g. adding 35-95 ms latency for each operation depending on
the hardware platform, as different reports show [38], [26],
[29]. Thus, in essence, all hardware-based solutions that rely
on trusted counters and are consulted on every request of a
secured service suffer from performance problems [14], [26],
[32]. An additional issue of current trusted counter TPM-
based realizations is wear out if used very frequently. Strackx
and Piessens [38] specifically address this problem by clever
usage strategies, however the performance problems remain.
Recent work [29] proposes a complementary approach to
LCM where enclaves across multiple systems assist each other
in order to prevent rollback attacks. This requires multiple
enclaves to interact with each other to store and retrieve
version information from the group of enclaves wheres in
LCM it is stored at the clients.

Another line of work addresses the problem of rollback
and forking attacks without relying on trusted components.
With only a single client, the classic approach [5] for memory
checking uses a hash tree where the client stores the root.
Many systems build on this approach to protect remote storage
services (e.g., Athos [18]). In the multi-client model, Mazières
et al. [30] introduced the notion of fork-linearizability and
implemented SUNDR [27], which confines rollback attacks
to always present a view to each client that is consistent
with its past operations; thereby fork-linearizability makes it
much simpler to detect integrity and consistency violations
on remote file storage. Cachin et al. [12] improved the
efficiency of SUNDR and proved that there is no wait-free
emulation of fork-linearizable storage. That is, sometimes
clients are blocked until an operation by another client has
finished. Systems such as SPORC [17], FAUST [10], and
Venus [35] avoid blocking by weakening the consistency
guarantees. Others have explored aborting operations [28],
[11] and improved the efficiency by reducing the computation
and communication overhead [7]. Mobius [13] uses forking
properties in the context of disconnected operations. Previous
systems have explored the guarantees of fork-linearizable for
different applications [17], [40] and generic services [11].

LCM combines the best features of these two technologies,
trusted execution environments and protocol-enforced consis-
tency. It also addresses rollback and forking attacks on TEEs as
much as possible without introducing impractical limitations
into a service.

VIII. CONCLUSION

This work has focused on a shortcoming of trusted com-
puting technology, which affects current trusted execution
environments (TEEs), such as Intel SGX. In particular, the
trusted execution contexts or “enclaves” are stateless, lose
their memory when a crash occurs, and need support from
the host for state continuity. But since the host is also the
adversary of the TEE according to the security model, it
is actually impossible to implement protocols that survive

crashes seamlessly and prevent rollback attacks at the same
time without introducing extra hardware.

As a solution we have introduced Lightweight Collective
Memory, a system for detecting rollback and forking attacks
that ensures the consistency notion of fork-linearizable and
determines when operations become stable. The LCM protocol
complements TEE technology with a lightweight mechanism
for maintaining consistency information by the clients.

ACKNOWLEDGMENTS

We thank Anil Kurmus, Cecilia Boschini, Manu Drijvers,
Kai Samelin, David Barrera and Raoul Strackx for interesting
discussions and the anonymous reviewers of DSN 2017 for
valuable comments. This work has been supported in part by
the European Commission through the Horizon 2020 Frame-
work Programme (H2020-ICT-2014-1) under grant agreements
number 644371 WITDOM and 644579 ESCUDO-CLOUD
and in part by the Swiss State Secretariat for Education, Re-
search and Innovation (SERI) under contracts number 15.0098
and 15.0087.

REFERENCES

[1] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology
for CPU based attestation and sealing. In Int. Workshop on Hardware
and Architectural Support for Security and Privacy (HASP), 2013.

[2] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche,
D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer. SCONE: Secure Linux
containers with Intel SGX. In USENIX Proc. on Operating Systems
Design and Implementation (OSDI). USENIX Association, 2016.

[3] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simu-
lations and Advanced Topics. Wiley, second edition, 2004.

[4] A. Baumann, M. Peinado, and G. Hunt. Shielding applications from an
untrusted cloud with Haven. In USENIX Proc. on Operating Systems
Design and Implementation (OSDI). USENIX Association, 2014.

[5] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking
the correctness of memories. Algorithmica, 1994.

[6] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten. SoK: Research perspectives and challenges for Bitcoin and
cryptocurrencies. In IEEE Proc. on Security & Privacy, 2015.

[7] M. Brandenburger, C. Cachin, and N. Knežević. Don’t trust the cloud,
verify: Integrity and consistency for cloud object stores. In Int. Systems
and Storage Conference (SYSTOR). ACM, 2015.

[8] S. Brenner, C. Wulf, M. Lorenz, N. Weichbrodt, D. Goltzsche, C. Fetzer,
P. Pietzuch, and R. Kapitza. SecureKeeper: Confidential ZooKeeper
using Intel SGX. In Int. Middleware Conference. ACM, 2016.

[9] E. Brickell and J. Li. Enhanced privacy id from bilinear pairing for
hardware authentication and attestation. Int. Journal of Information
Privacy, Security and Integrity 2, 2011.

[10] C. Cachin, I. Keidar, and A. Shraer. Fail-aware untrusted storage. SIAM
Journal on Computing, 2011.

[11] C. Cachin and O. Ohrimenko. Verifying the consistency of remote
untrusted services with commutative operations. In Conference on
Principles of Distributed Systems (OPODIS). Springer, 2014.

[12] C. Cachin, A. Shelat, and A. Shraer. Efficient fork-linearizable access
to untrusted shared memory. In Proc. on Principles of Distributed
Computing (PODC). ACM, 2007.

[13] B.-G. Chun, C. Curino, R. Sears, A. Shraer, S. Madden, and R. Ra-
makrishnan. Mobius: Unified messaging and data serving for mobile
apps. In Intl. Conference on Mobile Systems, Applications, and Services
(MobiSys). ACM, 2012.

[14] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested
append-only memory: Making adversaries stick to their word. In
SIGOPS Operating Systems Review. ACM, 2007.

[15] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested
append-only memory: Making adversaries stick to their word. In Proc.
on Operating Systems Principles (SOSP). ACM, 2007.

[16] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In Proc. on Cloud
Computing (SoCC). ACM, 2010.

[17] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten. SPORC:
Group collaboration using untrusted cloud resources. In Proc. Operating
Systems Design and Implementation (OSDI), 2010.

[18] M. T. Goodrich, C. Papamanthou, R. Tamassia, and N. Triandopoulos.
Athos: Efficient authentication of outsourced file systems. In Intl.
Conference on Information Security (ISC). Springer, 2008.

[19] S. Gueron. A memory encryption engine suitable for general purpose
processors. Cryptology ePrint Archive, Report 2016/204, 2016.

[20] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. Transactions on Programming Languages and
Systems, 1990.

[21] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo.
Using innovative instructions to create trustworthy software solutions.
In Int. Workshop on Hardware and Architectural Support for Security
and Privacy (HASP), 2013.

[22] Intel. Intel SGX SDK Developer Reference for Windows* OS, 2015.
https://software.intel.com/en-us/sgx-sdk/documentation.

[23] Intel. Intel SGX SDK for Linux* OS, 2016. https:
//01.org/intel-software-guard-extensions/documentation/
intel-sgx-sdk-developer-reference.

[24] K. R. Jayaram, D. Safford, U. Sharma, V. Naik, D. Pendarakis, and
S. Tao. Trustworthy geographically fenced hybrid clouds. In Int.
Middleware Conference, 2014.

[25] B. Laurie. Certificate transparency. Communications of the ACM, 2014.
[26] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda. TrInc: Small

trusted hardware for large distributed systems. In Proc. Networked
Systems Design and Implementation (NSDI), 2009.

[27] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure untrusted
data repository (SUNDR). In Symp. Operating Systems Design and
Implementation (OSDI), 2004.

[28] M. Majuntke, D. Dobre, M. Serafini, and N. Suri. Abortable fork-
linearizable storage. In Conference on Principles of Distributed Systems
(OPODIS). Springer, 2009.

[29] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,
A. Juels, and S. Capkun. Rote: Rollback protection for trusted execution.
Cryptology ePrint Archive, Report 2017/048, 2017.

[30] D. Mazières and D. Shasha. Building secure file systems out of byzantine
storage. In Proc. on Principles of Distributed Computing (PODC).
ACM, 2002.

[31] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative instructions and
software model for isolated execution. In Int. Workshop on Hardware
and Architectural Support for Security and Privacy (HASP). ACM, 2013.

[32] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M. McCune.
Memoir: Practical state continuity for protected modules. In IEEE Proc.
on Security & Privacy, 2011.

[33] S. Pearson and A. Benameur. Privacy, security and trust issues arising
from cloud computing. In Proc. Cloud Computing (CloudCom), 2010.

[34] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich. VC3: trustworthy data analytics in the cloud
using SGX. In IEEE Proc. on Security & Privacy, 2015.

[35] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky, and
D. Shaket. Venus: Verification for untrusted cloud storage. In Proc.
Cloud Computing Security Workshop (CCSW). ACM, 2010.

[36] R. Strackx, B. Jacobs, and F. Piessens. ICE: A passive, high-speed,
state-continuity scheme. In Annual Computer Security Applications
Conference. ACM, 2014.

[37] R. Strackx and N. Lambrigts. Idea: State-continuous transfer of state
in protected-module architectures. In Engineering Secure Software and
Systems. Springer, 2015.

[38] R. Strackx and F. Piessens. Ariadne: A minimal approach to state
continuity. In USENIX Security Symposium, 2016.

[39] D. B. Terry, M. Theimer, K. Petersen, A. J. Demers, M. Spreitzer, and
C. Hauser. Managing update conflicts in Bayou, a weakly connected
replicated storage system. In ACM Symposium on Operating System
Principles (SOSP), 1995.

[40] P. Williams, R. Sion, and D. Shasha. The blind stone tablet: Outsourcing
durability to untrusted parties. In Proc. Network and Distributed Systems
Security Symposium (NDSS), 2009.

