
SAREK: Optimistic Parallel Ordering
in Byzantine Fault Tolerance

Bijun Li
TU Braunschweig
bli@ibr.cs.tu-bs.de

Wenbo Xu
TU Braunschweig

wxu@ibr.cs.tu-bs.de

Muhammad Zeeshan Abid
KTH Stockholm
mzabid@kth.se

Tobias Distler
FAU Erlangen–Nürnberg

distler@cs.fau.de

Rüdiger Kapitza
TU Braunschweig

rrkapitz@ibr.cs.tu-bs.de

Abstract—Recently proposed Byzantine fault-tolerant (BFT)
systems achieve high throughput by processing requests in
parallel. However, as their agreement protocols rely on a single
leader and make big efforts to establish a global total order on
all requests before execution, the performance and scalability
of such approaches is limited. To address this problem we
present SAREK, a parallel ordering framework that partitions
the service state to exploit parallelism during both agreement
as well as execution. SAREK utilizes request dependency which
is abstracted from application-specific knowledge for the service
state partitioning. Instead of having one leader at a time for
the entire system, it uses one leader per partition and only
establishes an order on requests accessing the same partition.
SAREK supports operations that span multiple partitions and
provides a deterministic mechanism to atomically process them.
To address use cases in which there is not enough application-
specific knowledge to always determine a priori which partition(s)
a request will operate on, SAREK provides mechanisms to
even handle mis-predictions without requiring rollbacks. Our
evaluation of a key-value store shows an increase in throughput
performance by a factor of 2 at half the latency compared to a
single-leader implementation.

Index Terms—Byzantine Failures; Multi-leader; Parallel
Agreement and Execution; Generalized Consensus; State Par-
tition

I. INTRODUCTION

State machine replication is a general method for providing
fault tolerance in distributed systems [1]: Requests issued by
clients are first ordered using an agreement protocol and then
sequentially executed on multiple server replicas. Depending
on the used protocol, systems are able to tolerate fail-stop [2],
[3] or Byzantine failures [4] of replicas. In the context of
Byzantine fault tolerance (BFT), in order to overcome the
limitations of sequential execution and to exploit the potential
of multi-core hardware, systems have been proposed to allow
non-conflicting requests to be processed in parallel [5], [6],
[7]. In this paper, we refer to such requests as being inde-
pendent which, for example, applies to requests that operate
on different parts of the service state. In contrast, dependent
requests must still be executed sequentially as otherwise non-
faulty replicas could become inconsistent.

Parallel execution offers great benefits for use case scenarios
where the actual request processing time is not negligible.
However, it does not lower the risk of having a system

This research was partially supported by Siemens Rail Automation Graduate
School (iRAGS) and the German Research Council (DFG) under the grants
no. KA 3171/1-2 and DI 2097/1-2.

bottleneck, referring to the fact that existing BFT systems
use a single replica as the leader (either for totally ordering
requests [5] or for execution preparation [7]), which actually
slows down application processing speed. To a certain extent,
this problem can be mitigated by rotating the leader role
among replicas [8], [9]. Nevertheless, as these approaches are
based on a totally-ordered sequence of requests, and only split
the responsibility of establishing it, the effects are limited.

In this paper we present SAREK, a parallel ordering frame-
work that instantiates multiple single-leader-based BFT proto-
cols independently. Besides enabling concurrent request exe-
cutions, SAREK exploits parallelism during request ordering: It
partitions the service state and only linearly orders the requests
accessing the same partition(s), by creating a partition-specific
schedule. In this way, agreement for independent requests can
be performed concurrently. Furthermore, by selecting different
replicas as leaders of different partitions, the system is able to
balance the load induced by the leader role across all replicas.
After agreement is complete, a dedicated execution instance is
responsible for processing requests in each partition according
to the local schedule.

While handling an operation that accesses only a single
partition is straightforward in such an environment, additional
efforts have to be taken to support requests operating on
multiple partitions (“cross-border requests”). For example,
despite being ordered in several partitions, a cross-border
request must not be executed more than once. In addition, the
processing of a cross-border request must be consistent with
the individual schedules that are determined for all affected
partitions. SAREK satisfies these requirements by using a
mechanism that is based on a combination of prioritizing
partitions and safe reordering of requests: Only the execution
instance of the partition with the highest priority actually
processes a cross-border request while the instances of other
involved partitions are put on hold in the meantime.

SAREK relies on application-specific knowledge to define
service-state partitions as well as to predict which partitions
a request will operate on. For this purpose, each replica
holds a deterministic PREDICT() function which identifies
the state objects to be read or written during processing
of a particular request. As the implementation of a precise
PREDICT() function may not be feasible (or considered too
costly) for some applications, for example, due to the set of
accessed objects being dependent on internal service state,

1



SAREK offers support to deal with imprecise knowledge up to
the point where mis-predictions are handled: During execution,
the system monitors accesses to state objects and consequently
detects if a request tries to operate on a partition not included
in the output of PREDICT(). If this is the case, SAREK initiates
a re-prediction of the request and then safely updates the
schedules of the partitions affected, thereby preventing any
form of rollback.

In this work, we show that it is possible to realize SAREK
based on an existing BFT implementation without requiring
modifications to the most complex part: the agreement proto-
col. Instead, the agreement stage can be treated as a black box
that is instantiated multiple times, once for each partition. This
makes most existing BFT agreement protocols compatible with
SAREK. We evaluate our prototype via microbenchmarks and
the YCSB (Yahoo! Cloud Serving Benchmark) [10] bench-
mark, which apart from providing operations to access single
objects, also allow clients to issue requests that access multiple
objects atomically, thereby relying on SAREK’s support for
cross-border request.

In particular, this paper makes the following contributions:
• It presents SAREK’s approach to partitioning service state

and making use of multiple leaders to exploit parallelism
in a BFT system.

• It details SAREK’s mechanism to support operations span-
ning multiple partitions, which is based on a combination
of per-operation partition priorities and dynamic request
reordering.

• It explains how SAREK is able to deal with imprecise
predictions of the partitions a request will operate on.

• It evaluates SAREK in comparison to a BFT system that
comprises only a single leader.

The remainder of this paper is organized as follows: Sec-
tion II summarizes related works. Section III discusses the
system model and additional assumptions. Section IV presents
the design of SAREK. Section V focuses on our prototype im-
plementation and presents the evaluation. Finally, Section VI
concludes the paper and discusses future work.

II. RELATED WORK

SAREK provides parallelism at both the agreement stage
where requests are ordered, and the execution stage where
they are processed. In the following, we discuss related works
aiming to improve the scalability and throughput of both
stages [11] as well as approaches that feature distributed
transactional coordination.

a) Execution Stage: Kotla et al. [5] introduced a paral-
lelizer module between agreement stage and execution stage
that allows a BFT system to concurrently execute requests that
do not interfere with each other. Similar to SAREK, such re-
quests are identified based on application-specific knowledge.
However, in contrast to SAREK there is no parallelism at the
agreement stage and a total order is established across all
requests, not only the dependent ones. The same applies to
ODRC [6], which achieves parallelism at the execution stage
by processing each request on a subset of replicas instead of

all. As a result, the resources freed on each replica can be
used to execute additional requests.

In EVE [7], replicas do not agree on requests before
processing them. Instead, replicas first execute requests con-
currently and then try to agree on the corresponding state
changes. If this attempt fails, replicas perform a rollback
and repeat the execution, this time in sequential order. EVE
assumes that the majority of requests do not share data or that
there is limited contention, making conflicts a seldom event.
SAREK assumes there will be sets of requests that share data
and accordingly require ordering but that these sets usually do
not interfere with each other. In the latter case, this is detected
and addressed while completely avoiding rollbacks.

b) Agreement Stage: Aardvark [12] minimizes the nega-
tive impact a malicious leader can have on system performance
by enabling the other replicas to monitor its performance.
If the leader fails to propose new requests within a certain
period of time, which is gradually decreased, another replica
becomes the new leader. In Spinning [8], the leader changes
even more frequently than in Aardvark, that is, automatically
after each request. This approach has the benefit of distributing
the additional load associated with the leader role across all
replicas. Nevertheless, the single-leader bottleneck remains
because the system still totally orders all requests.

RBFT [13] relies on multiple concurrent BFT agreement
instances for robustness: All requests are totally ordered by
all agreement instances but only executed by a dedicated
master instance. That is, RBFT introduces parallelism at the
agreement stage by fully replicating the entire agreement pro-
cess, thereby also suffering from the single-leader bottleneck.
SAREK, on the other hand, partitions the agreement stage and
uses multiple leaders to improve performance.

Farsite [14] is a large-scale distributed file system that is
resilient against Byzantine faults. The system achieves scala-
bility by partitioning the service state and rarely coordinates
when more than one partition is involved (i.e., for rename
operations). In contrast to SAREK, Farsite relies on multiple
dedicated BFT clusters that each executes an independent BFT
agreement protocol. Compared to SAREK it does not address
parallelization of request processing at agreement and execu-
tion stage for a wide range of applications or offers support
for dealing with imprecise knowledge about the application.

Generalized Paxos [15] relaxes the consensus from agreeing
on a single request to agreeing on a partially ordered set
of requests. It is applied to handle concurrently issued but
non-interfering requests, where the execution order does not
matter, to ensure that they can always be executed in two
message delays. EPaxos [16] is a crash-tolerant protocol
that allows replicas to agree on requests without requiring
a designated leader. EPaxos orders only those requests that
interfere with each other. Compared to SAREK, Generalized
Paxos and EPaxos do not address BFT. EPaxos offers the
best performance in case of low contention, as a replica must
delay the execution of a command until it receives commit
confirmations for the command’s dependencies.

P-SMR [17] achieves parallelism by using different multi-

2



cast groups for requests that can be executed concurrently.
The mapping of requests to multicast groups is based on
service-specific semantics. In a follow-up work [18], Marandi
et al. investigated the impact of performing this mapping
optimistically and proposed an approach that triggers roll-
backs when inaccurate assumptions lead to inconsistencies.
In contrast to P-SMR, SAREK is not limited to fail-stop
failures. Furthermore, SAREK detects mis-predictions and is
consequently able to initiate re-predictions before replicas
become inconsistent, thereby avoiding rollbacks.

S-SMR [19] achieves scalable throughput by partitioning the
application state and using caches to reduce synchronization
across partitions. It relies on an atomic multicast to order
commands, and implements execution atomicity to guarantee
linearizability. This approach needs to be adapted to tolerate
Byzantine faults, eventually resulting in a Farsite-like system.

COP [20] achieves high scalability in BFT systems by
executing consecutive consensus instances in parallel with
independent pipelines. However it does not involve state
partitioning therefore the execution stage is not paralleled.

c) Distributed Transactional Systems: Granola [21]
presents a coordination infrastructure for distributed transac-
tions in a fail-stop model, which provides strong consistency
while reducing coordination overhead. This is guaranteed by
using a timestamp-based coordination mechanism to achieve
serializability of transactions executing on a single storage
node or across a set of nodes but requiring no agreement.
Having similar functionality to Granola, Calvin [22] provides
high availability and full ACID transactions in partitioned
database systems. It accomplishes this by implementing a
sequencing layer above the storage system to handle data
replication, which runs a global agreement protocol upon read
and write transactions across all replicas. According to the
produced deterministic locking order, it deploys a transaction
scheduling layer to serve as concurrency control. Compared
to both systems, SAREK is developed for a different failure
model. Furthermore, it neither enforces a total order upon
all requests nor requires transactional semantics to handle
conflicts.

III. SYSTEM MODEL AND ASSUMPTIONS

SAREK and all its components are based on a common BFT
system model [4], [23], [24], [14], [11], [5] where a minimum
of 3f + 1 replicas are required to tolerate up to f Byzantine
failures. A faulty replica may behave in an arbitrary and
malicious way, possibly trying to prevent non-faulty replicas
from providing their services. While SAREK is able to handle
at most f faulty replicas, there is no upper bound on the
number of faulty clients.

Messages are authenticated by clients and replicas. We
assume that an adversary is not able to break cryptographic
techniques and consequently cannot send messages on behalf
of a non-faulty client or replica without being detected. The
network possibly fails to deliver messages, corrupt them, or
deliver them out of order. To simplify presentation, we assume

that such problems, excluding network partitions, are handled
by lower network layers (e.g., TCP).

SAREK assumes a fully-replicated system. As in most state
machine replication systems, the applications executed on
top of SAREK are stateful and expose interfaces that allow
clients to read and update service state by issuing requests.
Here, service state is defined as a set of disjoint objects [24],
[5] which can be monitored and accessed by SAREK at
runtime [24], [5], [25]. We also assume all objects can be split
into a set of non-overlapping partitions. Application instances
must resemble a deterministic state machine which requires
that after executing the same sequence of inputs, all non-faulty
replicas must produce the same sequence of outputs. With
state partitions, this can be relaxed regarding non-interfering
requests that can be processed concurrently.

IV. SAREK DESIGN

The aim of SAREK, is to distribute the extra workload bound
to the leader role in single-leader agreement protocols ([4],
[23], [24], [12]) over all replicas, and enable parallelism at
the agreement as well as the execution stage. Most existing
single-leader BFT systems conservatively assume a total order
of all requests, however, this is typically far too pessimistic.
For various applications such as key-value stores and many
web applications, only fractions of requests interfere with one
another, therefore only those dependent requests accessing
shared state should be ordered with respect to each other.
Consequently, SAREK features the idea to run multiple BFT
agreement instances in parallel, where each one manages a
fraction of the application state and maintains a partial order
upon requests accessing it. Thereby, SAREK is lightly inspired
by Generalized Consensus [15] which showed under the crash-
stop failure model that consensus can be relaxed from agreeing
on a single request to agreeing on an partially ordered set of
requests.

A. Parallelizing Agreement and Execution

Parallelism in SAREK relies on state partitioning. A replica
hosts multiple BFT instances. Each instance manages a parti-
tion of the service state. In the fault-free case the leader role
for the individual instances is distributed (see Figure 1).

L

L

L

L

BFT 0

BFT 1

BFT 2

BFT 3

Replica 3Replica 2Replica 1Replica 0

Fig. 1: In the fault-free case each replica leads one of the BFT
agreement protocol instances.

For partitioning, application-specific knowledge is essential
to determine to which partition a state object belongs to.
For example, in a key-value store application (see Section V)
where state objects are key-value pairs, the system state can be
split into partitions by dividing the key space. This way, a BFT
agreement instance takes only responsibility of ordering the

3



requests that access its associated state partition (e.g, keys that
belong to the assigned part of the key space). Thus, SAREK
orders requests per partition instead of “blindly” establishing
a total order upon all requests.

Figure 2 depicts the system architecture of SAREK. The
agreement is the same as in a single-leader BFT protocol in
order to make SAREK compatible with common BFT protocols
that feature a separation of the agreement and execution stage.

Execution

Predictor

Client

Request

Predicted 
Instance

Partition-specific
Schedule

Replies

Request Scheduler

Requests

Agreement

Replica 

Re-prediction

Fig. 2: System architecture of SAREK.

To assign client requests to the responsible BFT in-
stances, SAREK introduces a predictor component that hosts
an application-specific PREDICT() function. Each non-faulty
replica has its own local predictor, which is deterministic and
consistent with others. The PREDICT() function analyzes each
request by its type, payload and runtime state to compute
the state objects accessed during execution, and eventually
indicates the partitions those objects belonging to. Similar
ideas regarding a request analyzing component can be found
in literature [5], [6], [24]. In a key-value store (see Section V),
for example, keys are a central part of almost every request,
thus they can be used for prediction.

The predictor component executes prior to the agreement
enabling a coordinated request distribution (see Algorithm 1).
At system startup, each replica i is promoted to be the leader
of one BFT agreement instance. A client broadcasts a request
m to all replicas for prediction, which causes the PREDICT()
function of each replica to return a set of partitions that m will
access. The reason why multiple partitions can be predicted is
detailed in the following section. Next, each replica determines
if it is leading one or more BFT instances of the predicted
partitions (line 7 - 9). If so, it will start the agreement stage to
order the request. From now on, we do not distinguish between
instance and partition as they are one-to-one correspondent.

Once the agreement is complete, the request will be deliv-
ered to the execution stage as part of the partition-specific
schedule (see Figure 2), which represents the order of the
requests accessing the same partition. A new component
placed between agreement and execution, namely the request
scheduler, enforces the executions to follow the correct order
determined by agreement. In case of simple requests, which
access only a single partition, agreement and execution pro-
cesses are rather straightforward: The one and only replica that

Algorithm 1 Predict and order requests
1 initialize:
2 bft id as a BFT agreement instance
3 Pmi as a set of predicted partitions
4 upon receiving 〈REQUEST,m〉 at replica i do
5 Pmi := PREDICT(m) // predict partitions
6 for each par in Pmi

7 bft id := instanceOf(par)
8 // get responsible instance
9 if i equals leaderOf(bft id)

10 start agreement stage of 〈REQUEST,m〉
11 end if
12 end for
13 end

is the leader of the single partition initiates the ordering. Once
the agreement of the ordering finishes, all replicas deliver the
request to the execution stage. Partition access is monitored
by the request schedulers to guarantee consistency among non-
faulty replicas.

B. Handling Cross-Border Request

If a request accesses multiple partitions, namely a cross-
border request, additional measures must be taken to ensure
that 1) this request is ordered by all predicted BFT instances
while 2) it is executed exactly once.

1) Cross-border Request Agreement: To fulfill these two
requirements, a cross-border request splits into multiple sub-
requests (each sub-request contains the original request) to
be ordered by the corresponding instances. As a result, the
order of any pair of requests accessing the same partition is
uniquely defined across all replicas, based on the agreement
and the corresponding partition schedules.

2) Cross-border Request Execution: After agreement, all
non-faulty replicas hold identical schedules upon individual
partitions. In SAREK the key to consistent execution is that,
among all sub-requests of a cross-border request, only one
should be executed, while others act as placeholders that only
define the sequences of those sub-requests in their partition
schedules. This requires to deterministically pick one instance
as an execution instance, for example, by prioritizing which
instance should execute the sub-request. The non-executing
instances put their sub-requests on hold and remove them only
after the execution instance finishes. In our implementation,
the execution instance is chosen as the one with the smallest
ID number among all involved instances.

SAREK assigns each request/sub-request a specific type,
before it delivers them to the execution stage. In case of
a simple request accessing one partition, it is marked as
EXECUTE. Otherwise a sub-request of a cross-border request
is further differentiated as 1) the CROSS-BORDER-EXEC type
that should be executed by a deterministically chosen execu-
tion instance, or 2) the CROSS-BORDER-SYNC type that acts
a placeholder. Requests are delivered and queued for execution
after being classified.

Figure 3 shows an example, where the circle R2 stands for
the CROSS-BORDER-EXEC type to be executed by T0, while
the square R2 at T1 is of type CROSS-BORDER-SYNC that

4



Algorithm 2 Instance at execution stage
1 initialize:
2 // array only used for resolving request cycle
3 blocked by := Array[no of partitions]
4 while executing at instance bft id do
5 req := PartitionSchedules[bft id].peek()
6 if req.type is EXECUTE
7 execute(req)
8 PartitionSchedules[bft id].dequeue()
9 else if req.type is CROSS-BORDER-EXEC

10 // check sync partitions notifies
11 if req.ready()
12 executeCrossBorderRequest(req)
13 PartitionSchedules[bft id].dequeue()
14 // remove req’s corresponding sync partitions
15 for all sync partition in req’s sync partitions
16 PartitionSchedules[sync partition].dequeue()
17 blocked by[sync partition] := NULL
18 notify instance sync partition
19 end for
20 // detect request cycle
21 else if detect and resolve cycle(bft id, req)
22 goto 11
23 else
24 blocked by[bft id] := req
25 wait for corresponding CROSS-BORDER-SYNC
26 continue
27 end if
28 end if
29 else if req.type is CROSS-BORDER-SYNC
30 exec partition := the partition of corresponding

CROSS-BORDER-EXEC
31 blocked by[exec partition] := NULL
32 notify instance exec partition
33 blocked by[bft id] := req
34 wait for corresponding CROSS-BORDER-EXEC to finish req
35 end if
36 end while

only synchronizes with the execution of T0. The procedure
can be summarized as detailed by Algorithm 2.

Execution attempt is triggered when a request reaches the
head of the local partition schedule (basically resembling
a queue), and depending on its request type: 1) Those of
EXECUTE type can be executed immediately since the exe-
cution is independent and non-interfering to other partition
schedules (line 7). 2) In case of a CROSS-BORDER-EXEC
type, it is first checked whether all other CROSS-BORDER-
SYNC sub-requests are also at the head or their individual
partition schedules (line 11). If true, this instance executes
and afterwards removes all related sub-requests (line 12 -
19). Otherwise, it tries to detect and handle request cycles
if there are any (line 21 - 28), which will be discussed later.
3) For the CROSS-BORDER-SYNC type, the instance notifies
the corresponding CROSS-BORDER-EXEC type sub-request
and waits for execution to complete (line 29 - 35). This
way, system consistency holds as one request is guaranteed
to execute only once.

As aforementioned, partition schedules at different instances
might diverge, because of out-of-order request arrivals at the
absence of a deterministic delivery. Figure 4 shows an example
where requests R1 and R2 arrive at Replica0 and Replica1
in different orders. Assume these two replicas are leading
instances T0 and T1, respectively, eventually the sub-requests

R2 R1R2 R1

T0 T1 T2 T3

Replica

Cross-Border-Exec Cross-Border-Sync

R1

R2

Fig. 3: Cross-border requests distribution in SAREK.

R2

R1

R1

R2 R1

R2

Agreement

Replica 0

R2

R1

Agreement

Replica 1

R2

R1

Request Scheduler

Replica 0

T2

Replica 1

R2

R1

R1

R1

R1

R1

R2 R2

R2 R2

T0 T1 T2 T3 T0 T1 T2 T3

T0 T1 T2 T3 T0 T1 T2 T3

Request Scheduler

blocked_by_temp:[R2, R1, NULL, NULL]

seen: R2 R1 R2

blocked_by_temp:[R2, R1, NULL, NULL]

seen: R2 R1 R2

Fig. 4: Cause of request cycle and solution.

of R1 and R2 would sequence differently in two instances’
partition schedules. According to Algorithm 2, R2’s CROSS-
BORDER-EXEC should wait for the notification from its
CROSS-BORDER-SYNC, nevertheless it blocks R1’s CROSS-
BORDER-EXEC. At the meantime, R1’s CROSS-BORDER-
SYNC is waiting for its CROSS-BORDER-EXEC while block-
ing R2’s CROSS-BORDER-SYNC. As a result, a request cycle
occurs as both instances have been blocked and waiting for
each other. Similar scenarios can occur when more than two
partitions are involved.

SAREK uses the request scheduler to detect and resolve
such cycles as shown in Algorithm 3. It is invoked when
an instance is holding a CROSS-BORDER-EXEC and waiting
for notifications from corresponding CROSS-BORDER-SYNCs.
The procedure is protected by a mutex lock, that is, only one
instance can access it at a time. The first step is to find out
which instances are genuinely blocked and have no chance to
resume due to being part of a request cycle. The detection
relies on the array blocked by that holds the currently waiting
instances. At the beginning of Algorithm 3, a snapshot of
blocked by is taken. However, this array is changing during
runtime, so we recursively gather the free instances that are
not blocked in the snapshot or still have the chance to be
completed (line 16 - 23). This way, we might overestimate the

5



free instances, but more importantly do not miss any blocked
instances, according to the following lemma. (All proofs can
be found in the appendix of the paper).

Lemma 1. For any partition bft id ∈ B determined by
line 24 in Algorithm 3, the blocked by[bft id] will keep
the same status as in the snapshot and not change unless
performing the cycle resolving.

After knowing all blocked instances, the algorithm starts
to detect cycles. It uses the linked list seen to store requests
blocking their instances. For a given element in seen, it has to
wait until its next element finishes, before it can be executed.
We have the following lemma to ensure that the linked list
will encounter a loop in the end:

Lemma 2. The while-loop starting at line 32 in Algorithm 3
will terminate.

We also show that the next element is deterministically
found:

Lemma 3. In the cycle detection of Algorithm 3, line 36 will
always deterministically find the next node for any node in
seen. The next node is only determined by the ordering result
of each partition, but irrelevant to race conditions at runtime.

The last step is to resolve the cycle. We deterministically
choose the request appearing at head of the instance with the
smallest ID (line 44), and let it execute first. Because both
cycle detection and resolution are deterministic and irrelevant
to race conditions, we can conclude the following theorem:

Theorem 1. Consistency between any non-faulty replicas can
be guaranteed in Algorithm 3.

C. Fault Handling

Now we discuss how to handle faults in SAREK. In general,
we rely on two things: 1) The common fault handling mech-
anisms provided by the BFT protocol itself, and 2) additional
measures for dealing with faulty behaviors of the predictor.

1) Fault Detection: In SAREK, besides the common faults
addressed in any BFT system, replicas also have to face attacks
on the predictor, which may cause the PREDICT() function
to generate arbitrary results. SAREK hence makes additional
efforts to efficiently prevent wrong prediction results from
harming system safety. The detection scenarios can be briefly
summarized as follows: 1) During agreement, after a replica
calls the PREDICT() function, it sets a timer while waiting for
the responsible replicas to start ordering the request. If a time-
out triggers while the replica is still missing one or more sub-
requests, a fault has likely been detected. 2) During execution,
if a faulty replica intentionally fabricates a false “missing”
partition access and attempts to cause a re-prediction, it is
detected as a fault. Table I classifies the scenarios with various
causes of faults as well as their consequences.

2) Fault Correction: Faulty replicas can deny to order a
request, or concoct the ordering of an irrelevant request by
manipulating a perfect (always accurate) PREDICT() function.

Algorithm 3 Detect and resolve cycle
1 initialize:
2 blocked by temp as a snapshot of the current blocked by array
3 Node as a data structure defined as 〈request, instance id〉
4 seen := NULL // empty linked list indicating each Node seen so

far is blocked by its successor
5 F := NULL // empty set to store free instances
6 B := NULL // empty set to store blocked instances
7 detect and resolve cycle(self id, self req) do
8 //mark the partition itself also blocked
9 blocked by temp[self id] := self req

10 //determine blocked partitions
11 for bft id from 0 to no of partitions− 1
12 if blocked by temp[bft id] equals NULL
13 F .add(bft id)
14 end if
15 end for
16 do
17 for all bft id not in F
18 req := PartitionSchedules[bft id].peek()
19 if req.partitions ∩ F not equals ∅
20 F .add(bft id)
21 end if
22 end for
23 while F is changed
24 B := {bft id|bft id /∈ F}
25 if B equals ∅
26 return FALSE
27 end if
28 //detect cycle
29 bft id := min{bft id|bft id ∈ B}
30 current node := Node(blocked by temp[bft id], bft id)
31 seen.append(current node)
32 while TRUE do
33 current req := current node.req
34 next id := min{bft id|bft id ∈ current req.partitions
35 ∧blocked by temp[bft id] not equals current req}
36 next node := Node(blocked by temp[next id], next id)
37 if seen.contains(next node)
38 loop := the truncated part of seen starting at next node
39 break
40 seen.append(next node)
41 current node := next node
42 end while
43 //resolve cycle
44 req to move := argminreq{bft id|(req, bft id) ∈ loop}
45 for all bft id in req to move.partitions
46 move req to move to head in PartitionSchedules[bft id]
47 end for
48 return TRUE
49 end

However, these behaviors do not affect non-faulty replicas in
SAREK, as they all rely on their local PREDICT() function.
Moreover, they will suspect the faulty leaders upon the denial
and eventually enforce a view-change. Faked ordering propos-
als will be ignored since the non-faulty replicas stick to their
own PREDICT() results.

If during the execution of a request a faulty replica fabricates
a re-prediction to involve irrelevant instances to handle it,
SAREK is able to detect this. Although a re-prediction is
initiated locally, a false re-prediction proposal will never be
approved as this step would require confirmations by 2f + 1
replicas. Consequently, a false re-prediction will eventually be
ignored by non-faulty replicas. This prevents a faulty replica
from harming the system, and leads itself to being suspected.
Details are explained in Section IV-D based on a generic

6



TABLE I: Fault causes and consequences.

Faults in SAREK
Scenario Cause Consequence

During Agreement
1) Missing sub-requests.
Slow or faulty replica fails to initiate ordering the sub-request in its
leader instance(s).

Time-out triggers a view change.

2) Extra sub-requests.
Faulty replica manipulates prediction and fabricates a sub-request.

Faulty replica’s behavior does not affect correct
replicas and will eventually be suspected.

During Execution 3) False re-prediction.
Faulty replica can intentionally cause a false re-prediction process.

A re-prediction process is processed locally by
faulty replica but it cannot affect other replicas
and will eventually be suspected.

approach to handling imprecise predictions. Once a faulty
replica is under suspicion, non-faulty replicas start a view-
change to derive its leader role upon a state partition. This
requires modifications to the view-change operation as well as
to checkpoint support. Details are explained in the following
subsection.

3) Checkpoints: In single-leader BFT systems, checkpoints
are generated locally without having an agreement in advance.
This is because single-threaded processing and total order can
guarantee that the same amount of requests correspond to the
same set in the same sequence. Therefore, the creation of a
checkpoint is triggered by a local counter and a distributed
checkpoint certificate is collected to make the checkpoint
stable ([4], [23], [24]). However, this is not applicable to
SAREK, because 1) after executing the same amount of re-
quests, replicas might be in different states and 2) checkpoints
should be made at replica level rather than partition level
because of cross-border requests. Hence a synchronization
before collecting checkpoints is necessary.

SAREK performs this synchronization by introducing a spe-
cial create-checkpoint request, which resembles a cross-border
request that accesses all partitions. Each create-checkpoint
request has a dedicated sequence number and is triggered
by 2f +1 pre-checkpoint messages. Pre-checkpoint messages
are sent by each BFT instance independently as shown in
Algorithm 4. Every instance maintains a counter indicating
how many (sub-)requests (i.e., EXECUTEs, CROSS-BORDER-
EXECs, and CROSS-BORDER-SYNCs) it has processed since
the last stable checkpoint. After a predefined threshold is
reached, it broadcasts a pre-checkpoint message with the
replica ID and the expected next sequence number. Algo-

Algorithm 4 Send pre-checkpoint at each instance
1 initialize:
2 interval as checkpoint interval
3 cp next := 1
4 c := 0
5 while executing at instance bft id of replica i do
6 if PartitionSchedules[bft id].dequeue() is called in

Algorithm 2
7 c := c+ 1
8 if c mod interval equals 0
9 broadcast 〈PRE-CHECKPOINT, i, cp next〉

10 cp next := cp next+ 1
11 end if
12 end if
13 end while

rithm 5 describes how the replica handles the pre-checkpoint
message. The replica records the sequence number of the
last stable checkpoint. If the received message has a stale
sequence number, or has already been provided by the same
replica (potentially by another BFT instance), it is discarded
immediately (line 5). Otherwise the message is buffered. Once
the replica has obtained 2f + 1 pre-checkpoint messages
with the same sequence number, it generates the create-
checkpoint request and begins to order it in the same way as
handling a client request accessing all partitions. The execution
stage of the create-checkpoint request keeps unchanged as in
Algorithm 2, and the actual execution of this request (line 12
of Algorithm 2) is as follows:

1) Create the checkpoint.
2) Every BFT instance resets the counter c to 0, and updates

cp next to max (cp next, s+ 1).
3) The replica updates cp stable to s.

This way, a stable checkpoint is consistently collected across
all replicas. In order to update its state, a slow or recovering
replica needs to obtain a stable checkpoint from another replica
as well as f matching checkpoint hashes from additional
replicas proving that the checkpoint is valid.

4) View Changes: The leader role of a faulty replica for
a partition is revoked and granted to another replica through
a view change. In existing BFT systems, the new leader is
usually selected deterministically relying on a round-robin
strategy. The challenge in SAREK is that after several view
changes in different partitions, one replica might have to lead
several partitions at a time, compromising load balancing and
parallelism; in the worst case, if a single replica assumed
the leader roles for all partitions, the system would degrade

Algorithm 5 Order create-checkpoint at each replica
1 initialize:
2 cp stable := 0
3 upon receiving 〈PRE-CHECKPOINT, rep id, s〉 at replica i do
4 if s ≤ cp stable or already received the same message before
5 discard the message
6 else if received PRE-CHECKPOINT from 2f + 1 replicas with the

same s
7 for each bft id in all BFT instances
8 if i equals leaderOf(bft id)
9 start agreement stage of 〈CREATE-CHECKPOINT, s〉

10 end if
11 end for
12 end if
13 end

7



Replica 3

Agreement

Execution

Replica 2

Agreement

Execution

Cross_Border_SyncSimple

Replica 1

Agreement

Execution

Replica 0

Agreement

Execution

T0

T0

T0

T0

T1

T1

T1

T1 T2

T2T2

T2 T3

T3 T3

T3
T3

T3
T3

T3

Fig. 5: Handle imprecise prediction with re-prediction.

to a single-leader BFT system. To avoid such scenarios and
to keep the leader roles distributed, we define a preferred
leader for each partition. This means that after a view change
has occurred, SAREK executes the agreement protocol for a
predefined number of requests using the new leader and then
returns to the preferred leader. If the fault that has caused the
previous view change is transient, the system sticks with the
preferred leader. Otherwise, another view change is triggered.
To prevent too frequent view changes, we add a switching
penalty to the preferred leader after every view change, which
increases the number of requests SAREK waits until returning
to the preferred leader.

D. Handling Imprecise Predictions

SAREK can use imprecise application knowledge to make
predictions in case implementing a perfect PREDICT() function
is not feasible. In particular, the system is able to address
mis-predictions caused by unforeseen data access patterns or
internal state changes.

1) Re-predictions: In order to ensure consistency, SAREK
monitors the state access of requests during execution. Once
the execution instance observes a request attempting to access
a partition that is not included in the prediction for this request,
which indicates a mis-prediction, it immediately suspends the
execution and prepares for a re-prediction. For this purpose,
the execution instance adds the affected partition to the original
request and sends the request as a re-prediction proposal to the
responsible agreement instance at the local replica. Next, the
agreement instance broadcasts the proposal to all other replicas
to validate it. Having received 2f + 1 matching re-prediction
proposals, replicas are able to prove the correctness of re-
prediction, and the leader replica starts ordering the proposal,
as shown in Figure 5. The execution instance T0 sends a
re-prediction proposal to the local responsible instance T1
after detecting a mis-prediction. Each T1 then broadcasts the
proposal to all other replicas. With 2f+1 matching proposals,
the leader replica of T1 (assuming Replica1) can safely order
the proposal.

Ordering the re-prediction proposal ensures that data ac-
cess to the newly-predicted partition is consistent across all
replicas. After the proposal is committed, it is classified as a

CROSS-BORDER-SYNC and forwarded to the corresponding
instance, which in turn notifies its execution instance at which
the mis-prediction has been detected. Upon receiving such
a notification, the execution instance resumes processing the
request and accesses the affected partition, which is now safe
due to the partition being blocked by the CROSS-BORDER-
SYNC.

SAREK’s mechanism for handling re-predictions guarantees
that faulty replicas cannot trigger unnecessary re-predictions.
Although a faulty replica is able to create a false re-prediction
proposal, in the presence of at most f faulty replicas, it
will not succeed in finding 2f other replicas that issue the
same proposal. Consequently, the faulty proposal will never
be committed by the agreement protocol.

2) Concurrent Re-predictions: As discussed in the previous
section, when detecting a mis-prediction, SAREK suspends
execution for the affected partition until the corresponding re-
prediction proposal is committed. While handling a single re-
prediction at a time is straightforward with this approach, deal-
ing with concurrent re-predictions requires special attention,
because without additional measures, re-predictions occurring
in different partitions could introduce cyclic waiting (e.g., if
a request R1 executing at partition P unpredictably wants to
access partition P ′ and concurrently a request R2 executing
at partition P ′ unpredictably wants to access partition P ).

To address this issue, the partitions are constructed in the
way that no such cyclic dependencies can happen. According
to the distributed deadlock prevention principle [26], we
utilize the prioritizing mechanism (the same as in handling
cross-border requests) together with the application-specific
knowledge to fulfill the following requirement: A re-prediction
can only access partitions Pi > Pmax with Pmax being the
highest partition included in any previous (re-)prediction of
the same request. As a result, there can no longer be cycles
between concurrent re-prediction proposals (e.g., if P < P ′ in
the example above, the first prediction for both requests must
be P , which would automatically lead to the requests being
serialized by SAREK.)

Note that the constraint discussed above only applies to
use cases in which mis-predictions can actually occur due
to the PREDICT() function not being completely accurate. A
practical approach to fulfill the requirement in such cases
without having to conduct an extensive application analysis
is to implement the PREDICT() function conservatively, that
is, to include additional partitions in the initial prediction.

V. IMPLEMENTATION AND EVALUATION

In this section, we evaluate the performance of SAREK.
A comparison of a single-leader approach with its SAREK-
adapted multi-leader version is made to show the advantage
of state partitioning and parallel agreement.

A. System Setup
We use a cluster of four machines to host the replicas and

one dedicated machine to simulate clients. Each physical ma-
chine is equipped with an Intel i7-4770 (quad-core with hyper-
threading) CPU and 16 GB of main memory. All machines are

8



running Ubuntu Linux Server 14.04 64-bit and are connected
via switched 1 Gb/s Ethernet.

We built our SAREK prototype based on a PBFT implemen-
tation provided by a BFT library [27] written in Java, which
follows the traditional single-leader design. The parallelism
of BFT instances in SAREK is done by instantiating the
PBFT protocol engine multiple times. This way, the same
code base can be used for all experiments, and the switching
between the original system and SAREK is only a matter of
configuration. SAREK itself introduces only about 900 lines of
code, including the implementations of predictor, multi-leader
agreement handler with executors and re-prediction scheme.
Altogether they increase the code base by only 1/7.

To evaluate and compare the performance, we have utilized
two benchmarks: 1) A microbenchmark deploying a key-value
store application and 2) YCSB (Yahoo! Cloud Serving Bench-
mark) [10] with a customized database server. In the following,
the single-leader approach is referred to as “baseline (BL)”.

B. Microbenchmark Setup

For the microbenchmark experiments, we use a hash-map-
based data store to evaluate the performance (i.e., latency
and throughput) and resource demand (i.e., CPU usage) of
SAREK for different workloads. The data store implements
the following functionalities: 1) It accepts each client request
that contains specific keys accessing one or multiple objects
and 2) generates and returns a reply to the request.

The sizes of request and reply messages vary depending
on the operations performed. For the get() operation, which
returns the data to a specified key, requests are usually
smaller than replies. In contrast, storing data with the put()
operation in general involves requests that are larger than their
corresponding replies. Additionally, the data store provides
a putall() operation, which combines multiple updates in
one request and enables to test the handling of cross-border
requests in SAREK.

For SAREK, we divide the state into four partitions of
approximately equal sizes. The actual partitioning is done
with a PREDICT() function that performs a modulo operation
on each key to determine the ID of the responsible BFT
agreement instance. For all experiments we deploy up to
200 clients, thereby saturating the system, and calculate the
average of multiple independent runs for results.

C. Microbenchmark Results

For an initial throughput evaluation, we use three combi-
nations of different request/reply sizes: 50 bytes/500 bytes,
500 bytes/50 bytes and 500 bytes/500 bytes. Accordingly,
these experiments provide insights about the performance of
read-heavy (get()), write-heavy (put()), and mixed workloads,
respectively. This scenario only includes simple requests,
cross-border requests are further investigated later. Figure 6
shows that the throughput maximum of the baseline system
is less than 20,000 requests/s. In contrast, the maximum
throughput achieved by SAREK is about twice as high. It also

0 2 6 10 16 22 28 34 42 50 58
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

Throughput (1000 rquests/s)

A
ve
ra
g
e
L
a
te
n
cy

(µ
s)

BL-500/500 Sarek-500/500

BL-50/500 Sarek-50/500

BL-500/50 Sarek-500/50

Fig. 6: Throughput and latency of simple requests.

0 2 6 10 16 22 28 34 42 50 58
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

Throughput (1000 rquests/s)

A
ve
ra
ge

L
at
en
cy

(µ
s)

BL-500/500 Sarek-500/500
BL-batching Sarek-batching

Fig. 7: Throughput and latency with batching.

50B/500B 500B/500B 1KB/1KB 2KB/2KB 4KB/4KB 8KB/8KB 16KB/16KB
0

10

20

30

40

50

60

70

Request/Reply Size

T
h
ro
u
gh

p
u
t
(1
00

0
re
q
u
es
ts
/s
)

BL
Sarek

Fig. 8: Throughput with increased request/reply sizes.

shows that in both systems, smaller request size leads to higher
throughput whereas reply size has little effect.

In our second experiment, we evaluate the effects of request
batching, a common optimization used in BFT systems to
minimize the agreement overhead by ordering request batches
instead of individual requests [4]. The maximum batch size is
set to 100 and the experiment is performed with a request/reply
size of 500 bytes/500 bytes. Figure 7 indicates that the use of
request batching results in a significant throughput increase in
both systems, while the leading position of SAREK remains the
same by nearly a factor of two. Therefore, we conclude that in

9



0 2 6 10 16 22 28 34 42 50
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

Throughput (1000 rquests/s)

A
ve
ra
g
e
L
a
te
n
cy

(µ
s)

BL-SR
Sarek-SR

Sarek-CBR-10%

Sarek-CBR-30%

Fig. 9: Throughput and latency with cross-border requests.

1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
10

15

20

25

30

35

40

45

Proportion of Cross-Border Request

T
h
ro
u
gh

p
u
t
(1
00

0
re
q
u
es
ts
/
s)

BL
Sarek-2 partitions
Sarek-3 partitions
Sarek-4 partitions

Fig. 10: Throughput in the presence of cross-border requests.

Rep-0 Rep-1 Rep-2 Rep-3
40

42

44

46

48

50

Replicas

C
P
U

U
sa
ge

(%
)

BL-500B/500B

Sarek-500B/500B

Fig. 11: CPU usage.

essence batching can be considered an orthogonal technique
to be used in combination with SAREK.

Next, we measure the impact of increased request/reply
sizes on system throughput. Figure 8 shows that the throughput
of the baseline system is limited by the restricted processing
capability of the leader, whereas SAREK can increase through-
put to almost three times until the bandwidth limit is reached.

As an essential feature of SAREK, performance of handling
cross-border requests is also of key interest. Figure 9 reflects
the impact of different amounts of cross-border requests on
system throughput. Although for 10% and 30% cross-border

requests the throughput of SAREK decreases by 20% and 30%,
respectively, it still performs better than the baseline system.
Moreover, even with 30% cross-border requests, SAREK is still
able to provide low latency.

In the next experiment, we expose SAREK to an extreme
condition by increasing the proportion of cross-border request
to 100% in three settings: a request accessing two, three, and
four partitions. Figure 10 shows that, having 100% cross-
border requests, SAREK still wins for requests accessing two
partitions. When accessing three and four partitions, turning
points are reached at about 90% and 70% cross-border re-
quests, accordingly. This is due to the overhead of cross-border
requests being ordered multiple times during agreement. Such
harsh condition indicates that either the majority of requests
are highly depending on each other, thus parallelism can hardly
be increased, or the implemented partitioning scheme needs to
be revised.

Figure 11 details the CPU usage at the peak throughput of
the baseline system and proves the load balancing feature of
SAREK. While a SAREK replica utilizes 1.5% more CPU than
a follower replica in the baseline system, the load in SAREK is
distributed equally across all replicas when reaching the same
throughput as the baseline system.

D. YCSB Benchmark Setup

The Yahoo! Cloud Serving Benchmark (YCSB) [10] is
a program suite for measuring the performance of NoSQL
database systems, which we use to further evaluate SAREK.
For this purpose, we created a new key-value store server
by extending the DB class of the YCSB library in order to
utilize its benchmarking APIs at the client side. This server
provides the following operations: insert() creates a new
record, read() retrieves an existing record, update() modifies
an existing record, and scan() executes a range scan over a
specified number of records. For each experiment, we initialize
the data store by inserting 4,000 records and afterwards
run one of the predefined YCSB workloads: read/update
or scan/update. At the client side, 60 client instances are
generated.

The state partitioning mechanism of this application remains
simple as insert(), read(), and update() all access single
records. In contrast, scan() typically accesses multiple records
and consequently can cause cross-border requests. Therefore,
we partition the entire key space of the data store into four
continuous segments so that each segment contains a set of
consecutive keys. Depending on the density of key distribution
in each partition and the defined scan range, a scan() operation
may lead to handling cross-border requests accessing partitions
in a monotonic order, as described in Section IV-D.

1) Read/Update Workload: For this workload, a read/up-
date ratio of 50/50 is used to prove the capability of handling
an update-heavy workload, where each client instance issues
200,000 operations.

2) Scan/Update Workload: For the scan/update workload,
the proportion of scan() operation ranges from 5% to 25%,
and the traffic is generated by 100,000 operations per client

10



0 2 4 6 8 10 12 14 16 18 20 22
0

1,000

2,000

3,000

4,000

5,000

6,000

Throughput (1000 rquests/s)

A
ve
ra
ge

L
a
te
n
cy

(µ
s)

BL-read Sarek-read
BL-update Sarek-update

Fig. 12: Throughput and latency of read/update workload.

instance. The maximum scan range is set to 10 keys due to
the fact that the key distribution in the entire key space is
rather sparse with 4,000 initial records. The scan() operation
particularly provides a range query starting from a given key
associated with a scan range. Note that since only the start
key is visible to the PREDICT() function, depending on where
the start key locates in one partition, it is highly possible
that a scan() operation accesses multiple partitions. Once this
happens, our re-prediction mechanism is activated to handle
the mis-prediction case.

E. YCSB Benchmark Results

The results of the YCSB benchmark indicate good perfor-
mance for SAREK regarding throughput and latency. The mea-
surement results are analyzed separately for each workload.

1) Read/Update Workload: Similar to the microbenchmark,
Figure 12 indicates that SAREK performs better than the
baseline system, providing twice the maximum throughput at
significantly lower latency. Note that as we did not activate any
read optimizations in SAREK, the average latency of read()
is not significantly smaller than the latency of update(), as
the agreement protocol is also executed for reads. Unlike
the baseline system where the request latency dramatically
increases for throughputs higher than about 6,000 requests/s,
SAREK keeps its low latency until almost 20,000 requests/s.

2) Scan/Update Workload: The scan/update workload of
the YCSB benchmark leads to larger reply sizes and is chal-
lenging for SAREK due to including cross-border requests. We
set the scan() operation proportions to be 5%, 15%, and 25%,
as shown in Figure 13. The baseline system reaches its peak
throughput at around 10,000 requests/s, while SAREK achieves
a maximum throughput that is twice as high. Latencies in
SAREK for both scan() and update() are much smaller
than the respective latencies provided by the baseline system
for these operations. As the results for the experiment with
25% scan() operations show, the overhead for handling mis-
predictions in SAREK increases latency only slightly.

VI. CONCLUSION

We presented SAREK, a parallel ordering framework for
BFT systems that relies on multiple leaders to improve perfor-

0 2 4 6 8 10 12 14 16 18 20
0

2,000

4,000

6,000

8,000

Throughput (1000 rquests/s)

A
ve
ra
ge

L
a
te
n
cy

(µ
s)

BL-5%-scan Sarek-5%-RP-scan

BL-5%-update Sarek-5%-RP-update

BL-25%-scan Sarek-25%-RP-scan

BL-25%-update Sarek-25%-RP-update

Fig. 13: Throughput and latency of scan/update workload.

mance. In contrast to single-leader approaches, SAREK distin-
guishes requests by their data access patterns and establishes
a partial order on dependent requests. This is achieved by
splitting the service state into partitions and managing each of
them in an independent BFT agreement instance. To distribute
the agreement load, under fault-free conditions the leader
roles of all BFT agreement instances are evenly balanced
over all replicas. Furthermore, SAREK provides means to
effectively deal with requests that need to access multiple
partitions and situations where data access patterns are hard
to predict or might even be mis-predicted. The conducted
microbenchmarks as well as the YCSB benchmark show a
throughput increase of up to a factor of two. Even in the case
of cross-border requests accessing multiple partitions, which
requires coordination among the involved BFT agreement
instances, a moderate throughput increase can be achieved.

REFERENCES

[1] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys, vol. 22, pp.
299–319, 1990.

[2] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems (TOCS), vol. 16, no. 2, pp. 133–169, 1998.

[3] B. M. Oki and B. H. Liskov, “Viewstamped replication: A new primary
copy method to support highly-available distributed systems,” in Proc.
of the 7th annual ACM Symp. on Principles of distributed computing.
ACM, 1988, pp. 8–17.

[4] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in
Proc. of the 3rd USENIX Symp. on Operating Systems Design and
Implementation (OSDI ’99), 1999, pp. 173–186.

[5] R. Kotla and M. Dahlin, “High throughput byzantine fault tolerance,”
in Proc. of the 2004 Int’l Conf. on Dependable Systems and Networks
(DSN ’04). IEEE, 2004, pp. 575–584.

[6] T. Distler and R. Kapitza, “Increasing performance in Byzantine fault-
tolerant systems with on-demand replica consistency,” in Proc. of the
6th ACM European Conf. on Computer Systems (EuroSys ’11). ACM,
2011, pp. 91–105.

[7] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, M. Dahlin
et al., “All about eve: Execute-verify replication for multi-core servers.”
in OSDI, 2012, pp. 237–250.

[8] G. S. Veronese, M. Correia, A. Bessani, and L. C. Lung, “Spin one’s
wheels? byzantine fault tolerance with a spinning primary,” in Proc. of
the 28th IEEE Int’l Symp. on Reliable Distributed Systems (SRDS ’09).
IEEE, 2009, pp. 135–144.

[9] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “EBAWA:
Efficient Byzantine agreement for wide-area networks,” in Proc. of the
12th Symp. on High-Assurance Systems Engineering (HASE ’10). IEEE,
2010, pp. 10–19.

11



[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proc. of the 1st
ACM Symp. on Cloud Computing. ACM, 2010, pp. 143–154.

[11] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin, “Sep-
arating agreement from execution for byzantine fault tolerant services,”
in ACM SIGOPS Operating Systems Review. ACM, 2003, pp. 253–267.

[12] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and M. Marchetti,
“Making byzantine fault tolerant systems tolerate byzantine faults.” in
NSDI, 2009, pp. 153–168.

[13] P.-L. Aublin, S. B. Mokhtar, and V. Quéma, “Rbft: Redundant byzantine
fault tolerance,” in Distributed Computing Systems (ICDCS), 2013 IEEE
33rd Int’l Conf. on. IEEE, 2013, pp. 297–306.

[14] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.
Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer,
“Farsite: Federated, available, and reliable storage for an incompletely
trusted environment,” ACM SIGOPS Operating Systems Review, vol. 36,
no. SI, pp. 1–14, 2002.

[15] L. Lamport, “Generalized consensus and paxos,” Technical Report MSR-
TR-2005-33, Microsoft Research, Tech. Rep., 2005.

[16] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more consensus
in egalitarian parliaments,” in Proc. of the 24th ACM Symp. on Operating
Systems Principles. ACM, 2013, pp. 358–372.

[17] P. J. Marandi, C. E. Bezerra, and F. Pedone, “Rethinking state-machine
replication for parallelism,” in Proc. of the 34th Int’l Conf. on Distributed
Computing Systems. IEEE, 2014, pp. 368–377.

[18] P. J. Marandi and F. Pedone, “Optimistic parallel state-machine replica-
tion,” in Proc. of the 33rd Int’l Symp. on Reliable Distributed Systems,
2014, pp. 57–66.

[19] C. E. Bezerra, F. Pedone, and R. Van Renesse, “Scalable state-machine
replication,” in Dependable Systems and Networks (DSN), 2014 44th
Annual IEEE/IFIP Int’l Conf. on. IEEE, 2014, pp. 331–342.

[20] J. Behl, T. Distler, and R. Kapitza, “Consensus-oriented parallelization:
How to earn your first million,” in Proc. of the 16th Middleware
Conference (Middleware ’15). ACM, 2015, pp. 173–184.

[21] J. Cowling and B. Liskov, “Granola: low-overhead distributed trans-
action coordination,” in Proc. of the 2012 USENIX Annual Technical
Conference (USENIX ATC 12), 2012, pp. 223–235.

[22] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi,
“Calvin: fast distributed transactions for partitioned database systems,”
in Proc. of the 2012 ACM SIGMOD Int’l Conf. on Management of Data.
ACM, 2012, pp. 1–12.

[23] M. Castro and B. Liskov, “Proactive recovery in a byzantine-fault-
tolerant system,” in Proc. of the 4th Conf. on Symp. on Operating System
Design & Implementation-Volume 4. USENIX Association, 2000, pp.
19–19.

[24] R. Rodrigues, M. Castro, and B. Liskov, “Base: Using abstraction to
improve fault tolerance,” in ACM SIGOPS Operating Systems Review.
ACM, 2001, pp. 15–28.

[25] R. Kapitza, M. Schunter, C. Cachin, K. Stengel, and T. Distler,
“Storyboard: Optimistic deterministic multithreading,” in Proc. of the
6th Workshop on Hot Topics in System Dependability (HotDep ’10).
USENIX, 2010, pp. 1–8.

[26] A. S. Tanenbaum and M. Van Steen, Distributed systems: principles and
paradigms. Prentice hall Englewood Cliffs, 2002, vol. 2.

[27] T. Distler, C. Cachin, and R. Kapitza, “Resource-efficient Byzantine fault
tolerance,” IEEE Transactions on Computers, 2015.

APPENDIX

A. Proof of Lemma 1

Proof. If an item in array blocked by is changed from NULL
to some request, the corresponding instance will wait for the
notification. The item can only be set back to NULL by
another non-blocked partition (line 17 and 31), and then the
corresponding instance is notified. If line 24 has determined
any bft id ∈ B, it must be waiting at the time of snapshot.
All other instances which have the potential to change and
notify blocked by[bft id] are also waiting at that time. Thus
blocked by[bft id] will not be changed. And the instance
bft id will wait until a cycle resolving is performed.

B. Proof of Lemma 2

Proof. Each node in seen can be uniquely identified by its
partition bft id. So the number of nodes in seen is no more
than the number of partitions (in fact, no more than |B|). That
means the while-loop cannot add infinite nodes into seen, and
will eventually terminate.

C. Proof of Lemma 3

Proof. Whether a request can be successfully executed without
any cycles, is irrelevant to the runtime race conditions but
only depending on the ordering result. Only nodes that will
eventually get into a cycle can be added into seen. Assume
a node (req, bft id) is added into seen. In all partitions in
req.partitions, either req is blocking at the head, or another
request is blocking at the head. In the former case, every
request in front of req in the partition can be successfully
executed without any cycles. In the latter case, the blocking
request is the first request getting into a cycle in that partition.
These only depend on the partition schedule and are irrelevant
to the race conditions. And in at least one partition req is not at
the head, otherwise req can be executed immediately, which
violates Lemma 1. So line 34 - 36 will find the next node
deterministically.

D. Proof of Theorem 1

Firstly we have the following corollary directly from
lemma 2 and lemma 3:

Corollary 1. Assume two replicas have the identical request
orders in all partitions at a certain time and there is no cycle
resolving since then. If both have added the same node into
seen during Algorithm 3, then in the end they will have the
same truncated linked list loop (they might start from different
nodes, but if we link the last node to the first node in loop,
they will be the same “loop”).

Then we can make sure if two replicas have detected the
same request cycle, they will move the same request to the
head (line 43) to resolve the cycle. So we have the following
lemma:

Lemma 4. Assume Replica0 and Replica1 have the identical
request orders in all partitions at a certain time and there is no
cycle resolving since then. If a request in Replica0 occurs in
a cycle and moves to head by Algorithm 3 and gets executed,
then it will be moved in the same way in Replica1 before it
can be executed.

Proof. Because the requests are ordered in the same way in all
partitions of both replicas, if one request is stuck in a cycle
in one replica, so will it in the other replica. According to
Corollary 1, if one replica detects the cycle and resolves it,
the other replica will do it in the same way.

Finally we can prove that if a sequence of cycle resolving
procedures affecting the same partition happens in one replica,
the same sequence also happens in the other replica. As a
result, the relation between any two requests stays the same
in different replicas, so the system consistency is guaranteed.

12


