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Abstract—Various protocols and architectures have been pro-
posed to make Byzantine fault tolerance (BFT) increasingly
practical. However, the deployment of such systems requires
dedicated client-side functionality. This is necessary as clients
have to connect to multiple replicas and perform majority voting
over the received replies to outvote faulty responses. Deploying
custom client-side code is cumbersome, and often not an option,
especially in open heterogeneous systems and for well-established
protocols (e.g., HTTP and IMAP) where diverse client-side
implementations co-exist.

We propose Troxy, a system which relocates the BFT-specific
client-side functionality to the server side, thereby making BFT
transparent to legacy clients. To achieve this, Troxy relies on a
trusted subsystem built upon hardware protection enabled by
Intel SGX. Additionally, Troxy reduces the replication cost of
BFT for read-heavy workloads by offering an actively maintained
cache that supports trustworthy read operations while preserv-
ing the consistency guarantees offered by the underlying BFT
protocol. A prototype of Troxy has been built and evaluated,
and results indicate that using Troxy (1) leads to at most 43%
performance loss with small ordered messages in a local network
environment, while (2) improves throughput by 130% with read-
heavy workloads in a simulated wide-area network.

I. INTRODUCTION

If high availability and resilience to arbitrary faults for
networked services is required, Byzantine fault-tolerant state
machine replication offers a solution. While initially Byzantine
fault tolerance (BFT) was considered impractical, the seminal
work of Castro and Liskov [1] enabled a stream of research
that improved the performance, lowered the complexity, and
reduced the resource usage of BFT [2], [3], [4], [5], [6].
Today, BFT can be considered as ready for custom deployments
and, for example, is currently evaluated in the scope of
permissioned blockchain infrastructures [7]. However, when
it comes to user-facing offerings in open and heterogeneous
environments – such as the Internet – BFT faces a major, so far
largely overlooked hurdle: the client side. Here, standardized
protocols such as HTTP and IMAP are dominant and users
typically utilize diverse implementations. Thus, offering for
example a BFT-enabled web server is infeasible as Byzantine
fault tolerance is based on the assumption that a client contacts
multiple replicas and performs a majority voting over the
received replies to prevent the processing of faulty replies. Of
course, by means of extending the HTTP protocol and adding
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custom software to browsers [8] one could consider the use of
BFT, but this would address only one of many standardized
protocols. Instead of this more or less unrealistic endeavor,
we propose to deploy BFT in a client-transparent fashion for
different kinds of protocols.

In this paper we present Troxy, a system which achieves
client-transparent BFT by relocating traditional client-side BFT
functionality such as connection handling, request distribution,
and majority voting to the server side, co-located to the replicas.
This is enabled by relying on a trusted subsystem that can
only fail by crashing and implements basic message handling,
majority voting, and transport encryption: the Troxy. At
implementation level, Troxy utilizes trusted execution support
as offered by Intel’s Software Guard Extensions (SGX) [9], [10].
At its core, SGX provides a set of new instructions that allows
user-level code to allocate private and secure regions of memory
called enclaves. By executing the application’s code within
enclaves, SGX provides CPU-enhanced application security
and protects the enclaves from being manipulated by malicious
privileged code or even hardware attacks such as memory
probes. Hence, the functionality of Troxy is guaranteed to be
trustworthy even in the presence of Byzantine faults in the
surrounding replicas.

Based on trusted execution, Troxy offers a trusted proxy to
clients that can be accessed via the original legacy protocol.
Once a Troxy instance receives a client request, it forwards
the request to the BFT framework, which in turn orders the
request, executes it, and forwards the computed replies to the
requesting Troxy. As soon as the responsible Troxy instance
has received enough replies, it performs a voting over the
replies and returns the correct result to the client.

As a malicious replica may intercept the communication of
its Troxy, we ensure that the replica cannot alter messages with-
out being detected: Communication between clients and Troxy
instances is protected via secure, encrypted connections, which
are the norm for more and more Internet-based services [11]. In
addition, messages exchanged between Troxies and replicas are
authenticated using common message certificates, as they are
prevalent for BFT. Although immune to arbitrary or malicious
behaviors, it is still possible that a Troxy instance crashes or is
disconnected from its clients, and as a consequence becomes
unavailable. This case is equivalent to a failing service replica in
commodity infrastructures and can be handled by DNS round-
robin or load-balancing appliances that enable a fail-over to
another Troxy instance.
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Troxy is specifically designed for user-facing Internet-based
services and therefore offers tailored support for read-heavy
workloads and distant clients. In particular, this is achieved
by enabling caching for Troxy instances. To not reduce the
consistency guarantees of state machine replication, Troxy
ensures linearizability [12] by offering a managed cache. In the
context of ordering write requests, a quorum of Troxy caches
is consulted and the affected data is invalidated. This way,
cached read requests can be directly answered by consulting
a quorum of f + 1 Troxy instances. Otherwise, requests are
ordered via the regular BFT protocol.

We implemented Troxy on top of Hybster [13], a hybrid
BFT system that already features a trusted subsystem to reduce
the number of replicas to 2f + 1. However, Troxy builds an
independent extension that can be applied to other hybrid
systems featuring a trusted subsystem [14], [15] as well as
traditional BFT agreement protocols.

This paper makes the following contributions:
• It introduces the concept of making BFT systems transpar-

ent to clients by utilizing trusted hardware to implement
a substitute of the client-side BFT library on the server
side (Section II).

• It presents Troxy, which uses Intel SGX to provide
transparent access to a BFT system while ensuring its
integrity and security (Section III).

• It introduces a fast managed cache for read-heavy work-
loads that transparently switches to traditional request
ordering in case of write contention (Section IV).

• It implements a prototype of Troxy that is fully transparent
to clients, secure, and provides the read-cache optimization
without sacrificing linearizability (Section V).

In addition, Section VI presents detailed evaluation results
for Troxy gained from experiments with both microbenchmarks
as well as a web server. Finally, Section VII summarizes related
work and Section VIII concludes the paper.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we provide background on how the roles
of clients differ between non-fault-tolerant and crash-tolerant
systems on the one side, which currently constitute the vast
majority of systems used in production, and BFT systems on
the other side, which in recent years have been widely studied
and are now ready to be applied in practice. Based on this
comparison, we then discuss the implications of moving from
existing system architectures to BFT replication from a client-
implementation perspective, thereby explaining the inherent
difficulties that so far prevented the migration to BFT for many
real-world use-case scenarios. Finally, we outline our approach
to address these problems with Troxy by introducing a trusted
proxy component at the server side that allows legacy client
implementations to remain unchanged.

A. Clients in Different System Architectures

The means necessary for a client to access a network-based
service in general depend on how the service is implemented at
the server side. As illustrated in Figure 1a, in the most simple
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Fig. 1. Differences in client perspectives: While the client of an unreplicated
or crash-tolerant system usually only interacts with a single server/replica, a
BFT client communicates with all replicas in the system.

case of a non-fault-tolerant system containing only a single
server, a client first queries a location service (e.g., DNS)
to obtain the server’s address and then directly establishes
a connection to the server. Using this connection, both
sides then subsequently interact with each other based on
a specific protocol, for example, HTTP for a web service.
Many services rely on secure channels to protect the client-
server communication. These channels, such as TLS, handle
authentication and encryption/decryption of the exchanged data.

In systems where the server side is replicated to provide re-
silience against crashes, each client usually also only maintains
a connection to a single server at a time (see Figure 1b). To
prevent bottlenecks, such systems typically ensure that client
connections are distributed across the different servers available.
One way to achieve this in a transparent manner for the client
is, for example, to introduce a load balancer [16], possibly
integrated with the location service. Such a mechanism also
ensures that in the event of a replica crash the affected clients
are automatically reassigned to other replicas once they try to
reconnect to the service.

In contrast to clients in unreplicated or crash-tolerant systems,
clients in BFT systems not only need to implement the
service’s protocol but also require a voting component for
safely accessing the server side [1], [2], [3], [4], [6], [13]. This
is due to the fact that a BFT client cannot trust a single replica,
because the replica might be faulty and therefore possibly
ignores requests or provides erroneous replies. To address this
issue, as illustrated in Figure 1c, BFT clients do not only
contact a single replica but instead establish connections to all
replicas in the system. As a consequence, they are able to verify
the correctness of a result by comparing the replies of different
replicas. This means that, although the specific communication
patterns of clients and replicas vary between BFT systems, in
general a BFT client requires knowledge about the identity of
replicas in order to be able to distinguish their replies. Usually,
such information is provided to the client at configuration
time. Many BFT systems exploit this knowledge to establish a
dedicated shared secret between each client and each replica,
which is then used to authenticate the exchanged messages and
therefore, amongst other things, allows a client to verify that a
received reply indeed originates from the presumed replica.
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B. Problem Statement

Most of the systems and services in production today are
either unable to tolerate faults or are only resilient against
crashes, resulting in outages or unwanted behavior in situations
where Byzantine faults actually occur [17], [18], [19]. One
reason for this, despite the recent advances in BFT research, is
the fact that there is a plethora of legacy client implementations
for which migrating to BFT would produce significant costs. On
the one hand, this includes the efforts required for modifying
existing client libraries in order to allow them to tolerate
Byzantine faults; even worse, in many cases the necessary
changes are not limited to the client itself because, as discussed
in Section II-A, BFT clients have to be aware of both the
identity as well as the number of replicas, and providing this
information to clients is usually not straightforward if the
overall system has not been designed to publicly reveal such
knowledge. On the other hand, migrating to BFT also comes
with an increased network and processor usage at runtime
due to the client’s need to receive, authenticate, and compare
multiple replies for each operation. Such an increase in resource
usage especially poses a problem to clients with low-bandwidth
connections or limited processing power. This, for example,
includes clients running on mobile devices. To summarize,
making existing client implementations ready for BFT does
not only lead to costs for the actual migration, but also results
in runtime overhead, which explains why this step so far has
not been taken for many real-world systems.

C. The Troxy Approach

To circumvent the previously described problems associated
with adding and operating BFT mechanisms at the client side,
our approach is to introduce a trusted proxy, or Troxy for
short, into the system that acts as a representative of the client
at the server side and allows legacy client implementations
to benefit from Byzantine fault tolerance without requiring
modifications. Furthermore, due to the fact that the Troxy is
transparent to the client and handles all BFT-related tasks such
as reply authentication and voting, this solution does not incur
additional network or processor usage at the client.

As shown in Figure 2, the unmodified client in a Troxy-
backed system only establishes a connection to a single Troxy
instance, which then handles the communication with the
replicas in the system for all of its clients. If at one point a Troxy
instance fails, the affected clients reestablish their connections
to the service as they would do in a traditional system, for
example using a location service (see Section II-A), thereby
switching to different Troxies. In contrast to all other replica
components, which are untrusted and may fail in arbitrary
ways, Troxies are trusted and assumed to only fail by crashing.
To justify this trust, we run each Troxy inside the trusted
subsystem that is provided by modern processors based on
technologies such as Intel SGX [9], which guarantees the
integrity of the executed program code. In addition, to protect
the communication of a client with the service, a Troxy supports
the establishment of secure channels using TLS.
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Fig. 2. Architecture of a Troxy-backed BFT system.

In summary, by offering clients transparent access to
BFT systems, our approach greatly facilitates the migration of
existing services to Byzantine fault tolerance, because legacy
client implementations can be reused without modifications or
additional resource overhead. At the same time Troxy requires
only moderate integration effort into the underlying BFT system
at specific extension points.

III. TROXY SYSTEM DESIGN

In this section, we present details on the design of a Troxy-
backed BFT system in general and on the trusted proxy in
particular. For clarity, we postpone the discussion of the fast-
read optimization to Section IV.

A. Overview

Figure 3 shows an overview of the different components of
a Troxy and illustrates how they conceptually interact with
each other and with other system components outside the
Troxy. When a client issues a request to the service through
a secure channel, the Troxy first decrypts the message ( 1 ).
For a read request, the Troxy then executes the fast path for
reads ( 2 ) and in case of success immediately returns the
cached reply (see Section IV). For a write request or in case
of a read-cache miss, the Troxy forwards the client request
to its local replication logic to invoke the BFT agreement
protocol ( 3 ), thereby itself assuming the role of a BFT client.
Having received the request, the BFT protocol distributes the
request to the other replicas in the system and ensures that
all correct replicas execute all client requests in the same
order. After processing the request, each replica returns the
corresponding reply to the replica the client is connected
to, where the Troxy’s voting component then determines the
correct result by comparing the replies of different replicas ( 4 ).
To tolerate f faults, the voter waits until having obtained
f + 1 matching replies from different replicas before returning
the result to the client ( 5 ) as this guarantees that at least
one of the replies stems from a non-faulty replica and is
therefore correct. In summary, by acting as a BFT client for the
replication protocol a Troxy already assumes all the additional
responsibilities necessary to access a BFT service, freeing the
client from the need to perform these tasks itself.

B. System Model

The Troxy approach relies on a hybrid fault model [13], [14],
[15], [20], [21], [22], [23] in which a system is a collection
of components with different resilience characteristics. All
Troxies in the system are assumed to either operate correctly
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Fig. 3. Overview of Troxy components and their interactions.

or to fail by crashing; in particular, this means that once a
client receives a result from a Troxy over a secure channel,
the client can trust the result to be correct. In later sections,
we discuss how we ensure this trustworthiness for Troxies
based on minimizing a Troxy’s trusted computing base (see
Section III-C) and utilizing Intel SGX (see Section V).

Apart from Troxies, all other replicas and network compo-
nents in the system may fail in arbitrary ways. The number of
servers required in a Troxy-backed system to tolerate such
Byzantine faults depends on the BFT replication protocol
executed among replicas: using a traditional BFT protocol [1],
[4], [24], [25], a minimum of 3f + 1 replicas are necessary to
tolerate up to f faults. If a replication protocol itself makes use
of trusted components [13], [14], [15], [20], [21], [22], [23], this
number can be reduced to 2f +1 replicas. Replica components
located outside the Troxy do not trust each other. Components
of different replicas communicate by exchanging authenticated
messages over the network. If a correct component receives a
message it cannot verify, the component discards the message.

C. Minimizing the Trusted Computing Base

Relying on a hybrid fault model, it is crucial to keep the
trusted components as small as possible [21], because the more
complex a component, the more likely it is to fail in an arbitrary
way, for example, as the result of a program error. To justify
the trust put in the Troxy, we therefore minimize its complexity
by only performing those tasks inside the Troxy that are critical
and actually require to be trusted; in contrast, all noncritical
tasks are executed outside the Troxy in the untrusted part of the
replica. In essence, this leads to a design where the Troxy is
basically a library whose functionality is used by the untrusted
replica part via method calls.

With regard to client communication, this separation of
critical and noncritical tasks means that most of the network-
connection handling can be performed outside the Troxy. In
particular, this includes the management of connected sockets,
the handling of worker threads operating on these sockets, as
well as the execution of the actual send and receive operations.
Overall, there are only three major critical tasks the trusted
Troxy needs to perform: (1) when the client connects to a
replica, the replica’s Troxy controls the establishment of the
secure channel and afterwards stores the associated session
key in order to prevent the untrusted part of the replica from

being able to impersonate the Troxy. (2) When the client sends
a request to the server over the secure channel, the untrusted
part of the replica receives the request message. However, the
Troxy is the only one to be able to decrypt the request using
the session key. Having decrypted the message, the Troxy then
checks its integrity and creates a BFT-protocol request in which
it includes the client request as payload. Finally, the Troxy
authenticates the BFT request using the method expected by
the underlying BFT replication protocol (e.g., a keyed-hash
message authentication code (HMAC) in our implementation)
before handing over the request to the untrusted part of the
replica. This way, by atomically decrypting the client request
and creating a corresponding authenticated BFT request, the
Troxy ensures that the request cannot be altered by the untrusted
replica part without being detected. (3) After the request has
been executed, the Troxy collects the replies provided by
different replicas, verifies the authenticity of these replies,
and then compares them to determine the correct result. Based
on this result, in a final step, the Troxy creates a reply to the
client and encrypts this message using the session key of the
client’s secure channel. The actual transmission of the reply
is performed outside the Troxy in the untrusted part of the
replica. However, due to the untrusted replica part not having
access to the session key, it is unable to manipulate the reply
without the client detecting such a modification.

D. Fault Handling

When a Troxy returns a reply to the client, the client can
trust the reply to be correct. However, in case of faults there
can be situations in which a client at first does not receive
a reply to its request, for example, due to the server hosting
the Troxy having crashed. To handle such scenarios where
a Troxy ceases to operate, we exploit the fact that clients
of user-facing services typically are already equipped with
a mechanism to automatically reconnect to the service once
their existing connections time out, for example, relying on
an external location service to assist in the failover to another
replica (see Section II-A). As soon as the client reaches a
non-faulty replica, after retransmitting the request, the client
will eventually receive a corresponding reply from the service.

Using the same failover mechanism, clients are also able to
tolerate scenarios in which the untrusted part of a replica, which
performs the actual send and receive operations on network
connections (see Section III-C), fails to deliver the correct
reply provided by the Troxy. Depending on the nature of the
fault, in such case the client either detects a corrupted channel
(if the untrusted part sends data that is not encrypted with the
Troxy’s session key) or experiences a timeout (if the untrusted
part sends no data at all). Either way, the client can solve the
problem by reconnecting to the service.

In contrast to the Troxy, the untrusted part of a replica may
fail in arbitrary ways. Apart from the scenarios discussed above,
handling these kinds of faults mainly lies in the responsibility
of the underlying BFT replication protocol, as it is the case in
traditional BFT systems. The fact that a Troxy, while acting as
a BFT client, is co-located with a BFT replica has no effect on
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the internal fault-handling procedures of the protocol. Replay
attacks are prevented by the secure channel that connects the
client with the Troxy. By design, each endpoint will never
accept the same chunk of encrypted data twice.

E. Introducing Byzantine Fault Tolerance Using Troxies

In the following, we illustrate the steps necessary to migrate
an existing user-facing service that is implemented by a crash-
tolerant system to a Troxy-backed BFT system. As an example,
we consider a RESTful web service that originally relies on
Paxos [26] for fault tolerance and is accessed by a wide
spectrum of heterogeneous clients via HTTPS.

The first step to make such a service Byzantine fault tolerant
using our approach is to select a BFT replication protocol
and to integrate its server-side implementation with the Troxy.
This task is greatly facilitated by the Troxy essentially being
a library that needs to be invoked at a small number of well-
defined locations in the replica logic in order to be able to
establish secure channels, to safely translate incoming client
requests into BFT requests, and to determine and encrypt the
final replies (see Section III-C). On the other hand, the most
complex parts of a BFT protocol implementation, such as the
ordering and view-change protocols, are left unmodified.

In a second step, the server-side application logic of the
web service must be ported from the original crash-tolerant
protocol to the BFT protocol. For this task, it is usually
possible to benefit from the fact that BFT protocols and
crash-tolerant protocols such as Paxos or Raft [27] in general
provide comparable interfaces and pose similar requirements on
applications, for example, with regard to execution determinism
or the ability to create/apply checkpoints of their state.

To enable the Troxy to communicate with clients, in a final
step, the Troxy must be made aware of the message format
used by the service for requests. In this context, there is no
need for the Troxy to fully parse and understand incoming
requests. Instead, it is sufficient for the Troxy to identify request
boundaries in order to be able to properly store the incoming
client request in the newly created BFT request; for replies,
the Troxy usually can simply extract the payload contained
in the verified BFT result and return it to the client. For
many communication protocols, including HTTP, identifying
message boundaries is straightforward due to messages carrying
information about their own length.

The steps discussed above have shown that the migration
overhead is small if a service is already resilient against crashes.
However, with Troxy providing transparent access to BFT
systems, even for unreplicated services that so far offer no fault
tolerance at all, the changes necessary to integrate Byzantine
fault tolerance are limited to the location service (i.e., to make
it replication aware) as well as the server-side implementation.
In contrast, there is no need to modify the potentially large
number of diverse client implementations.

IV. FAST-READ CACHE

Troxy features a managed fast-read cache that not only
validates cache entries when processing regular read requests,

but also removes entries from the cache if a write request is
about to outdate cached data. As a key benefit, by invalidating
cache entries while processing write requests and before
their effects are emitted to clients, Troxy is able to maintain
consistency guarantees offered by the underlying BFT protocol.
In the following, we present details on Troxy’s fast path
for reads using the example of a BFT system that is based
on a hybrid fault model and therefore can tolerate f faults
with 2f + 1 replicas, as it is the case for our prototype
implementation (see Section V-B).

A. Protocol

In line with previous research [3], [4], [5], our fast-read
optimization assumes that read and write requests can be dis-
tinguished before executing them and that it can be determined
which part of the state a request is about to access or modify.
The described functionality is executed inside a Troxy instance
and therefore trusted with the exception of functions that are
provided by the surrounding replica.

Our fast-read cache utilizes the processing of a write request
to remove an outdated entry from the cache before the effects
of the write are visible to any client, that is, before the reply
to the write is returned to its client. To ensure this, we make
two important changes to introduce the cache: (1) We modify
the voter to only take the reply of another replica into account
if the reply is authenticated by the other replica’s Troxy. As a
consequence, this requirement forces a replica to hand over a
reply to its local Troxy in order for the reply to have an impact
on the final result, thereby giving the Troxy the opportunity to
learn about a write and to subsequently invalidate an outdated
cache entry. To authenticate a local reply, a Troxy computes
an HMAC that is based on a shared secret, which is known
amongst all Troxies, and an identifier specific to each Troxy
instance. (2) We extend the replies provided by local replicas
to not only contain the application’s result but also (a hash
of) the original request in order to allow a Troxy to identify
the cache entry to invalidate. As before, a Troxy only returns
a result to the client after having received f + 1 matching
replies (which now include the request) from different replicas.
With regard to the fast-read cache, this means that when a write
reply reaches this point, it is ensured that a majority of replicas
in the system have invalidated the associated cache entry.

As shown in Figure 4, if a Troxy receives a read request
from a connected client it first determines if the fast-read
cache can be utilized by calling check cache that takes the
client-provided request as an input. Next, it checks if the cache
contains data that answers the request. If not, the request
is ordered and executed as any other request. Otherwise, a
set of f remote Troxies is randomly chosen and queried
using get remote cache entry(r,req). This function generates
an authenticated message for replica r to query its Troxy about
the currently processed request, which is handed over to the
untrusted replica code for transmission. On the remote side,
the receiving Troxy instances validate the message and then
check if the requested data is cached (see L. 21, Figure 4). The
request and associated reply, both authenticated, are returned
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1 // Cache lookup in case of voting Troxy instance
2 upon call check cache(req) such that req is READ do
3 reply := cache.get(id(req))
4 if reply is not NULL // request is cached
5 replicas := choose f replicas() // select f remote caches
6 rc := ∅ // set of remote cached replies
7 // collect cache entries of f remote replicas
8 ∀r ∈ replicas, rc.add(get remote cache entry(r,req))
9 // remote caches match local cache

10 if ∀(r req, u rep) ∈ rc, (id(r req), u rep) = (id(req), reply)
11 return reply // fast read succeed
12 else return null // mismatch amongst caches
13 else return null // cache miss

15 // Cache lookup in case of remote Troxy instance
16 upon call get local cache entry(req) do
17 reply := cache.get(id(req))
18 return (req,reply)

Fig. 4. Cache lookup when processing read requests.

to the initial requesting Troxy. Next, it is validated if all f
request and reply pairs match the local data. If this is the
case, the reply is returned to the client and a successful cache
lookup has been performed. In case of a mismatch, which
for example can be the result of concurrent write requests or
actions performed by malicious replicas (e.g., the replay of a
stale reply), the read request is ordered in the common way.

Note that a more aggressive use of hashes can reduce the
amount of exchanged data. In addition, timeouts might be used
to detect unresponsive replicas.

B. Ensuring Consistency and Resilience to Performance Attacks

In scope of the implemented prototype we considered a
system that relies on an hybrid fault model that requires only
2f+1 replicas and offers strong consistency. The aim of Troxy
and its fast-read cache is to preserve the guarantees offered
by the underlying protocol. This is achieved by immutable
entangling the maintenance of the fast-read cache with the
protocol execution, so an attacker cannot diverge replicas and
Troxies to make conflicting statements. With a total amount
of 2f + 1 replicas in the hybrid fault model, completing a
write operation takes a quorum of f +1 replicas for providing
authenticated replies. Since reply authentication is done by
Troxy inside the trusted subsystem, these f + 1 replicas must
have deleted the related entry in their fast-read cache before
the reply becomes visible to any client. Meanwhile a successful
fast-read operation also needs f + 1 identical entries, meaning
that at least f+1 replicas must still contain a matching entry in
their caches. This is not possible as both quorums intersect by
one replica and its trusted Troxy is responsible for providing
the necessary response to either side. By doing so, a successful
fast-read is ensured to reflect the state of the latest write.
One option for an attacker would be to roll-back the trusted
subsystem by a reboot, however in this case the cache would
simply lose its entire state and queries are returned unanswered,
which will result in the execution of the underlying protocol.
In general the forwarding of a reply due to a write request
always result in a cache invalidation but not in a cache update.

This is necessary as the local Troxy can confirm the origin of
the reply but not its correctness, thus a faulty replica should
not be able to pollute the cache.

This leads to the question if a faulty replica can negatively
impact the performance beyond its capabilities in a traditional
system. This is not the case as for classical BFT systems
like PBFT [1] that feature a read optimization where 2f + 1
replicas are queried, a client can only utilize the result if all
replies match. Thus, faulty replicas can return wrong results
and frequently prevent a successful read optimization. In case
of Troxy we are in a similar situation, as we query f randomly
chosen Troxies for their cache entries. However, additionally
we measure the cache miss rate inside the Troxy. If the miss
rate reaches a configurable system constant, the fast read
optimization is avoided in favor of a traditional protocol run.
As shown in the evaluation this also addresses the case of write
contention, where a lot of cache misses occur due to conflicts.

V. IMPLEMENTATION

Below, we present our prototype of a Troxy-backed system,
providing details on the SGX-based Troxy implementation as
well as its integration with the BFT protocol Hybster [13].

A. Troxy Implementation

Our Troxy implementation is written in C/C++ and relies on
Intel’s Software Guard Extensions (SGX) [9] and its SDK [28]
to achieve isolation between the trusted and the untrusted
parts of a replica. The Troxy runs inside a trusted execution
environment provided by SGX, a so-called enclave, that is
protected by the CPU via transparent memory encryption and
integrity checking. To enter and exit an enclave, the only
possible way is to go through an enclave interface which defines
the entry points and the maximum number of concurrent threads
allowed at any point in time inside the enclave. An enclave call
(ecall) is needed for calling the enclave functions, while an
outside call (ocall) is explicitly used for calling from an enclave
to the untrusted environment. An ecall leads to executing a TLB
flush, switching to a trusted stack located inside the enclave,
copying the parameters from untrusted memory and calling
the trusted function. Similarly, an ocall causes a TLB flush,
switching back the untrusted stack, moving parameters out of
the trusted memory, and exit of the enclave. Due to their high
overhead, it is best practice to minimize enclave transitions.

Troxy implements ecalls for data transfer between enclaves
and the untrusted environment as well as for data processing
inside enclaves. In order to keep the interface small, Troxy
defines only 16 ecalls and no ocalls under a security-aware
programming model. More precisely, these ecalls have been
manually verified and are hardened to prevent possible attacks
such as Iago attacks [29] or time-of-check-to-time-of-use
attacks [30]. For example, the data transfer between the
untrusted environment and enclaves requires additional copies
of the message buffers. A read buffer is always directly copied
into the enclave to avoid time-of-check-to-time-of-use attacks;
in contrast, the copy of a write buffer can be done outside the
enclave to achieve better performance.
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Fig. 5. Comparison of the message flows in Hybster and Troxy-backed Hybster.

To enforce the validity of enclaves, Intel provides a remote
attestation service [9]. In a nutshell, a hash of the memory
pages of the enclave is securely computed and sent to the
remote attestation service so that the user can obtain a proof
that the enclave has been initialized correctly. Once the enclave
has been correctly attested it is possible to provision it. Any
cryptographic key and secret, such as the private key used by
Troxy to initialize a secure connection with the clients, can be
securely sent to the enclave during the provisioning phase.

The enclave code and data is stored in the Enclave Page
Cache (EPC), a specific region of memory protected from
untrusted accesses. In the current implementation of Intel SGX,
this memory area has a maximum size of 128MB. Accessing
memory beyond the size of the EPC results in costly paging, as
the pages need to be encrypted and integrity-protected before
being evicted to main memory. As this operation incurs a high
performance overhead [31], we limit memory allocations to
keep the memory footprint as small as possible. Furthermore,
to avoid additional ocalls and paging [32], the Troxy can store
data in an encrypted manner outside the enclave. When it needs
to be accessed, it is directly read from the untrusted memory
and validated by comparing it against a hash securely stored
inside the Troxy.

Finally, Troxy provides bidirectional TLS authentication to
all messages exchanged between clients and replicas. For this
purpose, Troxy uses the TaLoS [33] library, which exposes a
TLS interface to existing application while securely executing
the TLS logic inside an Intel SGX enclave. Note that we run
it in a completely encapsulated manner: there are no ecalls nor
ocalls between TaLoS and the untrusted environment.

B. Troxy-backed Hybster

To provide fault tolerance, our prototype implementation
relies on Hybster [13], a BFT replication protocol that is based
on a hybrid fault model and therefore only requires 2f + 1 repli-
cas to tolerate f Byzantine faults. Hybster is implemented
in Java and uses Intel SGX to realize a trusted susbsystem
for message authentication. It achieves high performance via

parallelization, where the performance scales well along with
the number of NICs and CPU cores. The trusted subsystem
of Hybster is also used by Troxy for trusted authentication
upon internally exchanged messages during the ordering phase.
In our implementation the interaction between the protocol
running in the untrusted part of the replica and the SGX enclave
is handled via the Java Native Interface (JNI).

Hybster is a leader-based BFT protocol: a special node is in
charge of proposing an ordering on the requests received by
the clients. Figure 5 shows the message flow in the resulting
Troxy-backed system. Compared with the original Hybster (see
Figure 5a), introducing the Troxy adds one message delay
for a client that is connected to Hybster’s leader replica (see
Figure 5b). In this extra phase, the corresponding Troxy collects
and compares the replies to the client’s request in order to
determine the correct result. For clients connected to servers
hosting Hybster followers, an additional phase is necessary to
transmit the request to the leader, as only the leader is able
to initiate the agreement process for requests (see Figure 5c).
Note that for a setting in which the replicas of a system
are hosted in different fault domains inside the same data
center (e.g., different racks with independent power and network
supply [34]), the additional messages only have a minor impact
on the overall latency experienced by the client.

Apart from highlighting individual message flows, Figure 5
also illustrates another important difference between traditional
BFT systems and a Troxy-backed BFT system: with the Troxy
performing reply voting at the server side, the client receives
only a single reply per request. In practice, this approach
has several key advantages: First, in a typical setting where
clients are connected to the service over a wide-area network,
less data has to be sent over long-distance links, which
is especially beneficial for low-bandwidth clients. Second,
during periods of unstable (wide-area) network conditions it
improves the response time of the service due to the latency
experienced by the client no longer depending on the arrival
of the f + 1 slowest (normal request) or 2f + 1 slowest (read
optimization) matching reply. Third, and most important, it
makes the BFT replication system transparent to clients.
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VI. EVALUATION

In this section we evaluate the performance of Troxy
compared to Hybster using both microbenchmarks and an
HTTP service. The results show that: (1) For ordered small-
payload messages in a local network, Troxy has an overhead of
at most 43% due to its extra communication steps (see Figure 5)
and trusted environment transitions. (2) For larger messages
with network delay, Troxy improves the performance compared
to Hybster by at most 70%. (3) For read-heavy workloads with
network delay, the fast-read cache optimization improves the
throughput by 130% even in the presence of conflicting write
requests. (4) When considering an HTTP service with network
delay, Troxy can almost hide the replication cost, allowing
clients to observe similar latency as for a non-replicated service.

A. Experimental Setup
The measurements are conducted on a cluster of five identical

machines connected via four 1 Gbps Ethernet NICs. Each
machine is equipped with an SGX-capable Intel Core i7-6700
quad-core processor running at 3.4 GHz with Hyper-Threading
activated as well as 24 GB of memory. Three machines are
dedicated to the replicas (hence we consider f = 1 faults)
while the two remaining ones are running as clients. All the
machines are running 64-bit Ubuntu 16.04 with a Linux kernel
4.4.0, OpenJDK 1.8 and the Intel SGX SDK v1.9. We compare
the performance of our Troxy-backed Hybster variant with the
original Hybster protocol, noted as BL (for baseline).

B. Security Analysis
In this section we analyse the security of Troxy.
Performance attacks: A malicious replica could try to return

old cache entries in the case of the fast-read cache optimization.
As a result the fast read would fail, slowing down the protocol.
As discussed in Section IV-B, Troxy selects f random replicas
to reply to a fast-read query and monitors the cache miss ratio
to address such attacks.

Side-channel attacks: We consider side-channel attacks out
of the scope of this paper. However, Troxy can implement
existing technics to limit side-channel attacks inside an SGX
enclave [35], [36], [37].

Bypassing Troxy: A malicious replica could bypass Troxy
in order to break the safety of the system, by directly
communicating with the clients. To prevent this attack the
clients and Troxy initiate secure connections using the TLS
protocol. The session keys are securely stored inside the Troxy,
thus the malicious replica cannot forge correct messages.

Interface attacks: A malicious replica could attack the
enclave interface in order to get access to the secrets stored
inside the Troxy. As discussed in Section V, the enclave
interface has been hardened to prevent such attacks.

Denial-of-Service and flooding: A malicious replica could
decide to perform a Denial-of-Service attack, not executing
the Troxy or following its protocol, or at the opposite flood
the correct replicas or clients with invalid messages. In all
these cases the goal of the malicious replica is to render the
system not usable. Troxy can leverage existing techniques [38]
to prevent such attacks.

C. Microbenchmark

We created a microbenchmark to evaluate the full capacity
of Troxy and to investigate the overhead of (1) relocating the
traditional client-side library to the server side and (2) using
the trusted subsystem for protection of the Troxy. A configured
number of clients are created to constantly issue asynchronous
requests and measure the average throughput and latency for
60 seconds. The final results are the average values of three
runs. Batching is not used as it is an orthogonal approach that
has independent influence to the results.

Secure socket connections are applied to the client-to-replica
communication for both the baseline and Troxy, while the
replica-to-replica communication keeps using plain sockets and
HMACs for message authentication. Clients only connect to the
leader in the baseline system, while Troxy allows connections
to any replica. We created a simple service that accepts requests
and generates a reply message of configurable size. Read and
write requests can be distinguished by their operation types.
We ran experiments in three different scenarios, where (1) write
requests are totally ordered; (2) read optimizations are applied
to handle read-only requests, and (3) concurrent write requests
cause conflicting reads, which leads to the traditional ordering
of conflicting read requests.

In addition to the local network configuration, we also
simulate a wide-area network by adding 100± 20 ms (in a
normal distribution model) delay to the NICs of the client
machines. We consider this as the typical usage scenario of
Troxy, that is, data-center-hosted services that are accessed by
remote legacy clients.

1) Totally Ordered Requests: In this scenario, we consider
write requests of different sizes: 256 B, 1 KB, 4 KB and 8 KB.
The size of the reply is always 10 B. Two implementations
of Troxy in C/C++ are compared against the baseline: ctroxy,
running in the untrusted environment without SGX, indicates
the impact of using JNI; while etroxy, running inside an enclave,
adds the overhead of utilizing the trusted subsystem.

Figure 6 shows the measurement result for handling write
requests in the local network. With a small request payload
size (256 B), etroxy shows about 43% of performance loss
due to the transitions between the trusted and untrusted
environments as well as the extra steps in processing ordered
requests (see Figure 5). More precisely, by considering the
performance of ctroxy (without SGX), half of the performance
loss in etroxy is caused by using the trusted subsystem. When
the payload size increases, ctroxy and etroxy start to provide
similar performance and etroxy reaches the baseline at 8 KB.
This is due to the fact that authenticating messages with large
payload is faster in C/C++ than it is in Java.

We also measure the performance with a network delay in
between the clients and replicas. As illustrated in Figure 7,
the server-side reply voter brings a huge advantage to Troxy.
In this case, for each request, the clients wait for only one
reply that is affected by the delay instead of f +1 replies. This
advantage applies to different request payload sizes, and leads
to up to 60% performance gain.
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Fig. 6. Handling totally ordered write requests in the local network.
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Fig. 7. Handling totally ordered write requests with network delay.

2) Read Optimizations: We measure the performance of the
fast-read cache using read-only requests with different payload
sizes: 10 B / 256 B, 10 B / 1 KB, 10 B / 4 KB and 10 B / 8 KB
for request / reply messages, respectively. The baseline system
implements a PBFT-like read optimization approach [1], where
read requests are directly forwarded to the followers for
execution without being ordered. For read-only workloads,
this approach can be very effective as there are no concurrent
state transitions to create conflicts in the read results.

Figure 8 shows the results of handling read-only requests in
the local network. On the one hand, with small requests (10 B),
the fast message authentication cannot compensate the overhead
of the server-side reply voter. The overhead with 256 B reply is
as high as 115%. On the other hand, along with the increasing
reply size, the effect of fast authentication becomes more visible.
With 4 KB replies etroxy can already overtake the baseline, and
at 8 KB we can observe about 30% throughput improvement.
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Fig. 8. Handling read-only requests in the local network.

The result of the measurement with a network delay is
shown in Figure 9. Although the server-side reply voter adds
overhead to Troxy, the extra network delay has less impact on
Troxy’s performance. Compared to the baseline, with 256 B
replies etroxy only incurs a 33% performance degradation with
network delay, compared with 115% without network delay.
In addition, as the fast-read cache only needs to transfer the
hash of the reply between replicas for a fast-read operation
instead of a full reply, this further reduces the authentication
and transmission cost. When the reply size is above 1 KB,
etroxy outperforms the baseline by at least 15%.

3) Concurrency Handling: In this scenario, 1% of write
requests are generated among the reads, to introduce concurrent
state transitions during fast-read operations. Due to different
read optimization approaches, the 1% write workload results
in different read conflict rates for the baseline and Troxy
(only etroxy is evaluated in this scenario). For the baseline,
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Fig. 10. Handling read conflicts with network delay.

nearly 50% of reads return conflicting results and have to be
ordered for a second time of processing, adding substantial
extra overhead to the system. As for Troxy, the fast-read cache
acts in a conservative way: When it uses write requests to
invalidate existing cache entries, the later read requests will be
ordered to prevent conflicts. This way, the observed conflict
rate goes down to 14%.

We also conducted a measurement where no optimization
is applied so that all reads are ordered, to get a reference
throughput of each system for comparison. Figure 10 illustrates
that the overhead of having 50% read conflicts contributes to
the significant performance loss of the baseline, resulting in
the read optimization to only achieve half of the reference
throughput. For Troxy, the 14% read conflicts also decreases
performance to a point that is slightly lower than its reference
throughput. Therefore, we further optimized the approach to
monitor the conflict rate inside Troxy in order to ensure that
once the conflict rate goes beyond a certain threshold, Troxy
will automatically switch to the total-order mode where all
requests will be ordered (see Section IV-B). This threshold
can be learned by sampling the system to determine at which
conflict rate the benefits gained by fast reads will disappear.
This way, the optimized fast-read cache can guarantee the
lower-bound performance in case of frequent conflicts.

D. HTTP Service

In addition to the microbenchmark, we created a simple,
replicated HTTP service that handles HTTP GET and POST
requests and returns the queried or modified pages as responses.
Its performance is measured with the HTTP benchmarking tool
Apache JMeter [39]. As we are interested in evaluating the
overhead of using a BFT system and the trusted subsystem
in a latency-sensitive application, we ensure that JMeter is
configured not to saturate the replicas, launching 100 clients
to issue a total of 500 requests per second.

We measure the performance of the HTTP service in three
implementations: (1) with the baseline protocol; (2) with

TABLE I
SUMMARY OF READ OPTIMIZATION APPROACHES.

Replica Quorum Consistency
BL 2f + 1 f + 1 replicas Strong

Prophecy 3f + 1 1 replica + middlebox Weak
Troxy 2f + 1 f + 1 replicas Strong

Prophecy [5], a middlebox-based approach that mimics clients
towards the BFT replicas and is tailored to improve the
performance of read-heavy workloads; and (3) with Troxy.
Table I summarizes the three implementations regarding their
read optimization approaches and consistency level.

The baseline protocol implements a PBFT-like read optimiza-
tion, which optimistically executes non-ordered read requests
and accepts a result as soon as f + 1 identical replies are
received. In case of a failed quorum due to concurrent write
operations, the client has to resend the request and ask for a
regular ordering to enforce linearizability. Prophecy deploys
a cache in a middlebox placed between the client and the
replicas. This cache stores the results of the ordered reads to
reduce the execution cost of read requests with large payloads
for read-heavy applications. It requires only one reply from
a randomly chosen replica to be compared with the cached
result. However it trades consistency for a higher throughput:
the reply of a read operation reflects the state of the latest
read, so in the worst case it would return a stale but correct
result to the client. In contrast, Troxy actively manages the
fast-read cache to reflect the state changes of the latest write,
thus guaranteeing strong consistency.

For the baseline, we run JMeter on the same machine as
the client-side library, and use a local socket connection for
message forwarding. As for Prophecy, JMeter is running on a
separate machine, and establishes a secure socket connection
to the client machine where the middlebox is located. Since
Troxy provides transparent access to clients, JMeter can directly
connect to the replicas without any modifications. Besides that,
we also run a stand-alone version of the HTTP service using
Jetty (v9.4) [40] to see its original performance.

The measurements are conducted in two scenarios: in
the local network and with 100± 20 ms network delay. The
GET and POST requests are issued with a payload size
of 200 B, while the response message size ranges between
4 KB and 18 KB. The average latency to execute requests
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is reported in Figure 11. In both scenarios, the stand-alone
implementation (Jetty) indicates the original performance of the
service. In case of a local network, both the baseline and Troxy
keep a low latency, with an overhead of at most 1.8 ms, while
the two socket connections in Prophecy contribute to a latency
almost twice as high. When the network delay is applied, the
latency of the baseline implementation raises dramatically, as
its reply voter is located on the client machine. The network
delay between the client and the replicas significantly impacts
the latency observed by the client. For Prophecy and Troxy, as
their voters are close to the replicas (on the middlebox machine
and in the fast-read cache on a replica, respectively), this extra
round-trip impact is negligible. The results of this measurement
show that in a wide-area network, using Troxy-backed BFT
systems is beneficial for user-facing legacy applications.

VII. RELATED WORK

Traditional BFT state machine protocols consist of libraries
attached to both client and server [1], [3], [4], [6], [41]. The
client-side library is mainly responsible for service invocation,
message transfer, and reply voting. In contrast, Troxy provides
a transparent and secure connection between the client and the
replicated service by leveraging trusted computing technology.
The complexity of the replicated fault-tolerant system, in terms
of protocol, exchanged messages, and interface is therefore
hidden from the clients and legacy clients can interact with
BFT services without any changes.

Troxy is not the first protocol to explore the usage of trusted
subsystems in BFT systems. A2M-PBFT [15] is based on
a trusted append-only log, enabling it to reduce the number
of required replicas compared to traditional protocols from
3f + 1 to 2f + 1. TrInc [22] is a subsystem providing
trusted counters that can be employed as a less complex
replacement for the trusted log of A2M-PBFT. MinBFT and
MinZyzzyva [14] are two protocols that directly make use of a
counter-based trusted subsystem. The most recent representative
of this class of protocols is Hybster [13]. Hybster is also
based on trusted counters and 2f + 1 replicas. However, it
overcomes the difficulties of other hybrid protocols such as a
time-dependent memory demand and exhibits a significantly
improved performance by introducing the consensus-oriented
parallelization [2] into the hybrid fault model. Besides using
an FPGA-based trusted subsystem, CheapBFT [21] saves
resources by exploiting passive replication: f out of 2f + 1
required replicas remain passive and are activated only in case
a faulty behavior is suspected. Similarly, V-PR [23] employs
trusted computing technology, named XMHF/TrustVisor [42],
to design a fully-passive replicated system for tolerating
Byzantine failures. By leveraging a trusted subsystem, all those
protocols have a lower complexity, in terms of exchanged
messages and number of replicas, compared to traditional BFT
protocols. Nevertheless, none of the aforementioned systems
are transparent from the client’s point of view.

Prophecy [5] executes a special component between the
client and the server and thus does not require modifications at
the client side. As in Troxy, this component needs to be trusted

and acts as a proxy by receiving the client request, collecting
the replies from the replicas and sending a single reply back to
the client. However, compared to Troxy, Prophecy (i) requires
a large trusted computing base comprised of a middlebox,
operating system, and network stack; and (ii) is not able to
ensure strong consistency.

SPARE [43] is transparent to the clients by locating the reply
voter on the server side. SPARE executes replicas inside virtual
machines, thus requiring a virtualization layer and hypervisor,
and considers a specific fault model where the replicas can
exhibit Byzantine behavior; the hypervisor and reply voter fail
by crashing only. The practicality of SPARE is limited by its
large trusted computing base, composed of an entire hypervisor,
a management operating system, and the reply voter.

Thema [44] and BFT-WS [45] extend the classic approach
of having a generic client-side library and a server-side library
with an additional web-service library. This library collects
identical request messages from the different replicas, sends the
request to a non-replicated web service, and forwards the reply
back to the replicas. Thus, these works address an orthogonal
problem and could be combined with Troxy.

Avoine et al. [46] present a deterministic fair exchange
algorithm running in untrusted hosts with security modules.
The untrusted hosts are unable to forge valid protocol messages
due to the security modules comprising the entire consensus-
protocol implementation. In contrast, the goal of BFT protocols
such as Hybster (the protocol used by Troxy) is to keep the
trusted computing base as small as possible by implementing
most protocol parts in the untrusted host.

There is a growing number of systems that utilize SGX to
secure computing in the context of cloud computing [31], [47],
perform application level secure data processing [48], and
enable trusted client-side computing and offloading [49], [50],
just to name a few. To our knowledge, none of these systems
have used trusted execution to enable compatibility with legacy
systems as proposed by Troxy.

VIII. CONCLUSION

We have presented Troxy, a system which leverages trusted
execution environments to offer clients transparent access to
BFT systems. In contrast to traditional BFT systems, a Troxy-
backed system does not require to execute a special library
at the client side. Instead, it implements a substitute of the
library inside each replica. In addition, it introduces a novel
read optimization that features a managed fast-read cache
to accelerate read-heavy operations while providing strong
consistency guarantees. We implemented a prototype of Troxy
in C/C++ with Intel SGX and evaluated its performance with
both microbenchmarks and an HTTP service. The results
indicate that (1) while Troxy is slower by up to 43% for
small payloads, it outperforms a state-of-the-art hybrid BFT
protocol by 130% for larger, read-heavy workloads and a
realistic network delay; (2) Troxy introduces a negligible
latency overhead and is transparent to legacy clients when
providing Byzantine fault tolerance to an HTTP service.
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