MindView Inc.
[ Viewing Hints ] [ Revision History ] [ Report an Error ]
[ 1st Edition ] [ Free Newsletter ]
[ Seminars ] [ Seminars on CD ROM ] [ Consulting ]

Thinking in Java, 2nd edition, Revision 5b

©2000 by Bruce Eckel

[ Previous Chapter ] [ Short TOC ] [ Table of Contents ] [ Index ] [ Next Chapter ]

14: Distributed computing

Historically, network programming has been error-prone, difficult, and complex.

The programmer had to know many details about the network and sometimes even the hardware. You usually needed to understand the various “layers” of the networking protocol, and there were a lot of different functions in each different networking library concerned with connecting, packing, and unpacking blocks of information; shipping those blocks back and forth; and handshaking. It was a daunting task.

However, the concept of networking is not so difficult. You want to get some information from that machine over there and move it to this machine here, or vice versa. It’s quite similar to reading and writing files, except that the file exists on a remote machine and the remote machine can decide exactly what it wants to do about the information you’re requesting or sending.

One of Java’s great strengths is painless networking. As much as possible, the underlying details of networking have been abstracted away and taken care of within the JVM and local machine installation of Java. The programming model you use is that of a file; in fact, you actually wrap the network connection (a “socket”) with stream objects, so you end up using the same method calls as you do with all other streams. In addition, Java’s built-in multithreading is exceptionally handy when dealing with another networking issue: handling multiple connections at once.

This chapter introduces Java’s networking support using easy-to-understand examples.

Identifying a machine

Of course, in order to tell one machine from another and to make sure that you are connected with the machine you want, there must be some way of uniquely identifying machines on a network. Early networks were satisfied to provide unique names for machines within the local network. However, Java works within the Internet, which requires a way to uniquely identify a machine from all the others in the world. This is accomplished with the IP (Internet Protocol) address that can exist in two forms:

  1. The familiar DNS (Domain Name Service) form. My domain name is bruceeckel.com, so suppose I have a computer called Opus in my domain. Its domain name would be Opus.bruceeckel.com. This is exactly the kind of name that you use when you send email to people, and is often incorporated into a World-Wide-Web address.
  2. Alternatively, you can use the “dotted quad” form, which is four numbers separated by dots, such as 123.255.28.120.

In both cases, the IP address is represented internally as a 32-bit number[62] (so each of the quad numbers cannot exceed 255), and you can get a special Java object to represent this number from either of the forms above by using the static InetAddress.getByName( ) method that’s in java.net. The result is an object of type InetAddress that you can use to build a “socket” as you will see later.

As a simple example of using InetAddress.getByName( ), consider what happens if you have a dial-up Internet service provider (ISP). Each time you dial up, you are assigned a temporary IP address. But while you’re connected, your IP address has the same validity as any other IP address on the Internet. If someone connects to your machine using your IP address then they can connect to a Web server or FTP server that you have running on your machine. Of course, they need to know your IP address, and since it’s assigned each time you dial up, how can you find out what it is?

The following program uses InetAddress.getByName( ) to produce your IP address. To use it, you must know the name of your computer. It has been tested only on Windows 95, but there you can go to “Settings,” “Control Panel,” “Network,” and then select the “Identification” tab. “Computer name” is the name to put on the command line.

//: c14:WhoAmI.java
// Finds out your network address when you're 
// connected to the Internet.
import java.net.*;

public class WhoAmI {
  public static void main(String[] args) 
      throws Exception {
    if(args.length != 1) {
      System.err.println(
        "Usage: WhoAmI MachineName");
      System.exit(1);
    }
    InetAddress a = 
      InetAddress.getByName(args[0]);
    System.out.println(a);
  }
} ///:~

In my case, the machine is called “Colossus” (from the movie of the same name, because I keep putting bigger disks on it). So, once I’ve connected to my ISP I run the program:

java WhoAmI Colossus

I get back a message like this (of course, the address is different each time):

Colossus/199.190.87.75

If I tell my friend this address, he can log onto my personal Web server by going to the URL http://199.190.87.75 (only as long as I continue to stay connected during that session). This can sometimes be a handy way to distribute information to someone else or to test out a Web site configuration before posting it to a “real” server.

Servers and clients

The whole point of a network is to allow two machines to connect and talk to each other. Once the two machines have found each other they can have a nice, two-way conversation. But how do they find each other? It’s like getting lost in an amusement park: one machine has to stay in one place and listen while the other machine says, “Hey, where are you?”

The machine that “stays in one place” is called the server, and the one that seeks is called the client. This distinction is important only while the client is trying to connect to the server. Once they’ve connected, it becomes a two-way communication process and it doesn’t matter anymore that one happened to take the role of server and the other happened to take the role of the client.

So the job of the server is to listen for a connection, and that’s performed by the special server object that you create. The job of the client is to try to make a connection to a server, and this is performed by the special client object you create. Once the connection is made, you’ll see that at both server and client ends, the connection is just magically turned into an IO stream object, and from then on you can treat the connection as if you were reading from and writing to a file. Thus, after the connection is made you will just use the familiar IO commands from Chapter 10. This is one of the nice features of Java networking.

Testing programs without a network

For many reasons, you might not have a client machine, a server machine, and a network available to test your programs. You might be performing exercises in a classroom situation, or you could be writing programs that aren’t yet stable enough to put onto the network. The creators of the Internet Protocol were aware of this issue, and they created a special address called localhost to be the “local loopback” IP address for testing without a network. The generic way to produce this address in Java is:

InetAddress addr = InetAddress.getByName(null);

If you hand getByName( ) a null, it defaults to using the localhost. The InetAddress is what you use to refer to the particular machine, and you must produce this before you can go any further. You can’t manipulate the contents of an InetAddress (but you can print them out, as you’ll see in the next example). The only way you can create an InetAddress is through one of that class’s static member methods getByName( ) (which is what you’ll usually use), getAllByName( ), or getLocalHost( ).

You can also produce the local loopback address by handing it the string localhost:

InetAddress.getByName("localhost");

or by using its dotted quad form to name the reserved IP number for the loopback:

InetAddress.getByName("127.0.0.1");

All three forms produce the same result.

Port: a unique place
within the machine

An IP address isn’t enough to identify a unique server, since many servers can exist on one machine. Each IP machine also contains ports, and when you’re setting up a client or a server you must choose a port where both client and server agree to connect; if you’re meeting someone, the IP address is the neighborhood and the port is the bar.

The port is not a physical location in a machine, but a software abstraction (mainly for bookkeeping purposes). The client program knows how to connect to the machine via its IP address, but how does it connect to a desired service (potentially one of many on that machine)? That’s where the port numbers come in as second level of addressing. The idea is that if you ask for a particular port, you’re requesting the service that’s associated with the port number. The time of day is a simple example of a service. Typically, each service is associated with a unique port number on a given server machine. It’s up to the client to know ahead of time which port number the desired service is running on.

The system services reserve the use of ports 1 through 1024, so you shouldn’t use those or any other port that you know to be in use. The first choice for examples in this book will be port 8080 (in memory of the venerable old 8-bit Intel 8080 chip in my first computer, a CP/M machine).

Sockets

The socket is the software abstraction used to represent the “terminals” of a connection between two machines. For a given connection, there’s a socket on each machine, and you can imagine a hypothetical “cable” running between the two machines with each end of the “cable” plugged into a socket. Of course, the physical hardware and cabling between machines is completely unknown. The whole point of the abstraction is that we don’t have to know more than is necessary.

In Java, you create a socket to make the connection to the other machine, then you get an InputStream and OutputStream (or, with the appropriate converters, Reader and Writer) from the socket in order to be able to treat the connection as an IO stream object. There are two stream-based socket classes: a ServerSocket that a server uses to “listen” for incoming connections and a Socket that a client uses in order to initiate a connection. Once a client makes a socket connection, the ServerSocket returns (via the accept( ) method) a corresponding server side Socket through which direct communications will take place. From then on, you have a true Socket to Socket connection and you treat both ends the same way because they are the same. At this point, you use the methods getInputStream( ) and getOutputStream( ) to produce the corresponding InputStream and OutputStream objects from each Socket. These must be wrapped inside buffers and formatting classes just like any other stream object described in Chapter 10.

The use of the term ServerSocket would seem to be another example of a confusing name scheme in the Java libraries. You might think ServerSocket would be better named “ServerConnector” or something without the word “Socket” in it. You might also think that ServerSocket and Socket should both be inherited from some common base class. Indeed, the two classes do have several methods in common but not enough to give them a common base class. Instead, ServerSocket’s job is to wait until some other machine connects to it, then to return an actual Socket. This is why ServerSocket seems to be a bit misnamed, since its job isn’t really to be a socket but instead to make a Socket object when someone else connects to it.

However, the ServerSocket does create a physical “server” or listening socket on the host machine. This socket listens for incoming connections and then returns an “established” socket (with the local and remote endpoints defined) via the accept( ) method. The confusing part is that both of these sockets (listening and established) are associated with the same server socket. The listening socket can accept only new connection requests and not data packets. So while ServerSocket doesn’t make much sense programmatically, it does “physically.”

When you create a ServerSocket, you give it only a port number. You don’t have to give it an IP address because it’s already on the machine it represents. When you create a Socket, however, you must give both the IP address and the port number where you’re trying to connect. (On the other hand, the Socket that comes back from ServerSocket.accept( ) already contains all this information.)

A simple server and client

This example makes the simplest use of servers and clients using sockets. All the server does is wait for a connection, then uses the Socket produced by that connection to create an InputStream and OutputStream. After that, everything it reads from the InputStream it echoes to the OutputStream until it receives the line END, at which time it closes the connection.

The client makes the connection to the server, then creates an OutputStream. Lines of text are sent through the OutputStream. The client also creates an InputStream to hear what the server is saying (which, in this case, is just the words echoed back).

Both the server and client use the same port number and the client uses the local loopback address to connect to the server on the same machine so you don’t have to test it over a network. (For some configurations, you might need to be connected to a network for the programs to work, even if you aren’t communicating over that network.)

Here is the server:

//: c14:JabberServer.java
// Very simple server that just
// echoes whatever the client sends.
import java.io.*;
import java.net.*;

public class JabberServer {  
  // Choose a port outside of the range 1-1024:
  public static final int PORT = 8080;
  public static void main(String[] args) 
      throws IOException {
    ServerSocket s = new ServerSocket(PORT);
    System.out.println("Started: " + s);
    try {
      // Blocks until a connection occurs:
      Socket socket = s.accept();
      try {
        System.out.println(
          "Connection accepted: "+ socket);
        BufferedReader in = 
          new BufferedReader(
            new InputStreamReader(
              socket.getInputStream()));
        // Output is automatically flushed
        // by PrintWriter:
        PrintWriter out = 
          new PrintWriter(
            new BufferedWriter(
              new OutputStreamWriter(
                socket.getOutputStream())),true);
        while (true) {  
          String str = in.readLine();
          if (str.equals("END")) break;
          System.out.println("Echoing: " + str);
          out.println(str);
        }
      // Always close the two sockets...
      } finally {
        System.out.println("closing...");
        socket.close();
      }
    } finally {
      s.close();
    }
  } 
} ///:~

You can see that the ServerSocket just needs a port number, not an IP address (since it’s running on this machine!). When you call accept( ), the method blocks until some client tries to connect to it. That is, it’s there waiting for a connection but other processes can run (see Chapter 14). When a connection is made, accept( ) returns with a Socket object representing that connection.

The responsibility for cleaning up the sockets is crafted carefully here. If the ServerSocket constructor fails, the program just quits (notice we must assume that the constructor for ServerSocket doesn’t leave any open network sockets lying around if it fails). For this case, main( ) throws IOException so a try block is not necessary. If the ServerSocket constructor is successful then all other method calls must be guarded in a try-finally block to ensure that, no matter how the block is left, the ServerSocket is properly closed.

The same logic is used for the Socket returned by accept( ). If accept( ) fails, then we must assume that the Socket doesn’t exist or hold any resources, so it doesn’t need to be cleaned up. If it’s successful, however, the following statements must be in a try-finally block so that if they fail the Socket will still be cleaned up. Care is required here because sockets use important non-memory resources, so you must be diligent in order to clean them up (since there is no destructor in Java to do it for you).

Both the ServerSocket and the Socket produced by accept( ) are printed to System.out. This means that their toString( ) methods are automatically called. These produce:

ServerSocket[addr=0.0.0.0,PORT=0,localport=8080]
Socket[addr=127.0.0.1,PORT=1077,localport=8080]

Shortly, you’ll see how these fit together with what the client is doing.

The next part of the program looks just like opening files for reading and writing except that the InputStream and OutputStream are created from the Socket object. Both the InputStream and OutputStream objects are converted to Java 1.1 Reader and Writer objects using the “converter” classes InputStreamReader and OutputStreamWriter, respectively. You could also have used the Java 1.0 InputStream and OutputStream classes directly, but with output there’s a distinct advantage to using the Writer approach. This appears with PrintWriter, which has an overloaded constructor that takes a second argument, a boolean flag that indicates whether to automatically flush the output at the end of each println( ) (but not print( )) statement. Every time you write to out, its buffer must be flushed so the information goes out over the network. Flushing is important for this particular example because the client and server each wait for a line from the other party before proceeding. If flushing doesn’t occur, the information will not be put onto the network until the buffer is full, which causes lots of problems in this example.

When writing network programs you need to be careful about using automatic flushing. Every time you flush the buffer a packet must be created and sent. In this case, that’s exactly what we want, since if the packet containing the line isn’t sent then the handshaking back and forth between server and client will stop. Put another way, the end of a line is the end of a message. But in many cases messages aren’t delimited by lines so it’s much more efficient to not use auto flushing and instead let the built-in buffering decide when to build and send a packet. This way, larger packets can be sent and the process will be faster.

Note that, like virtually all streams you open, these are buffered. There’s an exercise at the end of the chapter to show you what happens if you don’t buffer the streams (things get slow).

The infinite while loop reads lines from the BufferedReader in and writes information to System.out and to the PrintWriter out. Note that these could be any streams, they just happen to be connected to the network.

When the client sends the line consisting of “END” the program breaks out of the loop and closes the Socket.

Here’s the client:

//: c14:JabberClient.java
// Very simple client that just sends
// lines to the server and reads lines
// that the server sends.
import java.net.*;
import java.io.*;

public class JabberClient {
  public static void main(String[] args) 
      throws IOException {
    // Passing null to getByName() produces the
    // special "Local Loopback" IP address, for
    // testing on one machine w/o a network:
    InetAddress addr = 
      InetAddress.getByName(null);
    // Alternatively, you can use 
    // the address or name:
    // InetAddress addr = 
    //    InetAddress.getByName("127.0.0.1");
    // InetAddress addr = 
    //    InetAddress.getByName("localhost");
    System.out.println("addr = " + addr);
    Socket socket = 
      new Socket(addr, JabberServer.PORT);
    // Guard everything in a try-finally to make
    // sure that the socket is closed:
    try {
      System.out.println("socket = " + socket);
      BufferedReader in =
        new BufferedReader(
          new InputStreamReader(
            socket.getInputStream()));
      // Output is automatically flushed
      // by PrintWriter:
      PrintWriter out =
        new PrintWriter(
          new BufferedWriter(
            new OutputStreamWriter(
              socket.getOutputStream())),true);
      for(int i = 0; i < 10; i ++) {
        out.println("howdy " + i);
        String str = in.readLine();
        System.out.println(str);
      }
      out.println("END");
    } finally {
      System.out.println("closing...");
      socket.close();
    }
  }
} ///:~

In main( ) you can see all three ways to produce the InetAddress of the local loopback IP address: using null, localhost, or the explicit reserved address 127.0.0.1. Of course, if you want to connect to a machine across a network you substitute that machine’s IP address. When the InetAddress addr is printed (via the automatic call to its toString( ) method) the result is:

localhost/127.0.0.1

By handing getByName( ) a null, it defaulted to finding the localhost, and that produced the special address 127.0.0.1.

Note that the Socket called socket is created with both the InetAddress and the port number. To understand what it means when you print out one of these Socket objects, remember that an Internet connection is determined uniquely by these four pieces of data: clientHost, clientPortNumber, serverHost, and serverPortNumber. When the server comes up, it takes up its assigned port (8080) on the localhost (127.0.0.1). When the client comes up, it is allocated to the next available port on its machine, 1077 in this case, which also happens to be on the same machine (127.0.0.1) as the server. Now, in order for data to move between the client and server, each side has to know where to send it. Therefore, during the process of connecting to the “known” server, the client sends a “return address” so the server knows where to send its data. This is what you see in the example output for the server side:

Socket[addr=127.0.0.1,port=1077,localport=8080]

This means that the server just accepted a connection from 127.0.0.1 on port 1077 while listening on its local port (8080). On the client side:

Socket[addr=localhost/127.0.0.1,PORT=8080,localport=1077]

which means that the client made a connection to 127.0.0.1 on port 8080 using the local port 1077.

You’ll notice that every time you start up the client anew, the local port number is incremented. It starts at 1025 (one past the reserved block of ports) and keeps going up until you reboot the machine, at which point it starts at 1025 again. (On UNIX machines, once the upper limit of the socket range is reached, the numbers will wrap around to the lowest available number again.)

Once the Socket object has been created, the process of turning it into a BufferedReader and PrintWriter is the same as in the server (again, in both cases you start with a Socket). Here, the client initiates the conversation by sending the string “howdy” followed by a number. Note that the buffer must again be flushed (which happens automatically via the second argument to the PrintWriter constructor). If the buffer isn’t flushed, the whole conversation will hang because the initial “howdy” will never get sent (the buffer isn’t full enough to cause the send to happen automatically). Each line that is sent back from the server is written to System.out to verify that everything is working correctly. To terminate the conversation, the agreed-upon “END” is sent. If the client simply hangs up, then the server throws an exception.

You can see that the same care is taken here to ensure that the network resources represented by the Socket are properly cleaned up, using a try-finally block.

Sockets produce a “dedicated” connection that persists until it is explicitly disconnected. (The dedicated connection can still be disconnected un-explicitly if one side, or an intermediary link, of the connection crashes.) This means the two parties are locked in communication and the connection is constantly open. This seems like a logical approach to networking, but it puts an extra load on the network. Later in the chapter you’ll see a different approach to networking, in which the connections are only temporary.

Serving multiple clients

The JabberServer works, but it can handle only one client at a time. In a typical server, you’ll want to be able to deal with many clients at once. The answer is multithreading, and in languages that don’t directly support multithreading this means all sorts of complications. In Chapter 14 you saw that multithreading in Java is about as simple as possible, considering that multithreading is a rather complex topic. Because threading in Java is reasonably straightforward, making a server that handles multiple clients is relatively easy.

The basic scheme is to make a single ServerSocket in the server and call accept( ) to wait for a new connection. When accept( ) returns, you take the resulting Socket and use it to create a new thread whose job is to serve that particular client. Then you call accept( ) again to wait for a new client.

In the following server code, you can see that it looks similar to the JabberServer.java example except that all of the operations to serve a particular client have been moved inside a separate thread class:

//: c14:MultiJabberServer.java
// A server that uses multithreading to handle 
// any number of clients.
import java.io.*;
import java.net.*;

class ServeOneJabber extends Thread {
  private Socket socket;
  private BufferedReader in;
  private PrintWriter out;
  public ServeOneJabber(Socket s) 
      throws IOException {
    socket = s;
    in = 
      new BufferedReader(
        new InputStreamReader(
          socket.getInputStream()));
    // Enable auto-flush:
    out = 
      new PrintWriter(
        new BufferedWriter(
          new OutputStreamWriter(
            socket.getOutputStream())), true);
    // If any of the above calls throw an 
    // exception, the caller is responsible for
    // closing the socket. Otherwise the thread
    // will close it.
    start(); // Calls run()
  }
  public void run() {
    try {
      while (true) {  
        String str = in.readLine();
        if (str.equals("END")) break;
        System.out.println("Echoing: " + str);
        out.println(str);
      }
      System.out.println("closing...");
    } catch (IOException e) {
    } finally {
      try {
        socket.close();
      } catch(IOException e) {}
    }
  }
}

public class MultiJabberServer {  
  static final int PORT = 8080;
  public static void main(String[] args)
      throws IOException {
    ServerSocket s = new ServerSocket(PORT);
    System.out.println("Server Started");
    try {
      while(true) {
        // Blocks until a connection occurs:
        Socket socket = s.accept();
        try {
          new ServeOneJabber(socket);
        } catch(IOException e) {
          // If it fails, close the socket,
          // otherwise the thread will close it:
          socket.close();
        }
      }
    } finally {
      s.close();
    }
  } 
} ///:~

The ServeOneJabber thread takes the Socket object that’s produced by accept( ) in main( ) every time a new client makes a connection. Then, as before, it creates a BufferedReader and auto-flushed PrintWriter object using the Socket. Finally, it calls the special Thread method start( ), which performs thread initialization and then calls run( ). This performs the same kind of action as in the previous example: reading something from the socket and then echoing it back until it reads the special “END” signal.

The responsibility for cleaning up the socket must again be carefully designed. In this case, the socket is created outside of the ServeOneJabber so the responsibility can be shared. If the ServeOneJabber constructor fails, it will just throw the exception to the caller, who will then clean up the thread. But if the constructor succeeds, then the ServeOneJabber object takes over responsibility for cleaning up the thread, in its run( ).

Notice the simplicity of the MultiJabberServer. As before, a ServerSocket is created and accept( ) is called to allow a new connection. But this time, the return value of accept( ) (a Socket) is passed to the constructor for ServeOneJabber, which creates a new thread to handle that connection. When the connection is terminated, the thread simply goes away.

If the creation of the ServerSocket fails, the exception is again thrown through main( ). But if it succeeds, the outer try-finally guarantees its cleanup. The inner try-catch guards only against the failure of the ServeOneJabber constructor; if the constructor succeeds, then the ServeOneJabber thread will close the associated socket.

To test that the server really does handle multiple clients, the following program creates many clients (using threads) that connect to the same server. Each thread has a limited lifetime, and when it goes away, that leaves space for the creation of a new thread. The maximum number of threads allowed is determined by the final int maxthreads. You’ll notice that this value is rather critical, since if you make it too high the threads seem to run out of resources and the program mysteriously fails.

//: c14:MultiJabberClient.java
// Client that tests the MultiJabberServer
// by starting up multiple clients.
import java.net.*;
import java.io.*;

class JabberClientThread extends Thread {
  private Socket socket;
  private BufferedReader in;
  private PrintWriter out;
  private static int counter = 0;
  private int id = counter++;
  private static int threadcount = 0;
  public static int threadCount() { 
    return threadcount; 
  }
  public JabberClientThread(InetAddress addr) {
    System.out.println("Making client " + id);
    threadcount++;
    try {
      socket = 
        new Socket(addr, MultiJabberServer.PORT);
    } catch(IOException e) {
      // If the creation of the socket fails, 
      // nothing needs to be cleaned up.
    }
    try {    
      in = 
        new BufferedReader(
          new InputStreamReader(
            socket.getInputStream()));
      // Enable auto-flush:
      out = 
        new PrintWriter(
          new BufferedWriter(
            new OutputStreamWriter(
              socket.getOutputStream())), true);
      start();
    } catch(IOException e) {
      // The socket should be closed on any 
      // failures other than the socket 
      // constructor:
      try {
        socket.close();
      } catch(IOException e2) {}
    }
    // Otherwise the socket will be closed by
    // the run() method of the thread.
  }
  public void run() {
    try {
      for(int i = 0; i < 25; i++) {
        out.println("Client " + id + ": " + i);
        String str = in.readLine();
        System.out.println(str);
      }
      out.println("END");
    } catch(IOException e) {
    } finally {
      // Always close it:
      try {
        socket.close();
      } catch(IOException e) {}
      threadcount--; // Ending this thread
    }
  }
}

public class MultiJabberClient {
  static final int MAX_THREADS = 40;
  public static void main(String[] args) 
      throws IOException, InterruptedException {
    InetAddress addr = 
      InetAddress.getByName(null);
    while(true) {
      if(JabberClientThread.threadCount() 
         < MAX_THREADS)
        new JabberClientThread(addr);
      Thread.currentThread().sleep(100);
    }
  }
} ///:~

The JabberClientThread constructor takes an InetAddress and uses it to open a Socket. You’re probably starting to see the pattern: the Socket is always used to create some kind of Reader and/or Writer (or InputStream and/or OutputStream) object, which is the only way that the Socket can be used. (You can, of course, write a class or two to automate this process instead of doing all the typing if it becomes painful.) Again, start( ) performs thread initialization and calls run( ). Here, messages are sent to the server and information from the server is echoed to the screen. However, the thread has a limited lifetime and eventually completes. Note that the socket is cleaned up if the constructor fails after the socket is created but before the constructor completes. Otherwise the responsibility for calling close( ) for the socket is relegated to the run( ) method.

The threadcount keeps track of how many JabberClientThread objects currently exist. It is incremented as part of the constructor and decremented as run( ) exits (which means the thread is terminating). In MultiJabberClient.main( ), you can see that the number of threads is tested, and if there are too many, no more are created. Then the method sleeps. This way, some threads will eventually terminate and more can be created. You can experiment with MAX_THREADS to see where your particular system begins to have trouble with too many connections.

Datagrams

The examples you’ve seen so far use the Transmission Control Protocol (TCP, also known as stream-based sockets), which is designed for ultimate reliability and guarantees that the data will get there. It allows retransmission of lost data, it provides multiple paths through different routers in case one goes down, and bytes are delivered in the order they are sent. All this control and reliability comes at a cost: TCP has a high overhead.

There’s a second protocol, called User Datagram Protocol (UDP), which doesn’t guarantee that the packets will be delivered and doesn’t guarantee that they will arrive in the order they were sent. It’s called an “unreliable protocol” (TCP is a “reliable protocol”), which sounds bad, but because it’s much faster it can be useful. There are some applications, such as an audio signal, in which it isn’t so critical if a few packets are dropped here or there but speed is vital. Or consider a time-of-day server, where it really doesn’t matter if one of the messages is lost. Also, some applications might be able to fire off a UDP message to a server and can then assume, if there is no response in a reasonable period of time, that the message was lost.

The support for datagrams in Java has the same feel as its support for TCP sockets, but there are significant differences. With datagrams, you put a DatagramSocket on both the client and server, but there is no analogy to the ServerSocket that waits around for a connection. That’s because there is no “connection,” but instead a datagram just shows up. Another fundamental difference is that with TCP sockets, once you’ve made the connection you don’t need to worry about who’s talking to whom anymore; you just send the data back and forth through conventional streams. However, with datagrams, the datagram packet must know where it came from and where it’s supposed to go. That means you must know these things for each datagram packet that you load up and ship off.

A DatagramSocket sends and receives the packets, and the DatagramPacket contains the information. When you’re receiving a datagram, you need only provide a buffer in which the data will be placed; the information about the Internet address and port number where the information came from will be automatically initialized when the packet arrives through the DatagramSocket. So the constructor for a DatagramPacket to receive datagrams is:

DatagramPacket(buf, buf.length)

in which buf is an array of byte. Since buf is an array, you might wonder why the constructor couldn’t figure out the length of the array on its own. I wondered this, and can only guess that it’s a throwback to C-style programming, in which of course arrays can’t tell you how big they are.

You can reuse a receiving datagram; you don’t have to make a new one each time. Every time you reuse it, the data in the buffer is overwritten.

The maximum size of the buffer is restricted only by the allowable datagram packet size, which limits it to slightly less than 64Kbytes. However, in many applications you’ll want it to be much smaller, certainly when you’re sending data. Your chosen packet size depends on what you need for your particular application.

When you send a datagram, the DatagramPacket must contain not only the data, but also the Internet address and port where it will be sent. So the constructor for an outgoing DatagramPacket is:

DatagramPacket(buf, length, inetAddress, port)

This time, buf (which is a byte array) already contains the data that you want to send out. The length might be the length of buf, but it can also be shorter, indicating that you want to send only that many bytes. The other two arguments are the Internet address where the packet is going and the destination port within that machine.[63]

You might think that the two constructors create two different objects: one for receiving datagrams and one for sending them. Good OO design would suggest that these should be two different classes, rather than one class with different behavior depending on how you construct the object. This is probably true, but fortunately the use of DatagramPackets is simple enough that you’re not tripped up by the problem, as you can see in the following example. This example is similar to the MultiJabberServer and MultiJabberClient example for TCP sockets. Multiple clients will send datagrams to a server, which will echo them back to the same client that sent the message.

To simplify the creation of a DatagramPacket from a String and vice-versa, the example begins with a utility class, Dgram, to do the work for you:

//: c14:Dgram.java
// A utility class to convert back and forth
// Between Strings and DataGramPackets.
import java.net.*;

public class Dgram {
  public static DatagramPacket toDatagram(
    String s, InetAddress destIA, int destPort) {
    // Deprecated in Java 1.1, but it works:
    byte[] buf = new byte[s.length() + 1];
    s.getBytes(0, s.length(), buf, 0);
    // The correct Java 1.1 approach, but it's
    // Broken (it truncates the String):
    // byte[] buf = s.getBytes();
    return new DatagramPacket(buf, buf.length, 
      destIA, destPort);
  }
  public static String toString(DatagramPacket p){
    // The Java 1.0 approach:
    // return new String(p.getData(), 
    //  0, 0, p.getLength());
    // The Java 1.1 approach:
    return 
      new String(p.getData(), 0, p.getLength());
  }
} ///:~

The first method of Dgram takes a String, an InetAddress, and a port number and builds a DatagramPacket by copying the contents of the String into a byte buffer and passing the buffer into the DatagramPacket constructor. Notice the “+1” in the buffer allocation – this was necessary to prevent truncation. The getBytes( ) method of String is a special operation that copies the chars of a String into a byte buffer. This method is now deprecated; Java 1.1 has a “better” way to do this but it’s commented out here because it truncates the String. So you’ll get a deprecation message when you compile it under Java 1.1, but the behavior will be correct. (This bug might be fixed by the time you read this.)

The Dgram.toString( ) method shows both the Java 1.0 approach and the Java 1.1 approach (which is different because there’s a new kind of String constructor).

Here is the server for the datagram demonstration:

//: c14:ChatterServer.java
// A server that echoes datagrams
import java.net.*;
import java.io.*;
import java.util.*;

public class ChatterServer {
  static final int INPORT = 1711;
  private byte[] buf = new byte[1000];
  private DatagramPacket dp = 
    new DatagramPacket(buf, buf.length);
  // Can listen & send on the same socket:
  private DatagramSocket socket;

  public ChatterServer() {
    try {
      socket = new DatagramSocket(INPORT);
      System.out.println("Server started");
      while(true) {
        // Block until a datagram appears:
        socket.receive(dp);
        String rcvd = Dgram.toString(dp) +
          ", from address: " + dp.getAddress() +
          ", port: " + dp.getPort();
        System.out.println(rcvd);
        String echoString = 
          "Echoed: " + rcvd;
        // Extract the address and port from the
        // received datagram to find out where to
        // send it back:
        DatagramPacket echo = 
          Dgram.toDatagram(echoString,
            dp.getAddress(), dp.getPort());
        socket.send(echo);
      }
    } catch(SocketException e) {
      System.err.println("Can't open socket");
      System.exit(1);
    } catch(IOException e) {
      System.err.println("Communication error");
      e.printStackTrace();
    }
  }
  public static void main(String[] args) {
    new ChatterServer();
  }
} ///:~

The ChatterServer contains a single DatagramSocket for receiving messages, instead of creating one each time you’re ready to receive a new message. The single DatagramSocket can be used repeatedly. This DatagramSocket has a port number because this is the server and the client must have an exact address where it wants to send the datagram. It is given a port number but not an Internet address because it resides on “this” machine so it knows what its Internet address is (in this case, the default localhost). In the infinite while loop, the socket is told to receive( ), whereupon it blocks until a datagram shows up, and then sticks it into our designated receiver, the DatagramPacket dp. The packet is converted to a String along with information about the Internet address and socket where the packet came from. This information is displayed, and then an extra string is added to indicate that it is being echoed back from the server.

Now there’s a bit of a quandary. As you will see, there are potentially many different Internet addresses and port numbers that the messages might come from – that is, the clients can reside on any machine. (In this demonstration they all reside on the localhost, but the port number for each client is different.) To send a message back to the client that originated it, you need to know that client’s Internet address and port number. Fortunately, this information is conveniently packaged inside the DatagramPacket that sent the message, so all you have to do is pull it out using getAddress( ) and getPort( ), which are used to build the DatagramPacket echo that is sent back through the same socket that’s doing the receiving. In addition, when the socket sends the datagram, it automatically adds the Internet address and port information of this machine, so that when the client receives the message, it can use getAddress( ) and getPort( ) to find out where the datagram came from. In fact, the only time that getAddress( ) and getPort( ) don’t tell you where the datagram came from is if you create a datagram to send and you call getAddress( ) and getPort( ) before you send the datagram (in which case it tells the address and port of this machine, the one the datagram is being sent from). This is an essential part of datagrams: you don’t need to keep track of where a message came from because it’s always stored inside the datagram. In fact, the most reliable way to program is if you don’t try to keep track, but instead always extract the address and port from the datagram in question (as is done here).

To test this server, here’s a program that makes a number of clients, all of which fire datagram packets to the server and wait for the server to echo them back.

//: c14:ChatterClient.java
// Tests the ChatterServer by starting multiple 
// clients, each of which sends datagrams.
import java.net.*;
import java.io.*;

public class ChatterClient extends Thread {
  // Can listen & send on the same socket:
  private DatagramSocket s;
  private InetAddress hostAddress;
  private byte[] buf = new byte[1000];
  private DatagramPacket dp = 
    new DatagramPacket(buf, buf.length);
  private int id;

  public ChatterClient(int identifier) {
    id = identifier;
    try {
      // Auto-assign port number:
      s = new DatagramSocket();
      hostAddress = 
        InetAddress.getByName("localhost");
    } catch(UnknownHostException e) {
      System.err.println("Cannot find host");
      System.exit(1);
    } catch(SocketException e) {
      System.err.println("Can't open socket");
      e.printStackTrace();
      System.exit(1);
    } 
    System.out.println("ChatterClient starting");
  }
  public void run() {
    try {
      for(int i = 0; i < 25; i++) {
        String outMessage = "Client #" +
          id + ", message #" + i;
        // Make and send a datagram:
        s.send(Dgram.toDatagram(outMessage,
          hostAddress, 
          ChatterServer.INPORT));
        // Block until it echoes back:
        s.receive(dp);
        // Print out the echoed contents:
        String rcvd = "Client #" + id +
          ", rcvd from " + 
          dp.getAddress() + ", " + 
          dp.getPort() + ": " +
          Dgram.toString(dp);
        System.out.println(rcvd);
      }
    } catch(IOException e) {
      e.printStackTrace();
      System.exit(1);
    }
  }
  public static void main(String[] args) {
    for(int i = 0; i < 10; i++)
      new ChatterClient(i).start();
  }
} ///:~

ChatterClient is created as a Thread so that multiple clients can be made to bother the server. Here you can see that the receiving DatagramPacket looks just like the one used for ChatterServer. In the constructor, the DatagramSocket is created with no arguments since it doesn’t need to advertise itself as being at a particular port number. The Internet address used for this socket will be “this machine” (for the example, localhost) and the port number will be automatically assigned, as you will see from the output. This DatagramSocket, like the one for the server, will be used both for sending and receiving.

The hostAddress is the Internet address of the host machine you want to talk to. The one part of the program in which you must know an exact Internet address and port number is the part in which you make the outgoing DatagramPacket. As is always the case, the host must be at a known address and port number so that clients can originate conversations with the host.

Each thread is given a unique identification number (although the port number automatically assigned to the thread would also provide a unique identifier). In run( ), a message String is created that contains the thread’s identification number and the message number this thread is currently sending. This String is used to create a datagram that is sent to the host at its address; the port number is taken directly from a constant in ChatterServer. Once the message is sent, receive( ) blocks until the server replies with an echoing message. All of the information that’s shipped around with the message allows you to see that what comes back to this particular thread is derived from the message that originated from it. In this example, even though UDP is an “unreliable” protocol, you’ll see that all of the datagrams get where they’re supposed to. (This will be true for localhost and LAN situations, but you might begin to see some failures for non-local connections.)

When you run this program, you’ll see that each of the threads finishes, which means that each of the datagram packets sent to the server is turned around and echoed to the correct recipient; otherwise one or more threads would hang, blocking until their input shows up.

You might think that the only right way to, for example, transfer a file from one machine to another is through TCP sockets, since they’re “reliable.” However, because of the speed of datagrams they can actually be a better solution. You simply break the file up into packets and number each packet. The receiving machine takes the packets and reassembles them; a “header packet” tells the machine how many to expect and any other important information. If a packet is lost, the receiving machine sends a datagram back telling the sender to retransmit.

RMI (Remote Method Invocation)

Traditional approaches to executing code on other machines across a network have been confusing as well as tedious and error-prone to implement. The nicest way to think about this problem is that some object happens to live on another machine, and you can send a message to that object and get a result as if the object lived on your local machine. This simplification is exactly what Java 1.1 Remote Method Invocation (RMI) allows you to do. This section walks you through the steps necessary to create your own RMI objects.

Remote interfaces

RMI makes heavy use of interfaces. When you want to create a remote object, you mask the underlying implementation by passing around an interface. Thus, when the client gets a handle to a remote object, what they really get is an interface handle, which happens to connect to some local stub code that talks across the network. But you don’t think about this, you just send messages via your interface handle.

When you create a remote interface, you must follow these guidelines:

  1. The remote interface must be public (it cannot have “package access,” that is, it cannot be “friendly”). Otherwise, a client will get an error when attempting to load a remote object that implements the remote interface.
  2. The remote interface must extend the interface java.rmi.Remote.
  3. Each method in the remote interface must declare java.rmi.RemoteException in its throws clause in addition to any application-specific exceptions.
  4. A remote object passed as an argument or return value (either directly or embedded within a local object) must be declared as the remote interface, not the implementation class.

Here’s a simple remote interface that represents an accurate time service:

//: c14:ptime:PerfectTimeI.java
// The PerfectTime remote interface
package c14.ptime;
import java.rmi.*;

interface PerfectTimeI extends Remote {
  long getPerfectTime() throws RemoteException;
} ///:~

It looks like any other interface except that it extends Remote and all of its methods throw RemoteException. Remember that an interface and all of its methods are automatically public.

Implementing the remote interface

The server must contain a class that extends UnicastRemoteObject and implements the remote interface. This class can also have additional methods, but only the methods in the remote interface will be available to the client, of course, since the client will get only a handle to the interface, not the class that implements it.

You must explicitly define the constructor for the remote object even if you’re only defining a default constructor that calls the base-class constructor. You must write it out since it must throw RemoteException.

Here’s the implementation of the remote interface PerfectTimeI:

//: c14:ptime:PerfectTime.java
// The implementation of the PerfectTime 
// remote object
package c14.ptime;
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;
import java.net.*;

public class PerfectTime 
    extends UnicastRemoteObject
    implements PerfectTimeI {
  // Implementation of the interface:
  public long getPerfectTime() 
      throws RemoteException {
    return System.currentTimeMillis();
  }
  // Must implement constructor to throw
  // RemoteException:
  public PerfectTime() throws RemoteException {
    // super(); // Called automatically
  }
  // Registration for RMI serving:
  public static void main(String[] args) {
    System.setSecurityManager(
      new RMISecurityManager());
    try {
      PerfectTime pt = new PerfectTime();
      Naming.bind(
        "//colossus:2005/PerfectTime", pt);
      System.out.println("Ready to do time");
    } catch(Exception e) {
      e.printStackTrace();
    }
  }
} ///:~

Here, main( ) handles all the details of setting up the server. When you’re serving RMI objects, at some point in your program you must:

  1. Create and install a security manager that supports RMI. The only one available for RMI as part of the Java distribution is RMISecurityManager.
  2. Create one or more instances of a remote object. Here, you can see the creation of the PerfectTime object.
  3. Register at least one of the remote objects with the RMI remote object registry for bootstrapping purposes. One remote object can have methods that produce handles to other remote objects. This allows you to set it up so the client must go to the registry only once, to get the first remote object.

Setting up the registry

Here, you see a call to the static method Naming.bind( ). However, this call requires that the registry be running as a separate process on the computer. The name of the registry server is rmiregistry, and under 32-bit Windows you say:

start rmiregistry

to start it in the background. On Unix, it is:

rmiregistry &

Like many network programs, the rmiregistry is located at the IP address of whatever machine started it up, but it must also be listening at a port. If you invoke the rmiregistry as above, with no argument, the registry’s port will default to 1099. If you want it to be at some other port, you add an argument on the command line to specify the port. For this example, the port will be located at 2005, so the rmiregistry should be started like this under 32-bit Windows:

start rmiregistry 2005

or for Unix:

rmiregistry 2005 &

The information about the port must also be given to the bind( ) command, as well as the IP address of the machine where the registry is located. But this brings up what can be a frustrating problem if you’re expecting to test RMI programs locally the way the network programs have been tested so far in this chapter. In the JDK 1.1.1 release, there are a couple of problems:[64]


  1. localhost does not work with RMI. Thus, to experiment with RMI on a single machine, you must provide the name of the machine. To find out the name of your machine under 32-bit Windows, go to the control panel and select “Network.” Select the “Identification” tab, and you’ll see your computer name. In my case, I called my computer “Colossus” (for all the hard disks I’ve had to put on to hold all the different development systems). It appears that capitalization is ignored.
  2. RMI will not work unless your computer has an active TCP/IP connection, even if all your components are just talking to each other on the local machine. This means that you must connect to your Internet service provider before trying to run the program or you’ll get some obscure exception messages.

Will all this in mind, the bind( ) command becomes:

Naming.bind("//colossus:2005/PerfectTime", pt);

If you are using the default port 1099, you don’t need to specify a port, so you could say:

Naming.bind("//colossus/PerfectTime", pt);

In a future release of the JDK (after 1.1) when the localhost bug is fixed, you will be able to perform local testing by leaving off the IP address and using only the identifier:

Naming.bind("PerfectTime", pt);

The name for the service is arbitrary; it happens to be PerfectTime here, just like the name of the class, but you could call it anything you want. The important thing is that it’s a unique name in the registry that the client knows to look for to procure the remote object. If the name is already in the registry, you’ll get an AlreadyBoundException. To prevent this, you can always use rebind( ) instead of bind( ), since rebind( ) either adds a new entry or replaces the one that’s already there.

Even though main( ) exits, your object has been created and registered so it’s kept alive by the registry, waiting for a client to come along and request it. As long as the rmiregistry is running and you don’t call Naming.unbind( ) on your name, the object will be there. For this reason, when you’re developing your code you need to shut down the rmiregistry and restart it when you compile a new version of your remote object.

You aren’t forced to start up rmiregistry as an external process. If you know that your application is the only one that’s going to use the registry, you can start it up inside your program with the line:

LocateRegistry.createRegistry(2005);

Like before, 2005 is the port number we happen to be using in this example. This is the equivalent of running rmiregistry 2005 from a command line, but it can often be more convenient when you’re developing RMI code since it eliminates the extra steps of starting and stopping the registry. Once you’ve executed this code, you can bind( ) using Naming as before.

Creating stubs and skeletons

If you compile and run PerfectTime.java, it won’t work even if you have the rmiregistry running correctly. That’s because the framework for RMI isn’t all there yet. You must first create the stubs and skeletons that provide the network connection operations and allow you to pretend that the remote object is just another local object on your machine.

What’s going on behind the scenes is complex. Any objects that you pass into or return from a remote object must implement Serializable (if you want to pass remote references instead of the entire objects, the object arguments can implement Remote), so you can imagine that the stubs and skeletons are automatically performing serialization and deserialization as they “marshal” all of the arguments across the network and return the result. Fortunately, you don’t have to know any of this, but you do have to create the stubs and skeletons. This is a simple process: you invoke the rmic tool on your compiled code, and it creates the necessary files. So the only requirement is that another step be added to your compilation process.

The rmic tool is particular about packages and classpaths, however. PerfectTime.java is in the package c14.Ptime, and even if you invoke rmic in the same directory in which PerfectTime.class is located, rmic won’t find the file, since it searches the classpath. So you must specify the location off the class path, like so:

rmic c14.PTime.PerfectTime

You don’t have to be in the directory containing PerfectTime.class when you execute this command, but the results will be placed in the current directory.

When rmic runs successfully, you’ll have two new classes in the directory:

PerfectTime_Stub.class
PerfectTime_Skel.class

corresponding to the stub and skeleton. Now you’re ready to get the server and client to talk to each other.

Using the remote object

The whole point of RMI is to make the use of remote objects simple. The only extra thing that you must do in your client program is to look up and fetch the remote interface from the server. From then on, it’s just regular Java programming: sending messages to objects. Here’s the program that uses PerfectTime:

//: c14:ptime:DisplayPerfectTime.java
// Uses remote object PerfectTime
package c14.ptime;
import java.rmi.*;
import java.rmi.registry.*;

public class DisplayPerfectTime {
  public static void main(String[] args) {
    System.setSecurityManager(
      new RMISecurityManager());
    try {
      PerfectTimeI t = 
        (PerfectTimeI)Naming.lookup(
          "//colossus:2005/PerfectTime");
      for(int i = 0; i < 10; i++)
        System.out.println("Perfect time = " +
          t.getPerfectTime());
    } catch(Exception e) {
      e.printStackTrace();
    }
  }
} ///:~

The ID string is the same as the one used to register the object with Naming, and the first part represents the URL and port number. Since you’re using a URL, you can also specify a machine on the Internet.

What comes back from Naming.lookup( ) must be cast to the remote interface, not to the class. If you use the class instead, you’ll get an exception.

You can see in the method call

t.getPerfectTime( )

that once you have a handle to the remote object, programming with it is indistinguishable from programming with a local object (with one difference: remote methods throw RemoteException).

Introduction to CORBA

In large, distributed applications, your needs might not be satisfied by the preceding approaches. For example, you might want to interface with legacy datastores, or you might need services from a server object regardless of its physical location. These situations require some form of Remote Procedure Call (RPC), and possibly language independence. This is where CORBA can help.

CORBA is not a language feature; it’s an integration technology. It’s a specification that vendors can follow to implement CORBA-compliant integration products. CORBA is part of the OMG’s effort to define a standard framework for distributed, language-independent object interoperability.

CORBA supplies the ability to make remote procedure calls into Java objects and non-Java objects, and to interface with legacy systems in a location-transparent way. Java adds networking support and a nice object-oriented language for building graphical and non-graphical applications. The Java and OMG object model map nicely to each other; for example, both Java and CORBA implement the interface concept and a reference object model.

CORBA Fundamentals

The object interoperability specification developed by the OMG is commonly referred to as the Object Management Architecture (OMA). The OMA defines two components: the Core Object Model and the OMA Reference Architecture. The Core Object Model states the basic concepts of object, interface, operation, and so on. (CORBA is a refinement of the Core Object Model.) The OMA Reference Architecture defines an underlying infrastructure of services and mechanisms that allow objects to interoperate. The OMA Reference Architecture includes the Object Request Broker (ORB), Object Services (also known as CORBAservices), and common facilities.

The ORB is the communication bus by which objects can request services from other objects, regardless of their physical location. This means that what looks like a method call in the client code is actually a complex operation. First, a connection with the server object must exist, and to create a connection the ORB must know where the server implementation code resides. Once the connection is established, the method arguments must be marshaled, i.e. converted in a binary stream to be sent across a network. Other information that must be sent are the server machine name, the server process, and the identity of the server object inside that process. Finally, this information is sent through a low-level wire protocol, the information is decoded on the server side, and the call is executed. The ORB hides all of this complexity from the programmer and makes the operation almost as simple as calling a method on local object.

There is no specification for how an ORB Core should be implemented, but to provide a basic compatibility among different vendors’ ORBs, the OMG defines a set of services that are accessible through standard interfaces.

CORBA Interface Definition Language (IDL)

CORBA is designed for language transparency: a client object can call methods on a server object of different class, regardless of the language they are implemented with. Of course, the client object must know the names and signatures of methods that the server object exposes. This is where IDL comes in. The CORBA IDL is a language-neutral way to specify data types, attributes, operations, interfaces, and more. The IDL syntax is similar to the C++ or Java syntax. The following table shows the correspondence between some of the concepts common to three languages that can be specified through CORBA IDL:

CORBA IDL

Java

C++

Module

Package

Namespace

Interface

Interface

Pure abstract class

Method

Method

Member function

The inheritance concept is supported as well, using the colon operator as in C++. The programmer writes an IDL description of the attributes, methods, and interfaces that will be implemented and used by the server and clients. The IDL is then compiled by a vendor-provided IDL/Java compiler, which reads the IDL source and generates Java code.

The IDL compiler is an extremely useful tool: it doesn’t just generate a Java source equivalent of the IDL, it also generates the code that will be used to marshal method arguments and to make remote calls. This code, called the stub and skeleton code, is organized in multiple Java source files and is usually part of the same Java package.

The naming service

The naming service is one of the fundamental CORBA services. A CORBA object is accessed through a reference, a piece of information that’s not meaningful for the human reader. But references can be assigned programmer-defined, string names. This operation is known as stringifying the reference, and one of the OMA components, the Naming Service, is devoted to performing string-to-object and object-to-string conversion and mapping. Since the Naming Service acts as a telephone directory that both servers and clients can consult and manipulate, it runs as a separate process. Creating an object-to-string mapping is called binding an object, and removing the mapping is called unbinding. Getting an object reference passing a string is called resolving the name.

For example, on startup, a server application could create a server object, bind the object into the name service, and then wait for clients to make requests. A client first obtains a server object reference, resolving the string name, and then can make calls into the server using the reference.

Again, the Naming Service specification is part of CORBA, but the application that implements it is provided by the ORB vendor. The way you get access to the Naming Service functionality can vary from vendor to vendor.

An example

The code shown here will not be elaborate because different ORBs have different ways to access CORBA services, so examples are vendor specific. (The example below uses JavaIDL, a free product from Sun that comes with a light-weight ORB, a naming service, and an IDL-to-Java compiler.) In addition, since Java is young and still evolving, not all CORBA features are present in the various Java/CORBA products.

We want to implement a server, running on some machine, that can be queried for the exact time. We also want to implement a client that asks for the exact time. In this case we’ll be implementing both programs in Java, but we could also use two different languages (which often happens in real situations).

Writing the IDL source

The first step is to write an IDL description of the services provided. This is usually done by the server programmer, who is then free to implement the server in any language in which a CORBA IDL compiler exists. The IDL file is distributed to the client side programmer and becomes the bridge between languages.

The example below shows the IDL description of our ExactTime server:

//: c14:corba:ExactTime.idl
//# You must install idltojava.exe from 
//# java.sun.com and adjust the settings to use
//# your local C preprocessor in order to compile
//# This file. See docs at java.sun.com.
module remotetime {
   interface ExactTime {
      string getTime();
   };
}; ///:~

This is a declaration of the ExactTime interface inside the remotetime namespace. The interface is made up of one single method that gives back the current time in string format.

Creating stubs and skeletons

The second step is to compile the IDL to create the Java stub and skeleton code that we’ll use for implementing the client and the server. The tool that comes with the JavaIDL product is idltojava:

idltojava remotetime.idl

This will automatically generate code for both the stub and the skeleton. Idltojava generates a Java package named after the IDL module, remotetime, and the generated Java files are put in the remotetime subdirectory. _ExactTimeImplBase.java is the skeleton that we’ll use to implement the server object, and _ExactTimeStub.java will be used for the client. There are Java representations of the IDL interface in ExactTime.java and a couple of other support files used, for example, to facilitate access to the naming service operations.

Implementing the server and the client

Below you can see the code for the server side. The server object implementation is in the ExactTimeServer class. The RemoteTimeServer is the application that creates a server object, registers it with the ORB, gives a name to the object reference, and then sits quietly waiting for client requests.

//: c14:corba:RemoteTimeServer.java
import remotetime.*;
import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CORBA.*;
import java.util.*;
import java.text.*;

// Server object implementation
class ExactTimeServer extends _ExactTimeImplBase{
  public String getTime(){
    return DateFormat.
        getTimeInstance(DateFormat.FULL).
          format(new Date(
              System.currentTimeMillis()));
  }
}

// Remote application implementation
public class RemoteTimeServer {
  public static void main(String args[])  {
    try {
      // ORB creation and initialization:
      ORB orb = ORB.init(args, null);
      // Create the server object and register it:
      ExactTimeServer timeServerObjRef = 
        new ExactTimeServer();
      orb.connect(timeServerObjRef);
      // Get the root naming context:
      org.omg.CORBA.Object objRef = 
        orb.resolve_initial_references(
          "NameService");
      NamingContext ncRef = 
        NamingContextHelper.narrow(objRef);
      // Assign a string name to the 
      // object reference (binding):
      NameComponent nc = 
        new NameComponent("ExactTime", "");
      NameComponent path[] = {nc};
      ncRef.rebind(path, timeServerObjRef);
      // Wait for client requests:
      java.lang.Object sync =
        new java.lang.Object();
      synchronized(sync){
        sync.wait();
      }
    }
    catch (Exception e)  {
      System.out.println(
         "Remote Time server error: " + e);
      e.printStackTrace(System.out);
    }
  }
} ///:~

As you can see, implementing the server object is simple; it’s a regular Java class that inherits from the skeleton code generated by the IDL compiler. Things get a bit more complicated when it comes to interacting with the ORB and other CORBA services.

Some CORBA services

This is a short description of what the JavaIDL-related code is doing (primarily ignoring the part of the CORBA code that is vendor dependent). The first line in main( ) starts up the ORB, and of course, this is because our server object will need to interact with it. Right after the ORB initialization, a server object is created. Actually, the right term would be a transient servant object: an object that receives requests from clients, and whose lifetime is the same as the process that creates it. Once the transient servant object is created, it is registered with the ORB, which means that the ORB knows of its existence and can now forward requests to it.

Up to this point, all we have is timeServerObjRef, an object reference that is known only inside the current server process. The next step will be to assign a stringified name to this servant object; clients will use that name to locate the servant object. We accomplish this operation using the Naming Service. First, we need an object reference to the Naming Service; the call to resolve_initial_references( ) takes the stringified object reference of the Naming Service that is “NameService,” in JavaIDL, and returns an object reference. This is cast to a specific NamingContext reference using the narrow( ) method. We can use now the naming services.

To bind the servant object with a stringified object reference, we first create a NameComponent object, initialized with “ExactTime,” the name string we want to bind to the servant object. Then, using the rebind( ) method, the stringified reference is bound to the object reference. We use rebind( ) to assign a reference, even if it already exists, whereas bind( ) raises an exception if the reference already exists. A name is made up in CORBA by a sequence of NameContexts – that’s why we use an array to bind the name to the object reference.

The servant object is finally ready for use by clients. At this point, the server process enters a wait state. Again, this is because it is a transient servant, so its lifetime is confined to the server process. JavaIDL does not currently support persistent objects – objects that survive the execution of the process that creates them.

Now that we have an idea of what the server code is doing, let’s look at the client code:

//: c14:corba:RemoteTimeClient.java
import remotetime.*;
import org.omg.CosNaming.*;
import org.omg.CORBA.*;

public class RemoteTimeClient {
  public static void main(String args[]) {
    try {
      // ORB creation and initialization:
      ORB orb = ORB.init(args, null);
      // Get the root naming context:
      org.omg.CORBA.Object objRef = 
        orb.resolve_initial_references(
          "NameService");
      NamingContext ncRef = 
        NamingContextHelper.narrow(objRef);
      // Get (resolve) the stringified object 
      // reference for the time server:
      NameComponent nc = 
        new NameComponent("ExactTime", "");
      NameComponent path[] = {nc};
      ExactTime timeObjRef = 
        ExactTimeHelper.narrow(
          ncRef.resolve(path));
      // Make requests to the server object:
      String exactTime = timeObjRef.getTime();
      System.out.println(exactTime);
    } catch (Exception e) {
      System.out.println(
         "Remote Time server error: " + e);
      e.printStackTrace(System.out);
    }
  }
} ///:~

The first few lines do the same as they do in the server process: the ORB is initialized and a reference to the naming service server is resolved. Next, we need an object reference for the servant object, so we pass the stringified object reference to the resolve( ) method, and we cast the result into an ExactTime interface reference using the narrow( ) method. Finally, we call getTime( ).

Activating the name service process

Finally we have a server and a client application ready to interoperate. You’ve seen that both need the naming service to bind and resolve stringified object references. You must start the naming service process before running either the server or the client. In JavaIDL, the naming service is a Java application that comes with the product package, but it can be different with other products. The JavaIDL naming service runs inside an instance of the JVM and listens by default to network port 900.

Activating the server and the client

Now you are ready to start your server and client application (in this order, since our server is transient). If everything is set up correctly, what you’ll get is a single output line on the client console window, giving you the current time. Of course, this might be not very exciting by itself, but you should take one thing into account: even if they are on the same physical machine, the client and the server application are running inside different virtual machines and they can communicate via an underlying integration layer, the ORB and the Naming Service.

This is a simple example, designed to work without a network, but an ORB is usually configured for location transparency. When the server and the client are on different machines, the ORB can resolve remote stringified references using a component known as the Implementation Repository. Although the Implementation Repository is part of CORBA, there is almost no specification, so it differs from vendor to vendor.

As you can see, there is much more to CORBA than what has been covered here, but you should get the basic idea. If you want more information about CORBA, the place to start is the OMG Web site, at http://www.omg.org. There you’ll find documentation, white papers, proceedings, and references to other CORBA sources and products.

Java Applets and CORBA

Java applets can act as CORBA clients. This way, an applet can access remote information and services exposed as CORBA objects. But an applet can connect only with the server from which it was downloaded, so all the CORBA objects the applet interacts with must be on that server. This is the opposite of what CORBA tries to do: give you complete location transparency.

This is an issue of network security. If you’re on an Intranet, one solution is to loosen the security restrictions on the browser. Or, set up a firewall policy for connecting with external servers.

Some Java ORB products offer proprietary solutions to this problem. For example, some implement what is called HTTP Tunneling, while others have their special firewall features.

This is too complex a topic to be covered in an appendix, but it is definitely something you should be aware of.

CORBA vs. RMI

You saw that one of the main CORBA features is RPC support, which allows your local objects to call methods in remote objects. Of course, there already is a native Java feature that does exactly the same thing: RMI (see Chapter 15). While RMI makes RPC possible between Java objects, CORBA makes RPC possible between objects implemented in any language. It’s a big difference.

However, RMI can be used to call services on remote, non-Java code. All you need is some kind of wrapper Java object around the non-Java code on the server side. The wrapper object connects externally to Java clients via RMI, and internally connects to the non-Java code using one of the techniques shown above, such as JNI or J/Direct.

This approach requires you to write a kind of integration layer, which is exactly what CORBA does for you, but then you don’t need a third-party ORB.

Jini: distributed services

This section[65] gives an overview of Sun Microsystems's Jini technology. It describes some Jini nuts and bolts and shows how Jini's architecture helps to raise the level of abstraction in distributed systems programming, effectively turning network programming into object-oriented programming.

Jini in context

Traditionally, operating systems have been designed with the assumption that a computer will have a processor, some memory, and a disk. When you boot a computer, the first thing it does is look for a disk. If it doesn't find a disk, it can't function as a computer. Increasingly, however, computers are appearing in a different guise: as embedded devices that have a processor, some memory, and a network connection – but no disk. The first thing a cellphone does when you boot it up, for example, is look for the telephone network. If it doesn't find the network, it can't function as a cellphone. This trend in the hardware environment, from disk-centric to network-centric, will affect how we organize our software – and that's where Jini comes in.

Jini is an attempt to rethink computer architecture, given the rising importance of the network and the proliferation of processors in devices that have no disk drive. These devices, which will come from many different vendors, will need to interact over a network. The network itself will be very dynamic – devices and services will be added and removed regularly. Jini provides mechanisms to enable smooth adding, removal, and finding of devices and services on the network. In addition, Jini provides a programming model that makes it easier for programmers to get their devices talking to each other.

Building on top of Java, object serialization, and RMI (which enable objects to move around the network from virtual machine to virtual machine) Jini attempts to extend the benefits of object-oriented programming to the network. Instead of requiring device vendors to agree on the network protocols through which their devices can interact, Jini enables the devices to talk to each other through interfaces to objects.

What is Jini?

Jini is a set of APIs and network protocols that can help you build and deploy distributed systems that are organized as federations of services. A service can be anything that sits on the network and is ready to perform a useful function. Hardware devices, software, communications channels – even human users themselves – can be services. A Jini-enabled disk drive, for example, could offer a “storage” service. A Jini-enabled printer could offer a “printing” service. A federation of services, then, is a set of services, currently available on the network, that a client (meaning a program, service, or user) can bring together to help it accomplish some goal.

To perform a task, a client enlists the help of services. For example, a client program might upload pictures from the image storage service in a digital camera, download the pictures to a persistent storage service offered by a disk drive, and send a page of thumbnail-sized versions of the images to the printing service of a color printer. In this example, the client program builds a distributed system consisting of itself, the image storage service, the persistent storage service, and the color-printing service. The client and services of this distributed system work together to perform the task: to offload and store images from a digital camera and print out a page of thumbnails.

The idea behind the word federation is that the Jini view of the network doesn't involve a central controlling authority. Because no one service is in charge, the set of all services available on the network form a federation – a group composed of equal peers. Instead of a central authority, Jini's runtime infrastructure merely provides a way for clients and services to find each other (via a lookup service, which stores a directory of currently available services). After services locate each other, they are on their own. The client and its enlisted services perform their task independently of the Jini runtime infrastructure. If the Jini lookup service crashes, any distributed systems brought together via the lookup service before it crashed can continue their work. Jini even includes a network protocol that clients can use to find services in the absence of a lookup service.

How Jini works

Jini defines a runtime infrastructure that resides on the network and provides mechanisms that enable you to add, remove, locate, and access services. The runtime infrastructure resides in three places: in lookup services that sit on the network, in the service providers (such as Jini-enabled devices), and in clients. Lookup services are the central organizing mechanism for Jini-based systems. When new services become available on the network, they register themselves with a lookup service. When clients wish to locate a service to assist with some task, they consult a lookup service.

The runtime infrastructure uses one network-level protocol, called discovery, and two object-level protocols, called join and lookup. Discovery enables clients and services to locate lookup services. Join enables a service to register itself in a lookup service. Lookup enables a client to query for services that can help accomplish its goals.

The discovery process

Discovery works like this: Imagine you have a Jini-enabled disk drive that offers a persistent storage service. As soon as you connect the drive to the network, it broadcasts a presence announcement by dropping a multicast packet onto a well-known port. Included in the presence announcement is an IP address and port number where the disk drive can be contacted by a lookup service.

Lookup services monitor the well-known port for presence announcement packets. When a lookup service receives a presence announcement, it opens and inspects the packet. The packet contains information that enables the lookup service to determine whether or not it should contact the sender of the packet. If so, it contacts the sender directly by making a TCP connection to the IP address and port number extracted from the packet. Using RMI, the lookup service sends an object, called a service registrar, across the network to the originator of the packet. The purpose of the service registrar object is to facilitate further communication with the lookup service. By invoking methods on this object, the sender of the announcement packet can perform join and lookup on the lookup service. In the case of the disk drive, the lookup service would make a TCP connection to the disk drive and would send it a service registrar object, through which the disk drive would then register its persistent storage service via the join process.

The join process

Once a service provider has a service registrar object, the end product of discovery, it is ready to do a join – to become part of the federation of services that are registered in the lookup service. To do a join, the service provider invokes the register( ) method on the service registrar object, passing as a parameter an object called a service item, a bundle of objects that describe the service. The register( ) method sends a copy of the service item up to the lookup service, where the service item is stored. Once this has completed, the service provider has finished the join process: its service has become registered in the lookup service.

The service item is a container for several objects, including an object called a service object, which clients can use to interact with the service. The service item can also include any number of attributes, which can be any object. Some potential attributes are icons, classes that provide GUIs for the service, and objects that give more information about the service.

Service objects usually implement one or more interfaces through which clients interact with the service. For example, a lookup service is a Jini service, and its service object is the service registrar. The register( ) method invoked by service providers during join is declared in the ServiceRegistrar interface (a member of the net.jini.core.lookup package), which all service registrar objects implement. Clients and service providers talk to the lookup service through the service registrar object by invoking methods declared in the ServiceRegistrar interface. Likewise, a disk drive would provide a service object that implemented some well-known storage service interface. Clients would look up and interact with the disk drive by this storage service interface.

The lookup process

Once a service has registered with a lookup service via the join process, that service is available for use by clients who query that lookup service. To build a distributed system of services that will work together to perform some task, a client must locate and enlist the help of the individual services. To find a service, clients query lookup services via a process called lookup.

To perform a lookup, a client invokes the lookup( ) method on a service registrar object. (A client, like a service provider, gets a service registrar through the previously-described process of discovery.) The client passes as an argument to lookup( ) a service template, an object that serves as search criteria for the query. The service template can include a reference to an array of Class objects. These Class objects indicate to the lookup service the Java type (or types) of the service object desired by the client. The service template can also include a service ID, which uniquely identifies a service, and attributes, which must exactly match the attributes uploaded by the service provider in the service item. The service template can also contain wildcards for any of these fields. A wildcard in the service ID field, for example, will match any service ID. The lookup( ) method sends the service template to the lookup service, which performs the query and sends back zero to any matching service objects. The client gets a reference to the matching service objects as the return value of the lookup( ) method.

In the general case, a client looks up a service by Java type, usually an interface. For example, if a client needed to use a printer, it would compose a service template that included a Class object for a well-known interface to printer services. All printer services would implement this well-known interface. The lookup service would return a service object (or objects) that implemented this interface. Attributes can be included in the service template to narrow the number of matches for such a type-based search. The client would use the printer service by invoking methods from the well-known printer service interface on the service object.

Separation of interface and implementation

Jini's architecture brings object-oriented programming to the network by enabling network services to take advantage of one of the fundamentals of objects: the separation of interface and implementation. For example, a service object can grant clients access to the service in many ways. The object can actually represent the entire service, which is downloaded to the client during lookup and then executed locally. Alternatively, the service object can serve merely as a proxy to a remote server. Then when the client invokes methods on the service object, it sends the requests across the network to the server, which does the real work. A third option is for the local service object and a remote server to each do part of the work.

One important consequence of Jini's architecture is that the network protocol used to communicate between a proxy service object and a remote server does not need to be known to the client. As illustrated in the figure below, the network protocol is part of the service's implementation. This protocol is a private matter decided upon by the developer of the service. The client can communicate with the service via this private protocol because the service injects some of its own code (the service object) into the client's address space. The injected service object could communicate with the service via RMI, CORBA, DCOM, some home-brewed protocol built on top of sockets and streams, or anything else. The client simply doesn't need to care about network protocols, because it can talk to the well-known interface that the service object implements. The service object takes care of any necessary communication on the network.


The client talks to the service through a well-known interface

Different implementations of the same service interface can use completely different approaches and network protocols. A service can use specialized hardware to fulfill client requests, or it can do all its work in software. In fact, the implementation approach taken by a single service can evolve over time. The client can be sure it has a service object that understands the current implementation of the service, because the client receives the service object (by way of the lookup service) from the service provider itself. To the client, a service looks like the well-known interface, regardless of how the service is implemented.

Abstracting distributed systems

Jini attempts to raise the level of abstraction for distributed systems programming, from the network protocol level to the object interface level. In the emerging proliferation of embedded devices connected to networks, many pieces of a distributed system may come from different vendors. Jini makes it unnecessary for vendors of devices to agree on network level protocols that allow their devices to interact. Instead, vendors must agree on Java interfaces through which their devices can interact. The processes of discovery, join, and lookup, provided by the Jini runtime infrastructure, will enable devices to locate each other on the network. Once they locate each other, devices will be able to communicate with each other through Java interfaces.

JavaSpaces

Summary

There’s actually a lot more to networking than can be covered in this introductory treatment. Java networking also provides fairly extensive support for URLs, including protocol handlers for different types of content that can be discovered at an Internet site. You can find other Java networking features fully and carefully described in Java Network Programming by Elliotte Rusty Harold (O’Reilly, 1997).

Exercises

  1. Compile and run the JabberServer and JabberClient programs in this chapter. Now edit the files to remove all of the buffering for the input and output, then compile and run them again to observe the results.
  2. Create a server that asks for a password, then opens a file and sends the file over the network connection. Create a client that connects to this server, gives the appropriate password, then captures and saves the file. Test the pair of programs on your machine using the localhost (the local loopback IP address 127.0.0.1 produced by calling InetAddress.getByName(null)).
  3. Modify the server in Exercise 2 so that it uses multithreading to handle multiple clients.
  4. Modify JabberClient so that output flushing doesn’t occur and observe the effect.
  5. Modify MultiJabberServer so that it uses thread pooling. Instead of throwing away a thread each time a client disconnects, the thread should put itself into an “available pool” of threads. When a new client wants to connect, the server will look in the available pool for a thread to handle the request, and if one isn’t available, make a new one. This way the number of threads necessary will naturally grow to the required quantity. The value of thread pooling is that it doesn’t require the overhead of creating and destroying a new thread for each new client.
  6. Build on ShowHTML.java to produce an applet that is a password-protected gateway to a particular portion of your Web site.
  7. (More challenging) Create a client/server pair of programs that use datagrams to transmit a file from one machine to the other. (See the description at the end of the datagram section of this chapter.)
  8. (More challenging) Take the VLookup.java program and modify it so that when you click on the resulting name it automatically takes that name and copies it to the clipboard (so you can simply paste it into your email). You’ll need to look back at the IO stream chapter to remember how to use the Java 1.1

    [62] This means a maximum of just over four billion numbers, which is rapidly running out. The new standard for IP addresses will use a 128-bit number, which should produce enough unique IP addresses for the foreseeable future.

    [63] TCP and UDP ports are considered unique. That is, you can simultaneously run a TCP and UDP server on port 8080 without interference.

    [64] Many brain cells died in agony to discover this information.

    [65] This section was contributed by Bill Venners (www.artima.com)

    clipboard.

[ Previous Chapter ] [ Short TOC ] [ Table of Contents ] [ Index ] [ Next Chapter ]
Last Update:02/04/2000