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Abstract

Many Ubicomp appliances require the recognition of con-
text. Existing context systems do not provide information
about the quality of the context recognizied to the appliance
at runtime. In this paper we propose the first context quality
system which gives quantitave measures, the Context Qual-
ity Measure (CQM), in real time. The CQM can be used
by application to improve decision quality when interpreting
context values. Our Fuzzy Inference System based approach
considers the context detection algorithm as a black-box. It
is therefore able to give generalized independet context qual-
ity measures and is applicable as an add-on to any context
recognition system. A first practical implementation shows a
gain of 33% in context detection quality in tested application
scenarios.

1. Introduction

Many Ubiqutious Computing environments are built upon
a collaborating set of smart appliances. Smart appliances
consist of small computing devices integrated into everyday
objects that provide some additional useful functionality ei-
ther to the object itself and/or for the environment. Thus,
smart appliances are required to detect the context of their
use or the situation in the environment.

Some work has been carried out in developing context de-
tection algorithms already (e.g. [6], [7] and [8]). Typically,
context detection underlies a very varying quality: While in
one situation the quality of the detection might be very high
in other situations the same algorithm might deliver very bad
results. A simple example from the AwareOffice Ubicomp
setting should motivate the problem. The AwareOffice envi-
ronment is a living laboratory office space that is used since
several year to collect experiences and to perform studies
in Ubiquitous Computing. One of the appliances within the
AwareOffice is the a context aware whiteboard pen. This
AwarePen appliance uses a pre-trained context recognition

Figure 1. Writing with the AwarePen.

system to detect situations including ”writing”, ”playing”
and ”laying still”. An accelerometer integrated in a sensor
node attached to the pen recognises raw movement which are
then interpreted by software on the node (see Fig. 1). The
detected situation information is then distributed to other ap-
pliances in the AwareOffice environment. We experienced
that certain movement patterns are very simple to classify,
e.g. separating writing or playing situations. Other move-
ment patterns - e.g. produced by other users having a dif-
ferent style of using the pen while writing - are much more
difficult to classify. Another important experience was that
changes in the quality of detection could happen in a very
short time span: A user writing a text on the board, then
for some seconds playing with the pen when thinking and
then continuing writing is a typical example for such a sit-
uation. For a context recognition algorithm, such changes
in the movement pattern are difficult to classify and there-
fore lead to a low detection quality for the context. We also
found that it is essential for a Ubicomp application to have
knowledge about the quality of the detection. In our exam-
ple, the context received from the pen is used by the camera
of the whiteboard to take a picture copy of the content when
a writing session was over. The action of taking a picture
was triggered on the context detected by other appliances in
the environment, including the AwarePen. Thus, to allow for



a high quality of the whiteboard camera decision, a quality
measure for the context input is required.

Today, to our knowledge, all existing context recognition
systems are not able to deliver an independent quality level
for detected context in real-time. This paper introduces the
first context algorithm and system that is able to provide a
real-time quality level for a context and situation recognition
step. We introduce a Context Quality Measure (CQM) as a
continous measure as a numerical value between 0 (wrong)
and 1 (correct). Approach and measure are independent of
the used context recognition method thus ensuring general
applicability as an add-on for any context recognition sys-
tem. We consider the context algorithm as a black-box where
our context quality system could be added to. The final con-
text recognition system then consists of the existing context
algorithm and our context quality system (2).

2. Architecture

Online context classification assigns a set of sensor cues
to a context class or context c ( 2). Each cue represents a sin-
gle sensor. Cues are computed from sensor data and identify
basic features for the context classification. The quality of an
algorithm is a state dependent analysis of the relation of the
input cues and the classified context. The input of the quality
analysis uses the same sensor cues as the context classifier,
plus context c. The result of the quality analysis is the CQM
q. The context quality system considers the recognition al-
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Figure 2. General Interconnection of contex-
tual classification and qualitative measure.

gorithm as a black box. This way the design is applicable to
all recognition algorithms.

2.1. Context Quality System

We consider the quality measure as totally independent
from the system that carries out context recognition. The
value of the quality measure is based on the current contex-
tual state and the sensor date only. This is the same state
the contextual state c was determined on. Prior knowledge
whether a contextual classification was right or wrong is
stored in a fuzzy inference system (FIS).

2.1.1 Interconnection of Context Recognition and
Quality Measure

The input for analyzing the reliability is a vector that is the
combination of cued sensor values and identification of the
contextual state. The n-dimensional input of the universes
V1, ..,Vn for a contextual classification is defined as follows:

−→v C := (v1, .., vn), with n > 1

With an identification c of an arbitrary contextual class the
input vector for the system that does the quality measure is
defined in a following way:

−→v Q := (−→v C , c) = (v1, .., vn, c)

Each time the contextual classification gets a new input−→v C ,
the classification result is combined with this vector in a new
vector −→v Q. The reliability estimation is based on the vector−→v Q, which is insofar the interconnection between the con-
textual and the qualitative system. The determination of the
quality measure is done by a fuzzy inference system (FIS)
that holds the information about the correctness of the con-
textual classification on the base of the input −→v C .

2.1.2 TSK Fuzzy Inference System (FIS)

Takagi, Sugeno and Kang [10][9] (TSK) fuzzy inference sys-
tems (FIS) are fuzzy rule-based structures, which are espe-
cially suited for automated construction. With the TSK-FIS
the consequence of the implication is not a functional mem-
bership to a fuzzy set but a constant or a linear function. In
our system the linear functional consequence is used, since
the results for the reliability determination are better. The
linear functional consequence of the rule j depends on the
input of the FIS:

fj(−→v Q) := a1jv1+a2jv2+. . .+anjvn+a(n+1)jc+a(n+2)j

The membership functions are non-linear Gaussian func-
tions, which are calculated accordingly:

Fij(vi) := e
− (vi−µij)2

(2σ2
ij

)

The rule j of the TSK-FIS is verbalized in a linguistic form
as follows:

IF F1j(v1) AND .. AND F(n+1)j(c) THEN fj(−→v Q)

The antecedent part of the rule j determines the weight wj

accordingly:

wj(−→v Q) :=

(
n∏

i=1

Fij(vi)

)
F(n+1)j(c)

The projection from input −→v Q onto the quality measure q̂
is a weighted sum average, which is a combination of fuzzy



reasoning and defuzzification. The weighted sum average is
calculated according to the rules j = 1, ..,m as follows:

S
Q̂

(−→v Q) :=

∑m
j=1 wj(−→v Q)fj(−→v Q)∑m

j=1 wj(−→v Q)

The TSK-FIS S
Q̂

maps onto a set Q̂, which is not a desirable
quality measure since its boundaries can not be determined.
The value S

Q̂
(−→v Q) needs to be normalized to fit in a desig-

nated set Q of quality measures.

2.1.3 Normalization of FIS Result

The mapping of the TSK-FIS is not restricted to a certain
interval due to the automated construction process. The des-
ignated output for the TSK-FIS is zero for a false and one
for a right contextual classification. The error that cannot
be fully eliminated in the training process, represents the er-
ror of the contextual classification in a relative manner. The
distance between the designated {0, 1} and the actual out-
put S

Q̂
(−→v Q) is the representation of the contextual classi-

fication error. This means that the quality measure is not
only an indicator if the contextual classification was right or
wrong, it also shows how right or wrong the classification
was. The error between designated and actual output is dis-
tributed around one and zero, so values over one and under
zero are possible. These values need to be normalized to
the interval Q = [0, 1] of the desired quality measure. The
normalization is done via a function L that maps onto the
interval Q = [0, 1] or an error state ε. An error state ε rep-
resents the quality measures, which can not be mapped onto
the interval Q = [0, 1] in a semantically correct way. The
values lower than−0, 5 would represent an error for the des-
ignated output one after the normalization. A semantically
interpretation of the value is, that it belongs to zero with an
error of mapping. These circumstances are the same for val-
ues over 1, 5 and the designated output one. So values under
−0, 5 and over 1, 5 are mapped with the function L onto the
error state ε. With these facts the normalizing function L is
defined as follows:

L(x) :=





x if 0 ≤ x ≤ 1
−x if − 0, 5 ≤ x < 0
1− x if 1 < x ≤ 1, 5
ε else.

The quality measure is computed by the TSK-FIS S
Q̂

con-
catenated with the normalizing function L in mapping SQ

onto the set Q:

SQ :
{ V1 × ...× VM × C −→ Q ∪ ε, with Q = [0, 1]

(v1, .., vn, c) 7−→ L ◦ S
Q̂

(v1, v2, .., vm, c)

The system to calculate the (normalized) quality measure is
referred with the function SQ from now on. This then results
in the final measure of the CQM q.

2.2. Automated Construction of FIS

The structure of the TSK-FIS S
Q̂

is determined by an au-
tomated method that consists of a fuzzy clustering, a linear
regression analysis and the training of a neural fuzzy net-
work. The designated output - that is needed to converge
with the atomization process to - is one for a right and zero
for a wrong contextual classification. The data the automated
creation process needs to adapt, is a set of input vectors that
were contextually classified. The designated output is as-
signed to each of the samples.

2.2.1 Structure Identification with Fuzzy Clustering

There are several algorithms of fuzzy clustering. Since there
is no knowledge about how many clusters there are, a algo-
rithm is needed that determines the number automatically.
A mountain clustering [11] could be suitable, but is highly
dependent on the grid structure. We opt for a subtractive
clustering [2] instead. This clustering estimates every data
point as possible cluster center, so the prior specifications are
none. A definition of parameters the subtractive clustering
needs for good cluster determination are given by Chiu [3].
The subtractive clustering is used to determine the number
m of rules, the antecedent weights wj and the shape of the
initial membership functions Fij . Based on the initial mem-
bership functions a linear regression can provide the conse-
quent functions

2.2.2 Linear Regression with Least Squares

The weights aij of the consequent functions fi are calculated
through a linear regression. The least squares method fits the
functions fi into the data set that needs to be adapted. A lin-
ear equation for the differentiated error between designated
and actual output - which can be calculated with the rules
and initial membership functions the subtractive clustering
identified - is solved for the whole data set with a numeric
method. The single value decomposition (SVD) is used to
solve the over-determined linear equation. With the initial
membership functions Fij , the rules j and the linear conse-
quences fj a neural fuzzy network can be constructed. The
neural fuzzy network is used to tune the parameters aij , µij

and σ2
ij in an iterative training towards a minimum error.

2.2.3 Adaptive-Network-based FIS (ANFIS)

A functional identical representation of a FIS as neural net-
work is an Adaptive-Network-based FIS (ANFIS) [5]. The
structure of a ANFIS for the qualitative TSK-FIS S

Q̂
is vi-

sualized in figure 3. Most of the networks neurons are op-
erators (circled symbols) and only the squared functions are
adaptable neurons. This neural fuzzy network is used to tune
the adaptable parameters aij of the linear consequents and
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Figure 3. ANFIS for qualitative TSK-FIS.

µij and σ2
ij of the gaussian membership functions. The tun-

ing process is done iteratively trough a hybrid learning algo-
rithm.

2.2.4 Hybrid Learning

The hybridity of the learning algorithm consists of a forward
and a backward pass. In the backward pass a backpropaga-
tion of the error between designated and real output of the
ANFIS to the layer of the Gaussian membership functions
is carried out. The backpropagation uses a gradient descent
method, that searches a preferably global minima for the er-
ror in an error hyperplane. The forward pass performs an-
other iteration of the least squares method with the newly
adapted membership functions of the backward pass. The
hybrid learning stops for the data set used when a degrada-
tion of the error for a different check data set is continuously
observed. The resulting ANFIS represents the qualitative
non-normalized TSK-FIS S

Q̂
.

2.3. Statistical Analysis

Statistical analysis is used to determine how the proba-
bilistic odds are to separate the correct from the wrong clas-
sifications through the quality measure.

2.3.1 Maximum Likelihood Estimation (MLE)

With a maximum likelihood method the normal distributions
of the quality measure for right and wrong classified data
points are estimated. A small data set for testing the behav-
ior of the quality measure is not significant enough to cal-
culate a statistical mean or a standard deviation. Therefore,
an estimation of the mean values and the standard deviations
is more statistically confirmed. With a infinite test data set
the mean value and the standard deviation of the Gaussian

density function are the same for both methods. The max-
imum likelihood estimation (MLE) requires knowledge for
each data point, if its classification was correct or wrong.
This requires a second data set different from the training
set, which also contains information on the correctness of
the classification. This second data set is now used for the
statistical analysis in order to derive the Gaussian density
functions. The functions for right (r) or wrong (w) classifi-
cations are defined as follows:

ϕµr|w,σr|w(x) :=
1

σ
√

2π
e
− (x−µr|w)2

2σ2
r|w

2.3.2 Threshold Determination

The threshold value s for the quality measure, that is used
to separate the data, can also be determined via a MLE for
a data set without secondary knowledge. The mean value of
the estimation is than the definition of the threshold s. Since
the estimation was done for a data set with secondary knowl-
edge of correctness of the contextual classification another
estimation is not required. To visualize and validate the qual-
ity measure of the test data set this secondary information is
needed anyway. The threshold s is now determined through
the intersection of the two Gaussian density functions. For a
infinite data set the MLE without secondary knowledge and
the intersection method converges.

2.3.3 Probabilities

With the density functions and the median cuts through the
threshold s the probabilities for right and wrong classifica-
tions can be calculated. The median cut from negative infin-
ity to the threshold value for the Gaussian density functions
can be calculated as follows:

Φµr|w,σr|w(s) :=
∫ s

−∞
ϕµr|w,σr|w(x)dx

The median cut for the other half of the density function is
calculated accordingly:

Φµr|w,σr|w(s) :=
∫ ∞

s

ϕµr|w,σr|w(x)dx

With these median cuts the probability P of selecting right
classifications c through a quality measure q over the thresh-
old s is calculated accordingly:

P(c = right|q > s) = Φµr,σr (s)− Φµw,σw(s)

The probability P to select true negative classification, i.e.
c = wrong is:

P(c = wrong|q < s) = Φµw,σw(s)− Φµr,σr (s)



The probabilities for the false negative and the false positive
quality measure indications are:

P(c = right|q < s) = Φµr,σr
(s) and

P(c = wrong|q > s) = Φµw,σw
(s)

3. Implementation

For evaluating the quality measure a physical device was
needed. The applications of the AwareOffice [13] offer a
platform to acquire physical data and a variety of contextual
classification algorithms in use. The AwarePen appliance
was chosen since the usability was conclusive.

3.1. AwarePen

The AwarePen is a whiteboard marker that can detect
the contextual states ”lying still”, ”writing” and ”playing
around”. For contextual classification a TSK-FIS is used that
maps standard deviations from three acceleration (aka adxl)
sensor outputs onto context classes. Indicator of the class
and three standard deviations are used in the quality analysis
to determine the reliability of the classification dynamically.
All parts of the processing cue of the AwarePen are shown
in figure 4.
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Figure 4. Schematics of AwarePen.

3.2. Evaluation

For evaluation purpose a small test set of 24 data points
was created. The quality measure for the contextual classi-
fications are shown in figure 5 with their actual rightness in
symbols (o right and + wrong classifications). The statistical
mean values for right (grey) and wrong (black) classifica-
tions are plotted in dashed lines. The density functions are

plotted in figure 6 where the median cut of the threshold val-
ues are marked with a green line and hatched areas. The
optimal quality threshold of s = 0, 81 is located at the inter-
section of both density function (marked with a green line)
and was derived using the foundations from section 2.3.2. At
this optimum the probability for the test set that the quality
measure is above the threshold, meaning the classification
was correct, is equal to the probability that a quality mea-
sure is below the threshold P(c = right|q > s) = P(c =
wrong|q < s) = 0, 8112. The probability that a quality
measure indicates a correct classification that was actually
wrong is P(c = wrong|q > s) = 0, 0217. The proba-
bility that a wrong classification that was actually right is
P(c = right|q < s) = 0, 0846. In the test data set the cor-
rect classifications are fully separable from the wrong con-
textual classifications. Results indicate that the appliance can
discard 33% of the classifications, which equals all wrong
contextual classifications, when using the quality measure.
The separation has not always to be that clear. For a large set
of data the odds for separating the data are worse. The eval-
uation shows that a quality measure combined with a statisti-
cally estimated threshold can help separating good from bad
contextual classifications. The threshold in the shown exam-
ple is not in-between the highest (one) and the lowest (zero)
quality measure but closer to the highest. This reflects the
error of the context recognition, which was adapted through
the automated construction method. If the training set has
equal amount of right and wrong samples the quality mea-
sure would lead to a threshold s ≈ 0, 5.

4. Related Work

The term Quality of Context (QoC) was coined in numer-
ous works by various authors such as [1]. We focus on one
dimension of QoC related to the ”probability of correctness”
[1]. In contrast to our approach related work often restricts it-
self to constant probabilistic measures for algorithmic errors
or sensor failure. We are not aware of any previous work in
ubiquitous computing that explicitly uses or generates quan-
tifiable quality measures on the basis of a generic predefined
algorithm. Fuzzy logic in general has been sparsely used in
other context reasoning systems. In those systems the quality
can be seen as implicitly modeled by the uncertainty. It can,
however, be observed that system like [4] use fuzzy infer-
ence on higher levels of context processing. The concept of
a reliability measure underlying this paper was first proposed
in [12]. [12] and [1] give a more complete argumentation for
the necessity of quality measures in context reasoning.

5. Conclusion and Outlook

We presented a context quality system generically appli-
cable to context recognition algorithms. A quality measure
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- the output of the quality system - provides real-time ad-
ditional information on the context classification for smart
appliances. The optimal quality threshold was derived for
comparison with the quality measure in order to decide on
the acceptance for a context classification. As a result and
demonstrated in the AwarePen appliance, the quality system
could be successfully applied to filter out low quality con-
text therefore improving the decision quality of the applica-
tion by 33% in our example. We implemented and tested the
quality system on the AwarePen, a typical Ubiquitous Com-
puting artefact consisting of a whiteboard pen that was aug-
mented with a Particle Computer as sensing and computing
platform. This rather high improvement of quality is backed
up by other applications build in the AwareOffice. We are in
the process of integrating the context quality system to other
appliances and testing the system.

Future research will cover the use of the context quality
system for context prediction. The quality measure can i.e.
indicate that a context classification changes in direction to
another context. Our research will also look into how to sup-
port support fusion and aggregation for higher level contexts
that may be able to classify complex situations. Such com-
plex context systems may unveil the true potential of Ubiqui-
tous Computing and context aware systems in the future. In
order to process reasonable output, higher level context pro-
cessors requires a measure to decide which of the simpler
context information to belive. Our general Context Quality
Measure (CQM) concept is able to build the basis for such
decisions. We will continue our research here studying prac-
tical applications and theory.
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