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Abstract—Recent research works have shown that applying
parallelization to request processing in Byzantine Fault Toler-
ance (BFT) can bring significant performance improvement.
Based on partitioned service state, parallelism is introduced
to both agreement and execution to address performance and
scalability limitations caused by the global total order of all re-
quests. However, in case of inefficient state partitioning, expen-
sive synchronization among partitions is expected, which leads
to a considerable performance loss. To improve the efficiency
of parallel processing, we present Dynamic State Partitioning
(DYPART), a framework that maps service state into multiple
partitions and periodically reconfigures the partitions for dif-
ferent usage patterns. DYPART relies on the knowledge about
relations between the state objects for partitioning, which is
obtained by collecting request dependencies. It utilizes a high-
performance graph partitioning algorithm to ensure that the
resulting state partitions can achieve both workload balance
and low synchronization among partitions. Our evaluation of a
key-value store shows that compared to a random partitioning,
DYPART can improve the performance by at least 40%.

1. Introduction

Byzantine Fault Tolerance (BFT) protocols [1] have been
proven to benefit from allowing non-conflicting, independent
requests to be executed in parallel [2], [3], [4], [5]. Besides
parallel execution, recent research works have shown that
ordering of independent requests can be parallelized as well
in order to further accelerate the processing speed, while
still holding strong consistency. For instance, in our previous
work SAREK [6], we proposed a parallel ordering framework
that logically partitions the application’s state to exploit par-
allelism for both agreement and execution in BFT systems.
The number of partitions can be equal to the number of
replicas of the system. This way, each replica can be the
leader of one specific partition, establishing an order upon
the requests that access only the objects of this partition.
It also supports operations that span multiple partitions,
noted as cross-border requests and ensures deterministic
executions. Evaluation results reveal the facts that using
SAREK can gain a throughput increase by a factor of 2, while
handling cross-border requests causes extra synchronization
overhead and results in performance loss.
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Reducing the probability of cross-border requests re-
quires the system state to be properly partitioned. The
knowledge about the request dependencies can contribute
to high quality state partitions to support efficient parallel
processing. These request dependencies can be derived from
the object access pattern: Certain objects are more often
accessed together, whereas some other ones are accessed
solely. However, on the one hand, it is rather impossible to
gain the accurate and entire knowledge of an application’s
state before actually running it; on the other hand, as long
as clients request dependencies vary, by either creating new
state objects or changing the objects access pattern, a static
partitioning solution can quickly become outdated and a
performance loss could be expected for the new requests.
Moreover, having balanced workload on each partition also
plays an important role in achieving good performance:
Objects should be distributed as equal as possible to involve
more parallelization to the processing, in order to fully
utilize the computing power of modern multi-core machines.
In a word, keeping a low cross-border request rate as well
as balanced workload should be taken into account when
utilizing parallel BFT systems.

In this paper we present DYPART, a dynamic state parti-
tioning framework. DYPART collects and divides each appli-
cation’s state into partitions, then applies and reconfigures
the state partitions on the fly for performance improvement.
Assume that at the system startup, replicas do not know the
objects access patterns of any clients and therefore have no
knowledge about request dependencies, resulting in a default
state partitioning. When ordering and executing the requests,
each replica monitors the request dependencies and maps
them to a graph that represents the relations between the
state objects. The state partitioning update is associated with
the checkpoint mechanism to guarantee its determinism and
keep the overhead as low as possible. Once the checkpoint
threshold is reached, besides creating a new checkpoint,
each replica also invokes a graph partitioning algorithm to
partition the graph’s vertex set into blocks with minimized
weight of edges running in between, and possibly of similar
sizes. This ensures that the resulted new state partitions can
keep a low cross-border request rate as well as fully utilize
the potential of parallel request processing.

Since the checkpoint creation process is invoked period-
ically, the state partitions can be updated with new request
dependencies on a checkpoint-interval cycle. This enables
the reconfiguration feature of DYPART and makes it adapt-
able to any dynamically changing request dependencies.



Moreover, the reconfiguration does not involve any object
transferring but only changes the logical partitions, making
it efficient to be applied.

We have implemented DYPART on top of the SAREK
prototype, by attaching a module of the dynamic partitioning
method to the checkpoint mechanism. We evaluated the pro-
totype with microbenchmarks, where requests are generated
based on a social network dataset [7] and access multiple
objects simultaneously. Evaluation is conducted to show the
performance improvement by using DYPART, compared to
SAREK’s original naive solution.

In particular, this paper makes the following contribu-
tions:

• It presents DYPART’s approach to creating the
knowledge of an application’s state with respect to
request dependencies, and leveraging a graph parti-
tioning algorithm to divide the state into blocks.

• It introduces the reconfiguration feature for dynam-
ically updating replicas’ partitioning knowledge in
order to adapt to different requests.

• It implements a prototype of DYPART, which en-
ables the parallel BFT system to handle the trade-off
between low cross-border request rate and balanced
workload.

The remainder of the paper is organized as follows:
Section 2 explains SAREK , the utilized BFT system. Sec-
tion 3 discusses the system model and presents the design
of DYPART with implementation details. Section 4 presents
the evaluation result. Section 5 summarizes related works
while Section 6 concludes the paper.

2. SAREK Background

DYPART aims to improve the efficiency and flexibility of the
partitioning mechanism of the parallel ordering framework
SAREK [6]. Thus we firstly give a brief introduction to the
base system before explaining the details of DYPART.

2.1. SAREK System Model

Most existing BFT systems assume a total order upon
write requests that cause state update, as the service state
is considered indivisible that the processing of each write
request is dependent on all others. However, for many ap-
plications such as key-value stores or web applications, this
assumption is too pessimistic. In fact, only those requests
accessing shared state should be ordered to guarantee con-
sistency, while the ones do not share state could be executed
in parallel. Based on this idea the basic structure of SAREK
is built, as shown in Figure 1.

In SAREK, a replica possesses the entire state as in many
other single-leader based BFT systems. The difference is
that in SAREK multiple BFT agreement instances are run-
ning in parallel within each replica. Each of the instances is
responsible for a logical partition of the state and maintains
a partial order upon the requests accessing that partition.
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Figure 1. Multi-leader based BFT system.

The leaders of the BFT instances are distributed among
the replicas, which leads to a multi-leader based approach
for both ordering and execution of independent requests.
Figure 2 shows the architecture of a replica in SAREK.
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Figure 2. Architecture of the SAREK system.

The state partitioning mechanism of SAREK is im-
plemented with a predictor component. It contains an
application-specific PREDICT() function that is created by
each replica during initialization phase. The original PRE-
DICT() function in SAREK applies a modulo calculation
upon an accessed object to decide which partition it belongs
to. This naive mechanism achieves well balanced partition
size, but lacks of efficient means to gain the insight of the
relations between the objects.

In SAREK, clients send a request to all replicas via
broadcast. Each replica then performs the PREDICT() to de-
cide the responsible BFT instance(s) for ordering, according
to the objects to be accessed. For a request that accesses a
single partition, only one responsible BFT instance across all
replicas will handle it. The independently ordered requests
can be executed in parallel and their partition accessing be-
haviors are monitored by SAREK. Once a request attempts to
access partitions not predicted, causing a mis-prediction due
to unforeseen data dependency or insufficient application
knowledge, it will get detected and triggers a re-prediction
process to tackle with the case. The missing partition(s) will
be added to the request to ensure that it will be then ordered
by the corresponding BFT instance(s). This way, system
consistency is guaranteed even if the state partitioning and
predictor are not perfect.

2.2. Handling Cross-Border Request

For cross-border requests that access multiple partitions,
additional overhead is introduced for consistency guarantee.



At agreement, each cross-border request needs to be ordered
by all predicted BFT instances, which considerably increases
the workload on the replica network. For execution, only one
deterministically chosen BFT instance across all replicas
will actually execute the request, while others only syn-
chronize with it once the execution is done. This ensures
consistency and determinism by executing a cross-border
request for exactly one time, yet at a price of expensive
synchronization. To avoid cross-border requests, the objects
that are frequently accessed together should be located in
the same logical partition.

3. DYPART Design

In this section, we reveal the details of DYPART design
and the integrated high-quality graph partitioning algorithm.

3.1. The DYPART Approach

Figure 3 shows an overview of the SAREK system featur-
ing DYPART for state partitioning and illustrates how they
conceptually interact. A request is firstly handled by the
predictor component ( 1 ). The PREDICT() function maps
each object to a corresponding partition. In case an object
is unknown to any partition so far, it will be mapped to
the default partition with the smallest ID number. The
responsible BFT instances will then order and execute the
request by following the rules defined in SAREK.
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Figure 3. Overview of DYPART-backed SAREK system.

The actual process of DYPART is associated with the
checkpoint mechanism of SAREK ( 2 ). To acquire the re-
quest dependencies of one application, DYPART logs the co-
occurrences of the objects and their frequency by recording
every successfully executed request. Meanwhile the check-
point mechanism will check if a predefined threshold has
been reached after each request execution. Within a replica,
each BFT instance independently maintains a counter to in-
dicate how many requests have been processed since the last
stable checkpoint. If the counter of any BFT instance reaches
the threshold, a pre-checkpoint message with the replica ID
and the expected next checkpoint sequence number is sent
out to all other replicas ( 3 ). Meanwhile the next checkpoint
sequence number of that instance is increased by one. Each
replica keeps the number of the last stable checkpoint, thus

the pre-checkpoint messages with a stale number will be
discarded. Once a replica collects 2f + 1 pre-checkpoint
messages with the same sequence number, it confirms the
attempt to create a checkpoint with this sequence number
and generates a create-checkpoint request. Due to different
execution speeds of the BFT instances across the replicas,
it is necessary to have a synchronization before creating
the checkpoints. Therefore the create-checkpoint request is
resembling a cross-border request that involves all logical
partitions. All non-faulty replicas will eventually generate
this request.

The create-checkpoint request is then ordered and exe-
cuted in the same way of handling a normal client request
( 4-1 ): All involved BFT instances order the request but only
one instance executes it while others only synchronize once
the execution is complete. The execution triggers the cre-
ation of a checkpoint and updates the last stable checkpoint
number on each replica. As the create-checkpoint request
involves all partitions, it works as a “barrier” to ensure the
checkpoint is created across all instances among all replicas
in a deterministic manner, despite different execution speeds.

Besides creating a checkpoint, executing the create-
checkpoint request also causes DYPART to update the logical
partitions of the state by reconfiguring the predictor. It
immediately invokes the graph partitioning algorithm that
utilizes the collected request dependencies as inputs and
outputs the new partition knowledge ( 4-2 ). The predictor
is instantly provided with this knowledge to update its
PREDICT() function for the new incoming requests ( 4-3 ). It
will not cause data moving but only change the mapping be-
tween the objects and the partitions. Once the predictor has
been reconfigured, the execution of the create-checkpoint
request is complete. It is possible that after reconfiguring
the predictor, some already-ordered requests are nevertheless
predicted with the outdated knowledge, due to the time
difference between triggering the state partitioning and ap-
plying the new partitions. This will cause mis-predictions
during execution, and can be handled by SAREK with its
re-prediction mechanism.

Optimization can be done by applying exponential
smoothing technique to smooth the continuously updated
partition knowledge, as the partition update is triggered
periodically. For example, the later the request dependen-
cies are obtained, the higher smooth factor is given to the
new partition knowledge calculation. This way, the new
knowledge can always reflect the most recent changes in
the objects over time and be resilient against unexpected
short-term fluctuations.

3.2. Graph Partitioning Algorithm

The service state is modeled as a graph in DYPART : The
individual objects are the vertices, and the weight of an edge
indicates how often the two objects are accessed together.
Thus the problem of partitioning the state can be converted
to the graph partitioning problem, where a graph is cut into
smaller pieces, and the aggregated weight of edges running
between different pieces should be as small as possible. The



similar idea can be found in high performance computing,
which distributes the work to processors in a static man-
ner [8]. DYPART features this technique to minimize the
synchronization among partitions and ensure load balance.

In DYPART, we use the amount of requests that solely
access an object during a checkpoint interval as the vertex
weight of that object. The edge weight, on the other hand,
is abstracted from the requests accessing multiple objects:
For a set of objects that are accessed together in one
request, each pair of the objects contributes to the edge
weight between them. As a result, the more frequently a
pair of objects are accessed together, the less likely they are
assigned to different partitions.

We choose the Karlsruhe High Quality Partitioning
(KaHIP) [9], [10], [11] as the graph partitioning algorithm in
DYPART for its good performance and simplicity of integra-
tion [12]. KaHIP combines the local improvement algorithm
based on max-flow min-cut computations and global search
strategies to achieve fast graph partitioning. For more details
about KaHIP we refer to its documentations.

DYPART provides an interface for integrating the graph
partitioning algorithm into the codebase of SAREK as a
plug-in service. Each time when the state partitioning is
triggered, DYPART immediately transforms its collected re-
quest dependencies into a formatted input graph for KaHIP
to perform the partitioning. Various options can be added
to tune the multi-level graph partitioning program, e. g. to
define the number of partitions, to satisfy different quality
requirements, or to pursue a balance of the edges among the
partitions as well as the vertices. As we aim to achieve both
low cross-border request rate and a balanced workload upon
the partitions, we choose high quality partitioning as well
as balanced vertices and edges for creating the output file.
DYPART then reads the partition knowledge from the output
file into its predictor to update the PREDICT() function.

4. Evaluation and Discussion

We implemented a prototype of DYPART and evaluated
its performance with a comparison to the original partition-
ing method of SAREK, i. e. the modulo-based partitioning.

4.1. System Setup

We use a cluster of four machines to host the replicas
(hence we consider f = 1 faults) and a dedicated machine
to generate client workloads. Each physical machine is
equipped with an Intel Core i7-6700 quad-core processor
running at 3.4 GHz with Hyper-threading activated, as well
as 24 GB of memory. All the machines are running 64-bit
Ubuntu 16.04 with OpenJDK 1.8.

We evaluate and compare the performance of SAREK
featuring DYPART (noted as DyPart) with the original
modulo-based SAREK (noted as baseline).

4.2. Microbenchmark Setup

We use a hash-map-based key-value store for the mi-
crobenchmark evaluation to measure the performance, in-

cluding throughput and latency, of the two prototypes. The
key-value store provides the following functionality: It re-
ceives each request that accesses one or multiple objects in
the store, and creates a reply for the request. If a request
accesses only one object, it is handled by the put() operation
for writing data; otherwise it requires a putall() operation to
simultaneously access multiple data.

Given that the state partitioning of DYPART relies on the
underlying request dependencies of different applications,
the input must be inherently representing the relations of the
accessed objects. Inputs that lead to random object accessing
are not suitable for evaluation purpose. We consider social-
network like datasets as the source of generating cross-
border requests that possibly access more than two objects.
More specifically, for the preliminary evaluation we choose
a dataset of co-occurrence network from the Stanford Graph
Base [7], which represents the interactions between the
characters in Victor Hugo’s Les Misérables. We abstract the
co-occurrences of the characters in each scene of each sub-
chapter from the dataset and store them in a list.

Each character is considered as an object of the service
state and a vertex of the graph. Between a pair of characters,
there exists an undirected edge. The edge of the graph
is weighted by the amount of co-occurrence of that pair.
Clients randomly select co-occurrence entries from the list
to form the requests accessing multiple (up to nine) objects.

The original SAREK prototype relies on the modulo-
based partitioning method to get four partitions of approxi-
mately equal size. For all experiments we deploy up to 200
clients to saturate the system. The final result is calculated
as an average of the results from multiple runs. No batching
is used since it is an orthogonal approach that will indepen-
dently influence the results.

4.3. Microbenchmark Results

To gain an insight of the efficiency of the modulo-
based partitioning method and DYPART, we first conduct
an experiment to calculate the percentage of cross-border
requests that span multiple partitions. We go through the
request list to figure out how many partitions are accessed
by each request. Figure 4 shows that, for the modulo-based
partitioning method, only 45% requests access a single
partition, while for DYPART 68% requests are handled by
one partition, which indicates a big advantage of DYPART in
reducing the cross-border request overhead. When it comes
to the requests that access more than one partition, DYPART
is able to reduce the 2-partition requests by 14%, and 3-
partition requests by 6%. For 4-partition requests that bring
significant synchronization overhead to the system, DYPART
can totally eliminate this category, while the baseline results
in 3%. This proves that DYPART has managed to achieve
its goal of keeping a low cross-border request rate.

We also analyze the workload balancing factor of the
two prototypes, and demonstrate the results in Figure 5.
For the baseline, the modulo operation divides the state
into four partitions of approximately the same size. Since
no request dependency but only the amount is considered



baseline DyPart
0%

20%

40%

60%

80%

100%

45%

68%

45%

31%

7%
1%3%

0%

C
ro
ss
-b
or
d
er

R
eq
u
es
t
R
at
e

1-partition 2-partition 3-partition 4-partition

Figure 4. Percentage of different types of requests.

for partitioning, partitions of equal size might instead cause
more cross-border requests and eventually become more
expensive. On the other hand, DYPART gives priority to
partitioning quality as well as balanced vertices and edges,
although some partitions might contain slightly less objects
than others.

To measure the throughput and latency performance,
we apply two request/reply sizes in our evaluations: 500
bytes/500 bytes and 4 kilobytes/4 kilobytes. An increasing
amount of workload is generated by up to 200 clients to test
against the replicas. From Figure 6 we can learn that by the
time that the whole system is saturated (latency grows but
throughput not), SAREK with DYPART can achieve a much
higher throughput than the baseline. For a smaller message
size of 500 B/500 B at least 40% performance improvement
can be observed, and for the 4 KB/4 KB case, DYPART
shows nearly 50% higher performance.

Figure 7 shows the impact of applying state parti-
tioning and performing the re-prediction mechanism (see
Section 3.1) on the latency. The measurements are taken
every 20 ms, and we show a part of the result after the
warm-up phase. Using KaHIP to partition the input graph
(77 vertices with more than 500 edges) takes on average
56 ms, and the possibly resulted re-prediction might also
introduce limited overhead. As a result, a high latency spike
that lasts for 40-60 ms can be observed each time when a
checkpoint is triggered. By comparing the results of different
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checkpoint intervals, we have learned that increasing the
interval can significantly reduce the frequency of having
such spikes. Further optimization can be done to reduce the
spikes, by decoupling the graph partitioning computation
from the deployment of the new partition knowledge. For
example, when a checkpoint is triggered, DYPART does not
immediately use the results from the current checkpoint
interval for the reconfiguration. Instead, it applies the parti-
tion knowledge from the last checkpoint and directly com-
pletes the checkpoint processing. In parallel, the partitioning
algorithm uses the newly collected request dependencies
from the latest checkpoint interval to generate new partition
knowledge. This way, the graph partitioning computation
does not block the executions at each checkpoint.

5. Related Works

DYPART utilizes a graph partitioning algorithm to im-
prove the performance and workload balance in a paral-
lelized BFT system. We discuss related works in a reference
to both parallel computing in state machine replication and
applications of graph partitioning.

a) Parallel Computing: P-SMR [13] shows that paral-
lelism can be achieved by mapping non-conflict requests to
different multi-cast groups, according to application-specific
semantics. A follow-up work [14] proposed an optimistic
mapping approach as well as a roll-back mechanism to
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Figure 7. Impact of state partitioning and re-prediction on latency.



resolve the inconsistency issue caused by inaccurate assump-
tions for the mapping. Compared to them and based on
SAREK , DYPART is able to handle arbitrary failures and
needs no roll-backs for handling mis-predictions.

Alchieri et al. presents a new way to dynamically re-
configure the degree of parallelism of replicas for different
workloads [15]. In case of high conflicting rate operations,
it requires fewer threads to reduce the synchronization
overhead; and for low conflicting rate operations, more
threads are used to maximize the performance. In [16] a
high performance recovery method for parallel state machine
replication is proposed in order to prevent overhead of using
dependency detection for keeping consistency. It includes
two techniques: The speedy recovery that allows processing
new commands concurrently with old commands if they are
independent; and the on-demand recovery that is able to
recover only a fraction of the state. The dependency among
commands is represented as a dependency graph and is
executed when parallel execution is efficient considering re-
source availability. The targeted system model differentiates
DYPART from these works. Besides that, DYPART reconfig-
ures the state partitioning instead of computing resources to
adapt to different workloads. This guarantees that DYPART
can always perform under full computing power.

b) Graph Partitioning Applications: Many research
works have explored the potential applications of graph par-
titioning. Here we summarize those that share a similar con-
cept as DYPART. Newman shows in [17] how to apply graph
partitioning algorithms to solve community detection prob-
lems. It is done by mapping the common community infer-
ence methods onto the min-cut graph partitioning problem.

The work of Glantz et al. [18] explores efficient static
mapping of parallel processes to processing elements of a
parallel system. There an application graph is created to
represent the application’s computations and their depen-
dencies, and partitioned into blocks of equal size. Different
algorithms are evaluated to find out an efficient mapping
between the blocks and the processing elements with mini-
mized communication costs.

6. Conclusion

In this paper we presented DYPART, a dynamic par-
titioning framework that utilizes request dependencies for
state partitioning in the parallelized BFT system SAREK. It
collects and analyzes the application’s state with its objects
accessing pattern, and models the pattern into a graph to
represent the relations of the objects. A high-quality graph
partitioning algorithm is integrated into DYPART for divid-
ing the state graph into partitions for the purpose of having
the least interactions as well as keeping a workload balance
among partitions. Each replica adapts the new partition
knowledge in order to achieve good performance under
that request pattern. The dynamic update of the partition
knowledge is associated with the checkpoint mechanism
of SAREK so that it can be applied consistently across all
BFT instances of all replicas. We implemented a prototype
of DYPART based on SAREK and conducted measurements

with microbenchmarks. The results show that by period-
ically applying DYPART, SAREK can gain at least 40%
performance improvement compared to the original modulo-
based solution.
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