
Hybrids on Steroids: SGX-Based High Performance BFT ∗

Johannes Behl
TU Braunschweig

behl@ibr.cs.tu-bs.de

Tobias Distler
FAU Erlangen-Nürnberg

distler@cs.fau.de

Rüdiger Kapitza
TU Braunschweig

rrkapitz@ibr.cs.tu-bs.de

Abstract
With the advent of trusted execution environments provided
by recent general purpose processors, a class of replication
protocols has become more attractive than ever: Protocols
based on a hybrid fault model are able to tolerate arbitrary
faults yet reduce the costs significantly compared to their
traditional Byzantine relatives by employing a small subsys-
tem trusted to only fail by crashing. Unfortunately, existing
proposals have their own price: We are not aware of any
hybrid protocol that is backed by a comprehensive formal
specification, complicating the reasoning about correctness
and implications. Moreover, current protocols of that class
have to be performed largely sequentially. Hence, they are
not well-prepared for just the modern multi-core processors
that bring their very own fault model to a broad audience. In
this paper, we present Hybster, a new hybrid state-machine
replication protocol that is highly parallelizable and speci-
fied formally. With over 1 million operations per second us-
ing only four cores, the evaluation of our Intel SGX-based
prototype implementation shows that Hybster makes hybrid
state-machine replication a viable option even for today’s
very demanding critical services.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; D.4.5 [Operating
Systems]: Fault Tolerance; D.4.7 [Operating Systems]: Dis-
tributed Systems

General Terms Design, Performance, Reliability

Keywords State-Machine Replication, Trusted Execution,
Multi-Core, Scalability

∗ This work was partially supported by the German Research Council
(DFG) under grant no. KA 3171/1-2 and DI 2097/1-2.

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in EuroSys ’17, April 23–26, 2017, Belgrade, Serbia.

DOI: http://dx.doi.org/10.1145/3064176.3064213

1. Introduction
Pure Byzantine fault-tolerant (BFT) service replication has
to employ 3f + 1 service replicas to ensure that a service
remains operational even if f of these replicas behave arbi-
trarily faulty [3, 4, 6, 10, 13, 16, 19, 24, 30, 31, 41, 43, 48].
With a hybrid fault model where small trusted subsystems
are assumed to fail only by crashing, the number of required
replicas can be lowered to 2f + 1 [15, 20, 28, 44, 45]. In
consequence, hybrid replication protocols require less diver-
sification of replicas and tend to require less resources.

On the downside, while the originator PBFT [13] comes
with a comprehensive formal specification [12], hybrid pro-
tocols mostly rely on that foundation independent of their
particular needs. However, without a formal specification,
reasoning about such complex protocols becomes difficult.
Besides this drawback concerning the theory, there is also a
major practical one which seems to be a direct consequence
of the employed fault model: All proposed hybrid protocols
rely on a kind of sequential processing. That hinders them
from taking full advantage of modern multi-core systems
and from adopting new parallelization schemes, helping tra-
ditional BFT protocols reach unprecedented performance
levels [9]. Further, it is exactly these modern platforms that
make a hybrid fault model widely accessible. The latest gen-
eral purpose processors can provide so-called trusted exe-
cution environments that protect a software component even
against malicious behavior of an untrusted operating system.
Hence, hybrid protocols could in fact greatly benefit from
technologies such as Intel SGX [34] or ARM TrustZone [5].

For these reasons, we present Hybster, a new hybrid state-
machine-replication protocol that is highly parallelizable
and formally specified. Hybster was designed after a thor-
ough analysis of existing proposals (Section 4) and builds on
a tailored subsystem that leverages trusted execution envi-
ronments (Section 5.1). It is composed of a sequential basic
protocol that avoids problems of its existing counterparts
(Section 5.2) and a parallelized variant using a consensus-
oriented parallelization [9] (Section 5.3). The evaluation of
an SGX-based implementation shows that Hybster is able to
achieve over 1 million operations per second on quad-core
machines (Section 6), considerably more than the 72 thou-
sand published for hybrid protocols so far [28] and sufficient
even for very demanding services [1, 2, 35, 46].



Client Client Client

Execution

TSS

Replica 2

Agreement

TSS

Execution

TSS

Replica 3

Agreement

TSS

Execution

Agreement

TSS

Replica 1

TSS: 

Trusted Subsystem

Figure 1. Hybrid BFT state-machine replication.

2. Background
Byzantine fault-tolerant state-machine replication [13, 40]
allows systems to operate continuously even if some of their
replicas become faulty and no longer behave according to
the specification. Relying entirely on untrusted components,
a minimum of 3f + 1 replicas are required to tolerate up
to f arbitrary faults [13, 36]. To reduce the computational
and communication costs associated with fault tolerance,
different approaches have been presented in recent years
that utilize trusted subsystems [15, 18, 22, 28, 32, 37, 44,
45, 47]. Such systems use a hybrid fault model assuming
that some components are untrusted and may fail arbitrar-
ily, while other components are trusted and therefore only
fail by crashing. Most of these hybrid systems reduce the
minimum number of required replicas to 2f +1 by utilizing
their trusted subsystem to prevent undetected equivocation,
that is, they remove the replica’s ability to make conflicting
statements without being convicted by other replicas.

Figure 1 shows the basic architecture of a (hybrid) BFT
system based on state-machine replication. When a client is-
sues a request to the replica group, the replicas execute the
request and each sends a reply. By accepting a result only
if at least f + 1 replies from different replicas match is a
client able to tolerate up to f faulty replies. To ensure con-
sistent replies, replicas carry out a Byzantine fault-tolerant
state-machine replication protocol, which itself relies on a
set of subprotocols with different objectives. The three most
important subprotocols are briefly discussed in the follow-
ing: 1) The ordering protocol establishes a global total order
in which requests and other commands have to be executed.
For this purpose, the protocol assigns a unique order number
to each request and ensures that a sufficient number of cor-
rect replicas reaches consensus on these assignments. 2) The
checkpointing protocol periodically creates consistent snap-
shots of replica states and uses them to compile a proof that
the overall system has made a certain progress. This is cru-
cial as such a proof allows other subprotocols to perform
garbage collection. 3) The view-change protocol ensures that
the system makes progress despite faulty replicas. In partic-
ular, this protocol represents a means that allows the replica
group to safely switch between configurations (i.e., views)
even if up to f of the group members are arbitrarily faulty.

Replica 1

Execution

A
g
re
e
m
e
n
t

TSS

A
g
re
e
m
e
n
t

TSS

A
g
re
e
m
e
n
t

TSS

Replica N

Execution

A
g
re
e
m
e
n
t

TSS

A
g
re
e
m
e
n
t

TSS

A
g
re
e
m
e
n
t

TSS

Figure 2. A parallelizable hybrid - the idea.

3. Hybrid Yet Parallel –
The Problem and the Approach
To our knowledge, the ordering protocols of all existing
state-machine replication systems based on a hybrid fault
model require a sequential processing either of consensus
instances that are performed to agree on the order in which
replicas must execute commands [15] or of all incoming
messages [20, 28, 44, 45]. Not being able to parallelize
the agreement, however, fundamentally restricts the perfor-
mance of such systems on modern platforms [9].

Unfortunately, sequential processing seems to be inherent
to the hybrid fault model itself: From an abstract perspec-
tive, all hybrid systems prevent undetected equivocation by
cryptographically binding sensitive outgoing messages to a
unique monotonically increasing timestamp by means of the
trusted subsystem. If a faulty replica makes conflicting state-
ments by sending different messages to different replicas in
one and the same phase of a protocol, it can only do so with
different timestamps, allowing other replicas to detect such a
behavior. However, the unique timestamps establish a virtual
timeline for each replica that ultimately induces the sequen-
tial nature inherent to all existing hybrid protocols.

In this paper, we address this problem with an approach
that circumvents this limitation and enables parallel pro-
cessing of hybrid consensus instances as depicted in Fig-
ure 2: Instead of a single virtual timeline, each replica uses
multiple independent timelines; instead of a single trusted
subsystem, each replica is equipped with as many subsys-
tems as the targeted degree of parallelism requires. This is
perfectly backed by the concept of consensus-oriented par-
allelization [9] where equal processing units are responsi-
ble for a statically assigned subset of consensus instances,
thereby preventing the opportunity for equivocation.

However, such an approach is only possible when the
type of trusted subsystem allows it. Given the state-of-the-
art in that area, the FPGA-based CASH [28], multiplying
the subsystem would translate into equipping a system with
as many extension cards as it has processor cores, impracti-
cal for many-core machines. Contrarily, using a trusted exe-
cution environment provided by the central processing unit
itself, or more precisely by using Intel’s variant called Soft-
ware Guard Extensions (SGX) [34], this is perfectly feasible.



4. Existing Hybrids Revisited
As mentioned above, none of the existing hybrid proto-
cols [15, 20, 28, 45] is directly prepared for non-sequential
ordering using multiple virtual timelines. Still, these proto-
cols represent a starting point for the design of a new one. We
therefore first analyze existing systems, in particular A2M-
PBFT [15] and MinBFT [45], and identify their conceptional
building blocks as well as their strengths and weaknesses be-
fore we present our parallelizable protocol thereafter.

4.1 Someone to Trust
Replication protocols are complex and comprise a large state
when the throughput is high, increasing the risk of subtle er-
rors. Thus, to substantiate the trust assumption, the proposals
considered here make use of trusted subsystems that are as
small as possible. While several ways exist for implement-
ing these subsystems (e.g., in software, using configurable
hardware, or specialized chips [15, 28, 32, 45]), we examine
the abstractions they are based on, that is, what functionality
they provide and how much state they have to maintain.

Proposals. To our knowledge, there are three proposals for
such abstractions in the context of hybrid service replication:

The hybrid protocol A2M-PBFT [15] is based on a trusted
subsystem that provides attested append-only memory, short
A2M. A2M stores values, in the case of A2M-PBFT digests
of outgoing messages, in distinct trusted logs. Log entries
are consecutively numbered and can only be written in as-
cending order. For each entry used, A2M issues certificates
that prove that a particular value has been placed at this po-
sition of a trusted log. Although A2M logs can be truncated,
active log entries are nevertheless part of A2M’s state.

Another proposal for a general trusted subsystem is
TrInc [32]. TrInc provides a set of increasing counters and
binds unique counter values to message digests by calculat-
ing a certificate over value and digest. In contrast to A2M,
the certified digests do not become part of TrInc’s state.
In [32], the authors present an algorithm that shows how the
interface of A2M can be mapped to that of TrInc.

MinBFT [45] is a hybrid protocol that is directly specified
on the basis of trusted counters. Compared to TrInc where
counter values are explicitly set when certificates are created,
the trusted subsystem USIG employed by MinBFT exhibits
a simpler interface with only a single counter implicitly
incremented at each certification. The interface of CASH, the
FPGA-based trusted subsystem behind CheapBFT [28] and
its successor ReMinBFT [20], is comparable to that of USIG
but supports multiple independent counters.

Assessment. A principal goal behind trusted subsystem ab-
stractions is to provide an interface that is as expressive as
necessary to be most widely applicable but as restrictive as
possible to entail only a small trusted computing base [38],
an important argument to justify the trust in the first place.

A2M needs to store all certified messages as part of the
subsystem, clearly a disadvantage compared to USIG where

the size of the state is very small and even known in advance,
hence fostering hardware implementations such as CASH.
Further, A2M’s interface offers more mechanisms and is
therefore more complex than that of USIG. Consequently,
the in our opinion most promising abstraction is TrInc. Its
counter-based interface can be regarded as slightly more
complex than that of USIG but it is also more versatile.
Additionally, the size of the (still relatively small) state can
be bounded by limiting the maximum number of counters.

I Logs vs. Counters. A flexible trusted counter abstraction
such as TrInc promises the best tradeoff between an expres-
sive interface and a small trusted computing base.

4.2 Cope with Equivocation
While the trusted subsystem provides the mechanism, the
hybrid replication protocol implements the policy, which
in this case is how the system deals with conflicting mes-
sages (i.e., ambiguous statements of Byzantine processes).

Approaches. Besides the different abstractions of the em-
ployed trusted subsystems, A2M-PBFT and MinBFT pursue
fundamentally different approaches for coping with equivo-
cation. In A2M-PBFT each possible message of each possi-
ble protocol instance is stored in a log entry defined a priori,
that is, each message is located in a predetermined place in
the virtual timeline of a replica. Contrarily, in MinBFT, this
place is not known in advance but determined at run time. It
depends on the current state of the unique counter to which
value an outgoing message is assigned to. For example, if
a replica sends two messages A and B for the protocol in-
stances 100 and 101, respectively, A2M-PBFT requires the
messages to be assigned to the log entries with exactly these
numbers, 100 and 101. In MinBFT, the counter values used
could be 521 and 523, depending on which other messages
the replica has sent before and in between A and B.

Evaluation. The consequences are far-reaching. A faulty
replica in A2M-PBFT is not able to generate two conflict-
ing messages A and B for a protocol instance 100 that are
both equipped with a certificate that is (1) valid and (2) con-
tains the expected log entry number 100. In that sense, the
A2M-PBFT approach prevents equivocation. MinBFT in-
stead allows generating certificates for two conflicting mes-
sages A and B for one protocol instance 100 that are both
valid if taken by themselves. Their counter values are, how-
ever, unique, which enables receiving replicas to observe
this faulty behavior by comparing the two messages or by
processing them in the order of their counter values. In that
sense, the MinBFT approach does not prevent equivocation
but allows detecting it [45]. On the one hand, A2M-PBFT
requires slightly more complex trusted subsystems, but on
the other hand, it restricts the hostile, Byzantine outer world
more and earlier in their actions than the MinBFT approach.

I Prevention vs. Detection. Preventing equivocation fur-
ther restricts the capabilities of a Byzantine replica and can
consequently simplify the protocol design.



4.3 Order Requests
The main task of the replication protocol is to establish an
order for requests and other commands in which all correct
replicas must execute them to maintain a consistent state.
Fulfilling this task, the ordering subprotocol is a decisive
factor in the performance of a replicated system.
Options. Following the traditional state-machine replication
approach, there are two options for how many phases of
message exchange the ordering in hybrid protocols requires:

A2M-PBFT uses a three-phase ordering protocol adopted
from PBFT [13]: A distinguished replica, the leader, pro-
poses an assignment of requests to an order number o by
sending a PRE-PREPARE message to all other replicas. In the
following two phases, replicas acknowledge that proposal to
all others while waiting for a quorum after each phase, with a
quorum comprising messages from f+1 among 2f+1 repli-
cas: If they receive a PRE-PREPARE, they send a PREPARE;
if they receive a quorum of PREPAREs, they send a COM-
MIT; if they receive a quorum of COMMITs, the requests are
eligible for execution.

The second option for a hybrid ordering protocol is to rely
on only two phases as done by MinBFT: The leader sends its
proposal in a PREPARE and all other replicas acknowledge
it with a COMMIT. Requests are executed after a quorum of
COMMITs has been received.
Side Effects. With respect to performance, a two-phase or-
dering as employed by MinBFT is apparently superior. It
saves one communication phase where all replicas send mes-
sages to each other; hence it spares network bandwidth and
reduces end-to-end latency.

However, performing only two phases has a notable side
effect. A sole message sent by a replica for a consensus in-
stance o indicates that the requests ordered by o are poten-
tially executed by some replica in the group. Given 3 replicas
and a quorum size of 2, a replica r can execute the requests
of an instance o when it has received the PREPARE from the
leader l and generated its COMMIT. Provided that the third
replica never sent a message for o and either replica l or r is
temporarily disconnected due to network problems. Further
provided that an error is suspected and the current state of
the system has to be determined. In the given situation, there
is only one message, the PREPARE from l or the COMMIT
from r, that indicates the execution at replica r.

With three phases, requests are not executed before quo-
rums in the second and third phase have been reached; thus,
replicas can provide a quorum of matching messages, called
a quorum certificate, to announce that a request has been po-
tentially executed. Since at least one correct replica is part
of a quorum, all messages in a quorum certificate are con-
firmed to be correct according to the protocol. This does not
hold for a single message in a two-phase ordering.
I Two vs. Three Phases. Two-phase ordering provides bet-
ter performance but requires additional efforts to safely de-
termine the system state in the case of errors.

4.4 Change Views to Conclude
While the ordering subprotocol is decisive for the perfor-
mance of a system based on state-machine replication, the
view-change protocol is crucial for its safety. If something
does not proceed as expected, the other protocols rely on the
view-change protocol to re-establish a stable configuration
that allows the system to make progress. At the same time,
the view-change protocol depends on the situation the other
protocols leave behind when a view-change is invoked.

Challenges. One of the main responsibilities of the view-
change protocol is to ensure that all commands executed by
some correct replicas in some view will be eventually exe-
cuted by all correct replicas in this or any later view. It can
be argued that these responsibilities are also the main chal-
lenges for hybrid state-machine replication protocols: In the
non-hybrid PBFT, there is at least one correct replica in the
intersection of any two quorums. Following the example of
the previous section, this replica is able to propagate a quo-
rum certificate for consensus instances potentially executed
at some replicas to later views. In contrast, a hybrid proto-
col only has one replica in any intersection of quorums. The
protocol has to ensure that executed instances are properly
propagated to a subsequent view even if this replica is faulty.

Recipes. For that purpose, MinBFT uses the counter values
of its trusted subsystem USIG to force even faulty repli-
cas to provide a complete history of all outgoing messages.
That way, all potentially executed consensus instances are
revealed during a view-change. With a mere equivocation
detection and a two-phase ordering, this would result in
an arbitrarily complex view-change protocol. If a faulty
leader sent different PREPARE messages for one consen-
sus instance, this could only be detected by comparing the
histories provided by different replicas. Therefore, MinBFT
also uses a form of equivocation prevention for PREPAREs:
It does not use dedicated order numbers but relies on the
value of the counter certificate to determine the total order.
Nevertheless, for all other protocol messages, the described
detection mechanism is used, which may lead to complex
situations during the view-change. Also the checkpointing
protocol employed to discard obsolete messages becomes
more complex since replicas have to ensure that they are
always able to provide a complete history of outgoing mes-
sages. This, however, makes it difficult to guarantee that
these histories remain bounded in size when a view-change
takes multiple rounds to find a new leader.

Histories of outgoing messages to cope with equivocation
complicate matters, but the problem has an essential core.
In PBFT, the correct replicas in the intersection of quorums
will announce any command that might have been executed;
in hybrid protocols, single replicas must prove that no more
than the stated commands can have been executed. In the one
case, quorum certificates are used to announce that some-
thing potentially did happen; in the other case, histories are
used to prove that something certainly did not happen.



For that very reason, A2M-PBFT relies also on a history.
For each round in which no leader was able to be elected, a
replica in A2M-PBFT must add a message to a list proving
that it indeed has not sent any ordering message since the last
known stable configuration, the last view where it actively
participated in the ordering of commands. In the employed
partially synchronous system model, however, there is no
a priori known upper bound on the number of rounds needed
to elect a new leader and hence no known upper bound
for this list, hence no known upper bound for the memory
usage or the message sizes. The list will always be finite
because a new stable view will eventually be reached, as
long as the system model assumes that processes have access
to a sufficient, virtually unlimited amount of memory. In a
model where available storage is finite, a replica could have
already run out of memory or messages could have grown
to an impractical size before enough replicas agree on a new
leader. The ordering protocol can rely on the checkpointing
protocol to perform garbage collection. There is no such
protocol that backs the view-change protocol.1

I Histories vs. ? Histories lead to an unknown upper bound
for the memory demand of existing protocols, but an alter-
native is missing so far.

5. Hybster
Following the analysis of existing systems, we propose a
hybrid replication protocol that is designed around a two-
phase ordering and a concept that prevents equivocation
by means of multiple instances of a TrInc-based trusted
subsystem realized using Intel SGX; we dub this new hybrid
protocol Hybster. Besides this unique set of building blocks,
Hybster is distinct from other hybrids in three ways:
1. Relaxed. Opposed to its existing counterparts, Hybster
does not try to force faulty replicas during a view-change to
reveal all consensus instances for which they sent an order
message. Instead, Hybster is based on the observation that it
suffices to ensure that only instances must be revealed that
are not guaranteed to be propagated by correct replicas, yet
have potentially led to the execution of requests. Putting it
the other way round, Hybster allows faulty replicas to con-
ceal own messages as long as they are not critical to ensure
safety. This reduces the complexity of the view-change pro-
tocol significantly and prevents histories.
2. Formal. As a consequence, there is not only an informal
description of the basic protocol of Hybster as presented in
this paper, but it is also formally specified [8].
3. Parallelizable. Finally, Hybster has the ability to perform
consensus instances in parallel. It can benefit from modern
multi-core platforms whereas existing hybrid protocols are
conceptually confined to a sequential ordering of requests.

The presentation of Hybster is divided into three parts:
First, there is the trusted subsystem that provides the mech-

1 A circumstance PBFT explicitly addresses in its authenticator view-
change protocol with bounded space [11].

anisms employed by the protocol to prevent faulty replicas
from making conflicting statements. Second, we present the
basic, unparallelized replication protocol. Essentially, this is
the protocol that is performed among the replicas, the exter-
nal protocol. The third part delves into its parallelized real-
ization, which is mainly a view of the internal protocols per-
formed by the concurrent processing units of each replica.

5.1 TrInX – SGX-Based Trusted Counters
Hybster builds on a trusted subsystem abstraction that is akin
but not equal to TrInc [32]. We call this new abstraction
TrInX. TrInX tailors and extends TrInc mainly for two rea-
sons: to account for the particular needs of Hybster and to
increase performance.
Rationale. Adapting the abstraction for Hybster is viable
and reasonable since it primarily targets platforms provid-
ing so-called trusted execution environments. Such environ-
ments are provided by modern CPUs and can be regarded as
a special execution mode of the processor that protects parts
of the system even against undesired access by the untrusted
operating system. This allows creating trusted subsystems
on a software basis and makes it feasible to tailor solutions
for particular applications. Further, at least Intel’s implemen-
tation of trusted execution environments, Intel SGX [34],
supports creating multiple independent instances of a trusted
subsystem. In conjunction with the general approach behind
Hybster, multiplying the subsystem promises an increased
performance while leaving the trusted computing base unaf-
fected. Nonetheless, the trust also depends on the complex-
ity of the subsystem itself. Thus, it remains advisable to keep
the complexity as low as possible and to make use of existing
and well-studied abstractions as far as possible.
Description. For the sake of simplicity, we assume that all
instances of TrInX are initialized appropriately by a trusted
administrator before the replica group is brought to life. Dur-
ing initialization, instances are provided with a unique iden-
tifier, the number of required trusted counters, and a secret
key shared among all TrInX instances. All counters are set
to 0. As is the case for Intel SGX, we further assume that the
execution platform provides a means to prevent undetected
replay attacks where an adversary saves the (encrypted) state
of a trusted subsystem and starts a new instance using the ex-
act same state to reset the subsystem. After being properly
set up, a TrInX instance can create different kinds of certifi-
cates for a message m using a specified trusted counter tc
and also a specified new counter value tv′:
• Continuing Counter Certificates. When such a certificate
is requested, a TrInX instance tssi accepts a new value
tv′ that is greater than or equal to the current value tv of
the counter tc. It then calculates a message authentication
code (MAC) based on (1) the secret key shared among all
instances of the group, (2) its own instance ID, (3) the ID
of the counter tc, (4) the intended new value tv′, (5) the
current value tv, and (6) the messagem itself. Subsequently,
the tssi sets the counter value of tc to tv′ and returns the



calculated MAC. Thus, continuing counter certificates are
only unique, only bound to a single message if tv′ > tv.
With tv′ = tv, multiple certificates with the same counter
value can be created for different messages. If another TrInX
instance tssj is used to verify a message m equipped with
such a certificate, it has to be provided with the instance
ID of the issuing TrInX instance tssi, the expected values
for tc, tv′, and tv together with m. The verifying instance
tssj can then perform the same calculation on the basis
of the shared key. If the MAC included in the certificate
equals the calculated MAC, the certificate is valid and stems
from the TrInX instance tssi since the secret key is only
known by trusted TrInX instances and no instance issues
a certificate that includes the instance ID of another TrInX
instance. To refer to this type of certificate, we use the
notation 〈m〉τ(tss,tc,tv′,tv) or τ(tss, tc, tv′, tv) where tss
represents the issuing TrInX instance. This is the type of
certificate that is also provided by TrInc.
• Independent Counter Certificates. To verify a continuing
certificate, the previous counter value tv has to be known, al-
though it often suffices to ensure that a message is unique,
that is, that there is no other valid certificate for the same
counter value tv′. For that purpose, TrInX provides indepen-
dent counter certificates τ(tss, tc, tv′,−) that do not include
the previous value tv but are only issued for new counter val-
ues tv′ that are greater than the current value tv.
• Multi-Counter Certificates. To prove the state of more
than one counter to other parties, it is more efficient to issue
certificates over multiple counters instead of creating multi-
ple certificates. For that purpose, TrInX offers the option to
create continuing or independent multi-counter certificates.
• Trusted MAC Certificates. Traditional MACs can be used
to ensure the authenticity of messages but they do not pro-
vide non-repudiability. More than one party possesses the se-
cret key, thus a party can deny the fact that it has sent a mes-
sage in question. This is not possible when a digital signa-
ture is employed. The private key used to certify a message
is dedicated to a particular party. Unfortunately, digital sig-
natures are far more expensive to compute than MACs [13].
However, a hybrid fault model opens up another possibil-
ity: By including the secret key and their own ID, TrInX in-
stances can provide certificates that are slightly more expen-
sive than traditional MACs due to the requisite switch to the
trusted execution environment but provide non-repudiability
like digital signatures. We call such a replacement for sig-
natures trusted MACs. Instead of providing dedicated means
for creating and verifying trusted MACs, it is more flexible
to map them to continuing certificates with tv′ = tv.

5.2 The Basic Protocol
The sequential basic protocol of Hybster is composed of the
same core subprotocols as other state-machine replication
protocols: ordering, checkpointing, state-transfer, and view-
change protocol. Here, we omit the presentation of the state-
transfer which can be adopted from existing systems [13].

Hybster assumes a hybrid fault model and a partially syn-
chronous system. Neither the maximum message delay nor
the storage available to processes are assumed to be infinite.
Yet, for the message delay, the existing upper bound is not
known a priori. Following the state-machine replication ap-
proach, Hybster relies on a group of replicasRwith n = |R|
where it is able to tolerate up to f = bn−12 c faults by using a
minimum quorum size q = dn+1

2 e. In general, f and q have
to satisfy the conditions that (1) there is at least one, possi-
bly faulty, replica in the intersection of every two quorums
(2q > n) and (2) the number of correct replicas in the sys-
tem is sufficient to form a quorum (n ≥ q+f ). An important
implication of these conditions is that each quorum contains
at least one correct replica (q > f ). Further, each replica r
has access to a TrInX instance that can issue certificates of
the form τ(r, . . . ). The instance IDs are known to all other
replicas as part of the configuration.

5.2.1 Ordering
To establish a total order for requests to be executed, a dis-
tinguished replica in the group, the leader l, assigns order
numbers to requests and proposes this assignment to all oth-
ers. If a sufficient number of replicas follows the proposal,
consensus is reached and the request can be executed. To
determine the current leader, the system undergoes consec-
utively numbered views v, for which the leading replica is
given by l = v mod n. If the current leader is suspected to
be faulty, the view-change protocol is invoked to elect a new
leader. Thus, the ordering protocol has to (1) ensure that no
two correct replicas execute different requests with the same
order number in the same view and (2) it has to enable the
view-change protocol to ensure the same across views.

Hybster employs a two-phase ordering protocol where
the leader of a view v proposes an assignment to an order
number o via a PREPARE and all other replicas, the follow-
ers, acknowledge the assignment in a COMMIT message.
Predefined Counter Values. To prevent the leader l from
sending different assignments for o to different followers, to
prevent equivocation, the PREPARE for o has to be certified
with a particular, predefined value of a trusted counter O by
means of the TrInX instance of l. By using an independent
counter certificate as described in Section 5.1, it is guaran-
teed that l can only create one valid certificate with the ex-
pected value; hence, l can only create one valid PREPARE
for o. Moreover, correct replicas will only acknowledge a
PREPARE with a corresponding COMMIT if the certificate
attached to the PREPARE is valid. Further, correct replicas
will only execute the proposed request upon having collected
a quorum of acknowledgments for that proposal, upon hav-
ing collected a committed certificate for the consensus in-
stance (v, o). Here, the PREPARE is taken as the acknowl-
edgment of the leader and no dedicated COMMIT message is
sent. In sum, since all quorums contain at least one correct
replica, and since correct replicas acknowledge only valid
PREPAREs of the leader of a view v, and since there can only



O R0 Rf
1 R2 O′

1 REQUEST
a

PREPARE
0/50 (req)

a

0
|4
9

0
|5
0

COMMIT
0/50 (req)

a a

0
|4
9

0
|5
0

Execute request a at 50

2 CHECKPOINT
50 (state dig)

d d d

Clean up logs

3 REQUEST
b b b

PREPARE
0/51 (req)

b

0
|5
0

0
|5
1

COMMIT
0/51 (req)

b

0
|5
0

0
|5
1

R0 executes request b at 51

O R0 Rf
1 R2 O′

4 VIEW-CHANGE
0→ 1 (P )

∅

1
|0

VIEW-CHANGE
0→ 1 (P )

b

0
|5
1

1
|0

NEW-VIEW
0→ 1 (P ′)1

|0

1
|5
1b

NEW-VIEW for 1 must contain b

5 VIEW-CHANGEf

0→ 3 (P )

∅f

2
|0

f

3
|0

R2 would require view-change certificate

6 VIEW-CHANGE
0→ 1 (P )

, b

0
|5
1

1
|0

R2 learns b

7 VIEW-CHANGE
0→ 2 (P )1

|0

2
|0

b

NEW-VIEW
0→ 1 (P ′)

b

O R0 Rf
1 R2 O′

8 VIEW-CHANGE
1→ 2 (P )

b

1
|0

2
|0

VIEW-CHANGE
0→ 2 (P )

b

R2 requires new-view certificate

9 NEW-VIEW-ACK
1 (P )

b

NEW-VIEW
1→ 2 (P ′)

b

2
|0

2
|5
1

NEW-VIEW for view 2 contains b

10 COMMIT
2/51 (req)

b

2
|0

2
|5
1

R2 executes request b at 51

Figure 3. Basic ordering, checkpointing, and view-change protocol of Hybster with a faulty replica Rf1 .

be one valid PREPARE for an order number o in a view v, no
two correct replicas will execute a different request for an
instance (v, o) than proposed by the valid PREPARE.

Flattened Number Space. However, if a leader of a view v
sends a PREPARE for an order number o, it cannot be guar-
anteed that this proposal will ever reach consensus. In a par-
tially synchronous system, it can always be the case that even
a correct leader is suspected to be faulty, perhaps because the
network delayed messages. Therefore it can happen that the
same replica has to send another PREPARE message for the
same order number o but in a later view v′ where it is again
the leader. Hybster addresses this by flattening the number
pair (v, o) to a single number space [v|o] where v is stored
in a fixed number of the most significant bits and o in the
remaining bits of sequence numbers in that flattened num-
ber space [15]. Therefore, the independent counter certifi-
cate for a valid PREPARE from a leader l exhibits the form
τ(l,O, v|o,−). As a consequence, all messages for higher
views are assigned to higher counter values, independent of
the value of the order number. This is intentional and used by
the view-change protocol described in Section 5.2.3. More-
over, in order to enable the view-change protocol to deter-
mine all relevant consensus instances from previous views,
a COMMIT message sent by a replica r also has to be certi-
fied with an independent certificate τ(r,O, v|o,−). This is
possible since when using two-phase ordering each replica
only has to send a single message for an order number o in a
view v, the leader a PREPARE and all followers a COMMIT.

Example. Figure 3 shows an example case: 1 To issue a
command to the replicated service, a client sends one en-
veloped in a certified REQUEST message a to the replica
group. Let R0 be the leader of view v = 0 and 49 the
last order number that was assigned by R0. After having
received request a, Replica R0 verifies its correctness, as-
signs the next unused order number o = 50 to it, and sends
a PREPARE message for the consensus instance (0, 50) to
propose the assignment to the followers R1 and R2. To be
valid, the PREPARE has to be equipped with the certificate

τ(R0,O, 0|50,−). Consequently, the value of the trusted
counter O of R0 is increased to [0|50]. A receiving follower
verifies the proposal and acknowledges it with a correspond-
ing COMMIT message. The COMMIT has to be certified by
means of the counter O and the value [0|50] as well, increas-
ing the counter values also on the follower’s end. When a
replica has collected a quorum of valid acknowledgments,
including the PREPARE from the leader and its own mes-
sage, it is allowed to execute the request a as long as it has
already executed all requests proposed with order numbers
lower than 50. All replicas subsequently answer the request
by sending a REPLY message containing the result of the
execution to the client (not depicted). The client accepts a
result only when it has collected f + 1 matching replies.

5.2.2 Checkpointing
As is the case for other protocols [13, 15, 45], the network is
assumed to be unreliable; consequently the assumed but not
a priori known upper bound for message delays only holds
if a message is sent sufficiently often. It cannot be known in
advance, how often this is, and since Byzantine processes are
fail-silent, it may even not be known if an expected response
has not yet arrived because a process is faulty or because the
network or the process is simply slow [23].

To resend messages when required, the replication proto-
cols considered here keep a log of all ordering messages for
a predefined number of consecutive consensus instances be-
tween so-called low and high water marks; to not run out of
memory, they discard older messages once they have proof
that enough replicas were able to execute the commands or-
dered by instances up to a certain order number and that
their own service state at that point is correct. To create such
proof, replicas regularly invoke the checkpointing protocol.

Since Hybster does not need to preserve complete histo-
ries of outgoing messages such as MinBFT, it can employ
a single-phase checkpointing protocol similar to PBFT and
A2M-PBFT. In the example given in Figure 3, 2 replicas
conduct a checkpoint after executing request a at order num-
ber 50. They save the current service state and announce this



by sending a CHECKPOINT message to each other. Once a
replica has collected a quorum of these messages, a check-
point becomes stable. It cleans up its log by discarding order
messages for instances up to and including 50 and CHECK-
POINTs and checkpoint states related to instances up to but
excluding 50. As in other replication protocols, messages of
the view-change protocol are not affected by this procedure.

Strict Ordering Window. Besides carrying out garbage col-
lection, a replica also adjusts the low and high water mark
upon reaching a stable checkpoint at an order number o.
The low mark is set to o and the high mark to o plus some
constant value. Messages for instances below the low water
mark are discarded as described above. Moreover, a replica
will not participate in any consensus instance with an order
number greater than the high water mark. This essentially
establishes a sliding ordering window of ongoing consen-
sus instances that is advanced in checkpoint intervals. Note
that such a window is effectively employed by all consid-
ered protocols for one reason or another. However, Hybster
strictly adheres to this window even during a view-change.

State and Return Value Confirmation. If a replica r re-
quires messages for consensus instances that other replicas
already discarded, it has to update its service state directly.
Since correct replicas only clean up their logs after collecting
a quorum certificate for a checkpoint at o, there is at least one
correct replica that can provide the state reached after exe-
cuting o. To proof its correctness, CHECKPOINT messages
contain the digest of this state. Moreover, the digest has to
include a vector of return values containing an entry for the
last requests of each client represented in the service state.
When the fallen-behind replica r updates its service state,
it skips some instances o∗ ≤ o and never executes the cor-
responding requests. To ensure that clients can nevertheless
collect enough matching REPLY messages, replica r must
also safely learn the return values for the instances it missed.

Trusted MAC Certificates. Since all correct replicas will
reach the same state after executing a particular order num-
ber o and since the quorum certificates for checkpoints only
have to confirm the digest contained in CHECKPOINT mes-
sages, checkpoints are not subject to equivocation. Thus, it
is sufficient to equip CHECKPOINT messages with a trusted
MAC certificate by means of some counter M.

5.2.3 View-Changes
If the current leader is suspected to be faulty or fails to
get a quorum for its proposals, the current view has to be
aborted and a new view has to be found in which a sufficient
number of replicas follows the leader such that the system
is again able to make progress, that is, able to order and
execute issued requests. It is the responsibility of the view-
change protocol to find such a view and to ensure that if
a correct replica executed a request with an order number
o in a previous view, no correct replica will ever execute a
different request with that order number.

Following the analysis of existing protocols given in Sec-
tion 4.4, the challenge of a view-change protocol based on a
hybrid fault model is to ensure this with only a single replica
in the intersection of any two quorums, a single replica that
is potentially faulty. The view-change protocol of Hybster
meets this challenge through three mechanisms:

Continuing Counter Certificates. Correct replicas execute
a request with an order number o only upon having col-
lected a committed certificate for an instance (v, o). That is,
a quorum of replicas must have sent a correct order mes-
sage certified with the value [v|o] of the trusted counter O.
Let (v, o_act) be the last instance a replica r has actively
participated in by sending an order message. If this replica
wants to support a new leader l′ of a view v + 1, it has to
send a message called VIEW-CHANGE containing the PRE-
PAREs of all instances of its current ordering window in v.
Even if replica r is faulty, by using a continuing certificate
of the form τ(r,O, v + 1|0, v|o_act), it is forced to include
all PREPAREs up to o_act. Additionally, it is prevented from
sending further order messages for the view v after creating
the VIEW-CHANGE for v+ 1. Thus, and due to the minimal
intersection of any two quorums, l′ is able to determine all
proposals of the former leader l that have been potentially
committed and hence executed at some correct replica in v
by collecting a quorum of such VIEW-CHANGE messages.

A correct l′ in Hybster considers a VIEW-CHANGE of a
replica r for this quorum only if its own ordering window
has at least reached the position of the window indicated by
the VIEW-CHANGE, that is, if l′ has the necessary resources
to process contained PREPAREs in the first place. If l′ re-
quires additional ordering and checkpointing messages or
even the service state to forward its window accordingly, it
requests this state from r via the state-transfer protocol. As
long as l′ cannot adapt its window, it will not consider the
message from r. Since the system model assumes that there
is always a quorum of correct replicas which would provide
the requested state, l′ will nevertheless be able to collect the
required quorum of VIEW-CHANGE messages.

Following, l′ transfers all proposals of l that are contained
in its (then current) ordering window to the view v + 1 by
reproposing the same assignments of requests to order num-
bers within new PREPAREs for the new view. Consequently,
the quorum of VIEW-CHANGEs a new leader uses to deter-
mine the initial state for a new view is called new-view cer-
tificate. l′ proves the correctness of the transition from view
v to view v + 1 to other replicas by sending a NEW-VIEW
containing the new-view certificate and all new PREPAREs.

View-Change Certificates. However, there is no guarantee
that l′ will provide a correct NEW-VIEW in time. l′ could
be faulty or lack the required support from a quorum of
replicas. In that case, a replica r has to send another VIEW-
CHANGE to support the leader l′′ of view v + 2 and this
VIEW-CHANGE message can only be equipped with the
certificate τ(r,O, v + 2|0, v + 1|0). That is, since creating



the VIEW-CHANGE for view v + 1 increased the counter
O from [v|o_act] to [v + 1|0], the replica r, if faulty, could
pretend that it never participated in any instance in view v.

In this situation, contrary to other hybrid replication pro-
tocols, Hybster does not try to force replica r to reveal the
proposals of a view v, for example, by demanding replica r
to include a history of its generated VIEW-CHANGE mes-
sages between v and v + 2, or more general v and v + x. In
the partially synchronous system model it cannot be known
how many rounds are needed to elect a new leader, thus how
large x will become and how much state the replicas have
to keep until they reach a new stable view. Instead, Hybster
ensures that the possibly only correct replica rc in a quorum
of replicas supporting a leader lx knows about all proposals
potentially committed in views before v + x.

To achieve this, a replica rc that followed the leader l of
view v and currently supports the leader l′ of view v+1 will
only send a VIEW-CHANGE message to support leader l′′ of
view v + 2 when it collected a quorum of VIEW-CHANGE
messages for the view v + 1 itself. Even if rc never received
any order message for any instance in v directly, this quorum
of VIEW-CHANGE messages, called view-change certificate,
is guaranteed to contain all relevant PREPAREs; rc learns the
potentially committed proposals of leader l afterwards and
is able to propagate them in VIEW-CHANGE messages for
views greater than v + 1. In Hybster, no correct replica that
followed a leader l of a view v will support any leader l∗ of a
view v∗ > v + 1 until it has collected or been provided with
a view-change certificate for the view v∗− 1. The certificate
is guaranteed to contain all potentially committed proposals
from views before v∗ − 1. In conjunction with continuing
counters as an anchor, this mechanism works by induction.

New-View Acknowledgments. So far, the only situations
considered were those in which all replicas of a quorum Q
that support a leader l′ of a view v + 1 followed the same
previous leader l of a view v. Provided that there was a view
v− < v with the leader l− where instances were ordered
and committed. Now it can be the case that all replicas in
Q except of one replica r collected a view-change certifi-
cate for view v but did not receive the NEW-VIEW message
for v in time. The VIEW-CHANGE messages for view v + 1
of these replicas thus only contain the proposals from view
v−. Replica r, however, received the NEW-VIEW for v and
consequently included the PREPAREs of view v in its VIEW-
CHANGE for view v+1. In such a situation, it would be not
safe for the designated leader l′ to determine the initial state
for view v + 1 only on the basis of the VIEW-CHANGE of
replica r. The equivocation prevention mechanism of Hyb-
ster guarantees that there are no conflicting PREPAREs in
view v. The continuing counter certificates guarantee that
r cannot withhold relevant PREPAREs of view v. The view-
change certificates guarantee that all relevant PREPAREs of
views before v are propagated and contained in Q. With-
out further mechanism there is no guarantee, however, that

the PREPAREs of view v are valid in the first place, that
leader l has ever compiled a correct NEW-VIEW and thereby
properly transferred all relevant proposals to view v. View-
change certificates ensure that at least all committed propos-
als are included but they can also contain additional propos-
als that did not reach a quorum; whether they are transferred
to later views depends on which VIEW-CHANGE messages
are used by a new leader in its new-view certificate.

In other words, it can be always the case that there are two
PREPAREs proposing different requests for one and the same
order number but in different views. For that reason, a new-
view certificate in Hybster must also contain an acknowledg-
ment of at least f + 1 replicas that they accepted a correct
NEW-VIEW for the view v with which a new leader l∗ deter-
mines the initial state for a view v∗ > v. These new-view ac-
knowledgments guarantee that the view v was indeed a prop-
erly established view. The acknowledgments can be gathered
in two forms: All VIEW-CHANGEs include a view number
v_from that indicates the last view a replica had accepted.
Due to the required counter certificates, a replica r is only
able to send a sole VIEW-CHANGE to support a designated
leader l∗. Hence, it could be the case that l∗ collects enough
VIEW-CHANGE messages supporting it but will never be
able to compile a new-view certificate since these VIEW-
CHANGE messages do not include f +1 matching v_from.
To prevent this, a replica r that accepts a NEW-VIEW v af-
ter it has already aborted v by sending a VIEW-CHANGE
for a view v∗ > v sends an explicit acknowledgment for v
in the form of a NEW-VIEW-ACK including all PREPAREs
the replica learned with the NEW-VIEW. Since this is only
needed to ensure that all proposals of views before v are
propagated by at least one correct replica, a NEW-VIEW-
ACK does not require a particular counter certificate; faulty
replicas could simply omit sending such a message anyway.

Example. We proceed with the running example given in
Figure 3 to illustrate how the view-change protocol of Hyb-
ster works: 2 After reaching the checkpoint at order number
50, all replicas have discarded all ordering messages, have
saved a snapshot of the current service state including the
vector of return values, and possess a quorum certificateK50

of CHECKPOINT messages proving the correctness of this
state. Let us assume that a client tried to issue a request b
by sending it to the current leader R0, but that the message
was lost during the transmission (not depicted). Since it did
not receive any reply, it resends request b. The client does
not know if a faulty leader simply refused to propose request
b, thus, this time, 3 it multicasts the message to all repli-
cas in the group. Replica R0 is correct and proposes request
b once received in consensus instance (0, 51) and obtains a
committed certificate together with replica R1.

ReplicaR2, however, was temporarily disconnected from
the group and did not receive any ordering message. 4 There-
fore it is not able to collect a quorum certificate for request b
within some time and suspects leader R0 to be faulty or not



supported by a quorum. By sending a VIEW-CHANGE mes-
sage, R2 announces that it aborted the view v_from = 0
and wants to enter view v_to = 1 with leader R1. The mes-
sage is certified with τ(R2,O, 1|0, 0|50) and does not (need
to) contain any PREPARE. The previous counter value [0|50]
has the same value as the last stable checkpoint of R2.

Upon receiving the VIEW-CHANGE from R2, replica R1

starts to behave faulty, trying to conceal request b executed
by the correct replica R0. For that purpose, it generates
its own VIEW-CHANGE. However, because it participated
in instance (0, 51), the certificate for the VIEW-CHANGE
can only be τ(R1,O, 1|0, 0|51) (otherwise it would not be
accepted) and the unforgeable previous counter value [0|51]
forces R1 to include the PREPARE for (0, 51). Therefore, it
does not send the VIEW-CHANGE toR2, it merely generates
a NEW-VIEW for view 1, for which it is the leader. This
NEW-VIEW needs to be backed by a quorum of VIEW-
CHANGE messages with v_from = 0 and v_to = 1, which
ensures that the NEW-VIEW must contain a new PREPARE
that reproposes request b for order number 51 in view 1.

5 Creating the PREPARE increases R1’s counter to
[1|51]. Now it pretends that it was not able to reach a sta-
ble view 1 (which could actually be detected as incorrect
in this example, but does not need to be) or 2 and wants to
enter view 3.R1 sets its counter to [2|0] and creates a VIEW-
CHANGE with v_from = 0, v_to = 3, and a certificate
τ(R1,O, 2|0, 3|0). The certificate is valid and R1 success-
fully cleans its counter value. However, R2 will not act on
the cleaned but valid VIEW-CHANGE from R1. It will not
leave its unstable view 1 before it receives another VIEW-
CHANGE with v_to = 1 to form a view-change certificate.
6 The missing VIEW-CHANGE is eventually provided by
R0 which aborts view 0 due to having received more than f
messages from other replicas for view 1. The proposal of re-
quest bmust be contained in this VIEW-CHANGE (otherwise
it could not have been committed in view 0) and R2 learns
the assignment from b to order number 51.

To create a valid NEW-VIEW for view 2, the replica R2

needs q VIEW-CHANGE messages with v_to = 2 and more
than f messages with matching v_from. 7 When replica
R0 sends a VIEW-CHANGE to support R2 as the leader, R2

does not receive this message in time and the faulty replica
R1 tries to hinder the correct replicas from reaching a stable
new view. In order to do so, R1 sends the NEW-VIEW for
view 1 it created before and this NEW-VIEW is installed
by R2. 8 Following, replica R2 leaves view 1 for view 2.
Now, the VIEW-CHANGEs from R0 and R2 do not suffice to
create a new-view certificate for view 2 with a v_from = 1.
The certificate would not contain proof that view 1 had
been established properly. 9 However, when R0 learns and
installs the NEW-VIEW for view 1, a view it has already
aborted, it sends a NEW-VIEW-ACK as a supplement for
its VIEW-CHANGE from 0 to 2. Using the acknowledgment
and the two VIEW-CHANGE messages from R0 and R2,
replica R2 is able to create a valid NEW-VIEW for view 2

that contains the proposal of requests b for order number
51. 10 Once replica R0 receives the NEW-VIEW and enters
view 2, it acknowledges the proposed assignment which
finally allows replica R2 to execute the request.
Closing Remarks. To take up the discussion of Section 4,
the view-change certificates allow Hybster to rely on sin-
gle correct replicas within quorums to announce consensus
instances that have potentially been executed by some repli-
cas that are not a member of the quorum in question. In that
sense, Hybster is able to establish a situation that is naturally
given for traditional BFT protocols like PBFT by their con-
dition of a correct replica in the intersection of two quorums.
Unlike PBFT, replicas in Hybster do not need an additional
phase during the ordering to collect a quorum certificate for
this very announcement. Thanks to the equivocation preven-
tion in Hybster (and in conjunction with new-view acknowl-
edgments), a single PREPARE from two-phase ordering suf-
fices; this would not be the case if Hybster were based on an
equivocation detection mechanism. The design of Hybster’s
view-change protocol not only allows limiting the number
of required view-change messages even in phases of asyn-
chrony induced, for instance, by faulty or simply overloaded
networks. The mechanism of adjusting the own ordering
window that a new leader uses to process VIEW-CHANGE
messages for its new-view certificate is applied for all steps
in the view-change protocol of Hybster. This explicitly lim-
its the number of ordering and checkpointing messages that
have to be processed and stored by replicas. In sum, replicas
in Hybster are not at risk of running out of memory merely
because conditions have become less optimal.

5.3 COP Inside
Based on a consensus-oriented parallelization scheme [9],
replicas are composed of equal processing units, called pil-
lars, that do not share state, communicate via asynchronous
in-memory message passing only, and operate mostly inde-
pendently from each other. Concerning the ordering of re-
quests, the latter is achieved by partitioning the space of
order numbers; each pillar is responsible for executing the
consensus instances for a predefined share of order numbers
given by some calculation formula.

This would not be very effective using the basic proto-
col of Hybster. As with other hybrid protocols, it is strictly
sequential; a replica can only actively participate in a con-
sensus instance for an order number o′ if it has already pro-
cessed all instances with o < o′. Binding messages of proto-
col phases a priori to values of trusted counters that can only
increase directly entails this serialization. Even if distributed
over multiple pillars, the pillars would have to address the se-
quential dependencies among instances. To circumvent the
limitation of its basic protocol, Hybster allows replicas to
certify messages for particular protocol phases with differ-
ent trusted counters and hence enables them to split the work
among multiple independent pillars each equipped with its
own instance of the trusted subsystem TrInX.



Rx U0 U1 U2

1 PREPARE
(v/o req)

0/49 a 0/50 b 0/51 c

COMMIT
(v/o req)

0/49 a 0/50 b 0/51 c

COMMIT
(v/o req)

0/49 a 0/50 b 0/51 c

EXEC-REQUEST
(o req)

49 a 50 b 51 c

Execute request a at 49, b at 50, and c at 51

2 CK-REACHED
50 (state)

d

CHECKPOINT
50 (state)

d

CHECKPOINT
50 (state)

d

CK-STABLE
50

K50

Clean up logs

Rx U0 U1 U2

Perform local view-change preparation protocol

REQUEST-VC
0→ 1

3 PREPARE-VC
0→ 1

UNIT-VC
0→ 1 (Ki Pi)

K40 a K50 ∅ K40 c

VC-READY
0→ 1 (K P )

K50 a∅c

Send VIEW-CHANGE

4 VIEW-CHANGE
0→ 1 (Ki Pi)

∅ ∅ K50 ∅ ∅ c

Perform local new-view protocol

5 VIEW-CHANGE
0→ 1 (vci)

vc0 vc1 vc2

FORWARD-VC
(vci)

vc0 vc2

CONFIRM-VC
(vc)

vc012

Rx U0 U1 U2

VC-CONFIRMED
(vci)

vc0 vc1 vc2

6 NV-READY
0→ 1 (K P )

K50 ∅∅c

Send NEW-VIEW

7 NEW-VIEW
0→ 1 (Ki P

′
i )

∅ ∅ K50 ∅ ∅ c

Perform local stable-view protocol

8 NEW-VIEW
0→ 1 (nvi)

nv0 nv1 nv2

FORWARD-NV
(nvi)

nv0 nv2

CONFIRM-NV
(nv)

nv123

NV-CONFIRMED
(nvi)

nv0 nv1 nv2

NV-STABLE
0→ 1 (K P ′)

K50 ∅∅c

Start ordering or send NEW-VIEW-ACK for view 1

Figure 4. The parallelized ordering, checkpointing, and view-change of Hybster as seen by a replica Rx with three pillars Ui.

5.3.1 Independent Ordering
In Hybster, a replica r is allowed to create message certifi-
cates of the form τ(r(u), . . . ) where r(u) denotes the ID of
the TrInX instance of the pillar u in replica r.

Predefined Consensus Assignment. To prevent faulty repli-
cas from creating conflicting order messages by using dif-
ferent TrInX instances, Hybster exploits the fact that with a
consensus-oriented parallelization, consensus instances are
distributed over pillars in a predefined manner; it is known
a priori which pillar is responsible for which instance. Thus,
an order message of a replica r is only accepted if the at-
tached message certificate τ(r(u),O, v|o,−) is issued by
the TrInX instance associated with the pillar u that is respon-
sible for the order number o. The number of pillars a replica
has and the instance IDs of their associated TrInX instances
are part of the general configuration of a replica group in
Hybster, and are thus equally known to all replicas.

Example. As depicted in Figure 4 from the perspective of
a follower Rx, by binding the association of order numbers,
trusted subsystem instances, and pillars to a particular con-
figuration of the replica group, the parallelized ordering pro-
tocol of Hybster remains very similar to the basic variant:
1 The leader l of a view v = 0 proposes requests a, b, and
c in parallel with order numbers o = 49, 50, and 51 in its
pillars U0, U1, and U2. For this, l issues PREPARE messages
equipped with certificates of the form τ(l(Ui),O, v|o,−).
To be accepted by other replicas, o must be an order number
that is associated to the pillar Ui. The pillars of Rx can pro-
cess the proposals independently and once a pillar collects
a committed certificate for an instance, it sends an internal
EXEC-REQUEST to the execution stage, which, in turn, en-
sures that all requests are delivered to the service implemen-
tation in accordance with their assigned order numbers. As
described in [9], gaps in the sequence of order numbers that
can occur due to independent ordering are closed by propos-
ing empty consensus instances.

5.3.2 Shared Checkpointing
To keep the pillars in step, the checkpointing in a design
with a consensus-oriented parallelization scheme is not car-
ried out separately by each pillar but shared among them.
Which pillar has to execute the protocol for the kth check-
point is determined in a round-robin fashion to distribute the
additional load among all available pillars. As Hybster’s de-
sign allows using a checkpointing protocol that is akin to
traditional protocols not based on a hybrid fault model, the
parallelized variant of Hybster does not need to apply addi-
tional means to ensure the safety of this protocol.
Example. In the example given in Figure 4, 2 a checkpoint
is reached after executing the requests assigned to the order
number 50 and the execution stage sends the digest calcu-
lated over service state and return value vector to the respon-
sible pillar for this checkpoint, here U1. Subsequently, pillar
U1 carries out the instance of the checkpointing protocol.
Once it has collected a quorum of CHECKPOINT messages
K50, it informs all other pillars and the execution stage in
order to allow them to perform garbage collection.

5.3.3 Distributed View-Changes
In the parallelized variant of Hybster, information about on-
going consensus instances is distributed across pillars and
each replica possesses multiple trusted counters O for certi-
fying order messages. The replica-internal view-change nev-
ertheless has to ensure that faulty replicas are forced to re-
veal all supported consensus instances and that they cannot
participate actively in views they have already aborted.
Split External Messages. To achieve this by still maintain-
ing the access to instances of the trusted subsystem local to
pillars, Hybster splits the view-change messages, namely
VIEW-CHANGE, NEW-VIEW, and NEW-VIEW-ACK, re-
sulting in one partial message for each pillar. Still, repli-
cas are only allowed to abort a view completely, that is,
with all of their pillars. Therefore, receiving replicas con-
sider a view-change message only, upon receiving all of its



parts, with the number of parts given by the number of pil-
lars as configured for a particular replica. Moreover, as for
the ordering, partial messages must only contain PREPARE
messages for order numbers the issuing pillar is responsible
for. In doing so, it can be ensured that the contained sets
of PREPARE messages are complete. Due to the parallelized
ordering, the combination of, taken by themselves, com-
plete PREPARE sets, however, can contain gaps. Therefore,
a designated leader must fill the gaps by proposing empty
consensus-instances similar to the approach of PBFT [13].

Example. As illustrated in Figure 4, the view-change of
a replica Rx comprises three local protocols, that are co-
ordinated by one of the pillars, here U1: (1) The local
view-change preparation protocol 3 collects the informa-
tion about all ongoing consensus instances and 4 eventually
instructs all pillars to send their part of the VIEW-CHANGE
message. In the example, pillars U0 and U2 have not yet
received the information that checkpoint 50 became stable
but they learn the checkpoint during the view-change prepa-
ration and adapt their ordering window before they send
their VIEW-CHANGE. (2) 5 Incoming VIEW-CHANGE or
NEW-VIEW-ACK messages are verified by means of the lo-
cal new-view protocol. 6 Once a designated leader of a new
view collected a new-view certificate, 7 it creates and sends
the pillar-specific parts of the NEW-VIEW message. (3) Fi-
nally, 8 a received NEW-VIEW has to be verified and all
pillars have to be informed if a new stable view is reached.
This is the responsibility of the local stable-view protocol.

6. Evaluation
We implemented Hybster in a mainly Java-written proto-
type. The trusted subsystem TrInX is realized on the basis
of Intel SGX, written in C/C++, and connected to the Java
world via the Java Native Interface (JNI).

Subjects. For the evaluation, we use two different configu-
rations of Hybster. In one configuration we use only a sin-
gle pillar for the ordering of requests and supplement it
with an additional thread for the execution stage and mul-
tiple threads for the client handling. This configuration uses
a single instance of TrInX and measures the sequential ba-
sic protocol of Hybster. It resembles a design with a tradi-
tional parallelization scheme, albeit realized in a very effi-
cient and optimized way. We denote this configuration with
HybsterS. In contrast, with HybsterX we refer to a full con-
figuration of Hybster that uses as many threads and TrInX
instances as processor cores are available. In addition, we
implemented PBFT following the consensus-oriented paral-
lelization scheme on the same code base in order to compare
it with Hybster. Besides the standard configuration that uses
authenticators for the certification of messages [13], our im-
plementation of PBFTcop is also able to make use of TrInX
where it certifies messages with signature-like trusted MACs
(see Section 5.1). We call this configuration HybridPBFT.
Neither MinBFT [45], nor A2M-PBFT [15] are directly con-

sidered. It can be argued that HybsterS will always achieve
at least the performance of these protocols. For instance,
MinBFT has to process all incoming messages in-order,
A2M-PBFT uses one additional ordering phase, and only
HybsterS can make use of a rotating leader [9, 43].
Setup. We deploy all considered configurations on a cluster
of six machines, each equipped with an Intel Core i7-6700
CPU comprising four cores running at 3.4 GHz with Hyper-
Threading enabled and Turbo Boost disabled and with four
NICs connected via 1 Gb switched Ethernet. The software
environment of the machines includes a Linux 3.19 kernel,
an OpenJDK 1.8, and the Intel SGX SDK in version 1.6.

In the case of HybsterS and HybsterX, three replicas are
used each hosted by one of the machines. HybridPBFT and
PBFTcop require four replicas and thus four machines. Two
machines are dedicated to run the client implementation that
generates the workload. For that purpose, a configured num-
ber of clients constantly issues a bounded number of asyn-
chronous requests. Clients measure the time it takes to col-
lect a sufficient number of replies from the replica group to
calculate the average latency and throughput. In addition, we
monitor the CPU and network usage on all machines. SHA-
256 is employed for all cryptographic operations. The pre-
sented results are the average of three runs of the benchmark
in question, where each run is conducted over 120 seconds.

6.1 Trusted Subsystem
Before we investigate the performance of the different proto-
col configurations, we evaluate our trusted subsystem TrInX.
For that purpose, we first implemented TrInX as described
throughout this paper; each instance runs in its own trusted
execution environment provided by Intel SGX, is dedicated
to a single thread, and can be used either natively or by Java
processes via JNI. Second, we implemented a variant called
Multi-TrInX which hosts multiple TrInX instances within
a single trusted execution environment accessed by all run-
ning threads. Finally, we compare the SGX-secured versions
against plain, insecure library implementations based on
the cryptography library of the SGX SDK named TCrypto,
on OpenSSL, and on a pure Java implementation. We are
mainly interested in how the variants scale when multiple
processor cores independently certify messages.

Figure 5a shows the throughput achieved by the consid-
ered variants for the certification of 32 byte messages when
the number of available cores is increased and both hardware
threads of each core are used. As expected, the insecure li-
brary implementations scale perfectly since the test does not
entail any synchronization among the threads. Less expected
is that the native library of the SGX SDK, TCrypto, is 20 %
slower than the pure Java version in this scenario and 40 %
compared to OpenSSL. One explanation is that the current
SDK lacks support for special processor instructions accel-
erating cryptographic operations (AES-NI) [7]. Other mea-
surements show that TCrypto can overtake the Java vari-
ant slightly for larger messages; OpenSSL remains out of



0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

0 1 2 3 4 5

Th
ro

u
gh

p
u

t 
[1

,0
0

0
 o

p
s/

s]
 

Number of cores (2 hardware threads each) 

TrInX (native)
TrInX (JNI)
Multi-TrInX (native)
TCrypto (native)
OpenSSL (native)
Java

(a) Trusted subsystem

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5

Th
ro

u
gh

p
u

t 
[1

,0
0

0
 o

p
s/

s]
 

Number of cores (2 hardware threads each) 

HybsterX
HybsterS
HybridPBFT
PBFTcop

(b) 0 bytes, unbatched, rotation

0

200

400

600

800

1,000

1,200

0 1 2 3 4 5

Th
ro

u
gh

p
u

t 
[1

,0
0

0
 o

p
s/

s]
 

Number of cores (2 hardware threads each) 

HybsterX
HybsterS
HybridPBFT
PBFTcop

(c) 0 bytes, batched, rotation

Figure 5. Throughput of trusted subsystem for certifying 32 byte messages (a) and of protocols with rotating leader (b, c).

range. The secured standard TrInX implementation scales
quite well, although not perfectly, up to 1.3 million certifica-
tion operations per seconds (ops/s) when natively accessed
simultaneously on four cores. The loss incurred by access-
ing it via JNI is relatively small. The Multi-TrInX version
performs comparable to the others up to three cores with six
threads but falls back using four cores. Since we took care
that counters are not placed on the same cache line, an expla-
nation could be that entering the same trusted environment
by different threads incurs some synchronization overhead
on the SDK or processor level. In any case, multiplying the
subsystem instead of extending it is indeed the better alterna-
tive. Borrowing the numbers for the state-of-the-art trusted
subsystems, the FPGA-based CASH from [28] where the
certification of 32 byte messages with SHA-256 was mea-
sured with 57 microseconds, the advantage is clearly on the
side of TrInX: CASH achieves 17,500 certifications per sec-
onds whereas we measure 240,000 for a single instance of
TrInX. More important, even if it supported an arbitrary
number of counters, CASH can only be connected by a sin-
gle channel, TrInX instead scales by multiplication.

6.2 Multiple Cores and Scalability
Our first benchmark of the aforementioned protocol config-
urations determines the maximum achievable throughput in
our setup with an increasing number of available processor
cores. We deploy all protocols with a microbenchmark ser-
vice that returns empty results without any calculation.

The results for configurations with a rotating leader are
presented in Figure 5b and Figure 5c; in the former case sin-
gle consensus instances order single requests and in the latter
case batches of requests. With a maximum number of only
four cores, all measurements are CPU-bound, the network
remains underutilized even when a fixed leader is used. As
can be seen, HybsterS is the only configuration confined by a
sequential ordering protocol. Without batching, it can hardly
exceed 40,000 ops/s, with batching, it starts with 260,000
and reaches its limit with roughly 400,000 ops/s. Making
use of a consensus-oriented parallelization, PBFT attains up
to 140,000 unbatched ops/s and 890,000 with batching en-
abled. Its hybrid variant, HybridPBFT, is about 30 % slower
when one consensus instance for each request is required
and thus a lot of small messages have to be processed. Em-
ploying authenticators, PBFT calculates for a protocol phase

about three cryptographic hashes for one outgoing and three
hashes for incoming messages (depending on the thread con-
figuration 1.5 to 2.6 µs for a 32 byte message). HybridPBFT
requires in total only four instead of six hash operations but
needs to enter the secure mode (2.4 µs for the mode switch
+ 0.3 µs for JNI) and suffers from a slow hash implemen-
tation (1.6 to 3.4 µs for 32 bytes); the smaller and stronger
certificates are irrelevant for this test. However, HybridPBFT
catches up when batches are ordered. Relying on three repli-
cas, HybsterX requires a total of three hash operations and
can make use of a two-phase ordering opposed to the three
phases in (Hybrid)PBFT. With 15 to 20 %, its advantage
compared to PBFT is however limited; also HybsterX has to
use the cryptographic library of the current SGX SDK. How-
ever, with 165,000 unbatched and 1,040,000 batched ops/s, it
achieves a speedup of 2.5 to 4 compared to its sequential but
still rotating basic protocol. The to our knowledge highest
published numbers for batched throughput of hybrid proto-
cols so far: 63,000 ops/s for MinBFT and 72,000 ops/s for
CheapBFT (measured on quad-core machines with 2.3 GHz
connected via 1GbE) [28]. In addition, HybsterX is the first
hybrid protocol able to scale; the speedup factors in our
batched setup for four cores compared to one core: 3.77 with
and 3.91 without rotating the leader.

6.3 Payloads and Latency
Next, we evaluate the average response time of all protocol
configurations and how it behaves with an increasing work-
load and different payloads for requests and replies. Fig-
ure 6a shows the outcome of the measurements for all con-
figurations without any payload and Figure 6b with a pay-
load of 1 kilobyte for requests as wells as replies. Batching is
enabled and rotation is disabled for both. Benchmarks with
128 bytes and 4 kilobytes yielded similar results.

Without payload, all protocol configurations start with a
minimum latency of roughly 500 to 600 microseconds for
sending a request, ordering it, and sending back at least two
(f +1) replies. HybsterX is able to take full advantage of its
two-phase ordering and exhibits approximately 20 % lower
latencies than its competitors (four vs. five message delays
in sum). HybsterS is limited by its sequential execution, the
latencies are comparable to PBFT and HybridPBFT that re-
quire one additional ordering phase. As expected, this holds
until the protocols reach their individual saturation: Hyb-



0

20

40

60

80

100

120

140

160

0 200 400 600 800 1000

La
te

n
cy

 [
m

s]
 

Throughput [1,000 ops/s] 

HybsterX
HybsterS
HybridPBFT
PBFTcop

(a) 0 bytes, batched, no rotation

0

10

20

30

40

50

60

70

80

0 25 50 75 100 125

La
te

n
cy

 [
m

s]
 

Throughput [1,000 ops/s] 

HybsterX
HybsterS
HybridPBFT
PBFTcop

(b) 1 kilobyte, batched, no rotation

0

200

400

600

800

1,000

1,200

0% 25% 50% 75% 100%

Th
ro

u
gh

p
u

t 
[1

,0
0

0
 o

p
s/

s]
 

Percentage of read requests 

HybsterX
HybsterS
HybridPBFT
PBFTcop

(c) Coordination service (128 bytes)

Figure 6. Microbenchmark with different payloads (a, b) and coordination service with varying read/write rate (c).

sterS has its limit at 310,000, PBFT at 660,000, HybridPBFT
at 810,000, and HybsterX at 900,000 ops/s. The numbers for
the benchmark with 1 kilobyte payload are lower but com-
parable. One difference is that the network becomes an ad-
ditional limiting factor in this test while the measurements
without payload are completely CPU-bound. This explains
why it takes longer from the first indication of a saturation
until the saturation actually sets in.

6.4 Coordination Service
To conclude our evaluation, we now consider a replicated,
ZooKeeper-inspired coordination service [27]. The service
offers a hierarchical namespace of nodes and the possibility
of creating such nodes, to destroy them, and to store data
within them. Together with other functions, this API can be
employed by groups of clients to implement coordination
tasks. Unlike ZooKeeper, the coordination service consid-
ered here does not make use of read-optimizations, and thus
provides strong consistency. We measure the throughput for
a setup in which clients saturate the system by storing and
retrieving nodes with 128 bytes of data. We vary the pro-
portion of read operations; an increasing read rate leads to
a lower number of large requests but to a higher number
of large replies. We do not use rotation in this experiment,
therefore, a single replica has to propose all client requests.

The results depicted in Figure 6c confirm the findings
of the previous microbenchmarks. HybsterX attains a 10 to
20 % higher throughput than the hybrid PBFT configuration
and 30 to 40 % compared to the original PBFT protocol
realized with a consensus-oriented parallelization scheme.
Again, compared to its own sequential basic protocol, it is
able to exhibit a speedup of 2.5 to 3.0 and is only confined
by the few number of cores provided by the test machines.

7. Related Work
There is a large body of work aimed at minimizing the over-
head associated with Byzantine fault-tolerant state-machine
replication in general, and its resource overhead in particular.
In this context, many of the proposed approaches have con-
centrated on reducing implementation costs [14, 24], com-
munication steps [19, 26, 30] or execution delays [21, 29,
31], but have not minimized the number of replicas a BFT
system consists of. As a first step towards this goal, Yin et
al. [48] presented a BFT architecture that separates agree-

ment from execution and relies on dedicated clusters of
replicas to handle each of these tasks. This allows the mini-
mum number of execution replicas to be as low as 2f + 1.

While reducing the number of execution replicas below
3f+1 is possible by changing the structural organization of a
BFT system, reducing the minimum number of replicas that
participate in the ordering of client requests requires parts of
the system to be trusted [15, 17, 18, 20, 22, 28, 37, 42, 44,
45]. Depending on the particular approach, a trusted subsys-
tem may include an entire virtualization layer [22, 37, 44],
a multicast ordering service executed on a hardened Linux
kernel [17, 18], a centralized configuration service [42], or
a trusted log [15], or may be as small as a trusted platform
module [44, 45], a smart card [32], or an FPGA [20, 28].
A key insight in this regard is that subsystems with smaller
trusted computing bases are less likely to fail arbitrarily (e.g.,
as the result of a successful attack) and consequently more
likely to justify the trust placed in them. On the other hand,
small trusted subsystems such as trusted platform modules
and smart cards tend to have limited performance capabili-
ties compared with their larger counterparts [28] and there-
fore pose the danger of becoming a bottleneck.

The problem of parallelizing state-machine replication
has previously been investigated in the context of both crash
tolerance [25, 33, 39] as well as Byzantine fault tolerance [9,
29, 31]. Hybster is the first highly parallelizable replication
protocol for hybrid systems, a domain in which all protocols
proposed so far require some kind of sequential processing.

8. Conclusion
Hybster is a new state-machine replication protocol based on
a hybrid fault model that has been designed after a thorough
analysis of existing proposals. It unifies their strengths and
addresses their weaknesses by taking different routes when it
comes to ensuring safety and exploiting the potential of most
recent multi-core processors. Hybster is relaxed with regard
to faulty replicas while remaining safe; it is parallelizable
by embracing the consensus-oriented parallelization scheme
and marrying it with trusted execution environments; it is
formal, it is backed by a comprehensive specification [8] that
facilitates reasoning about it; and Hybster is simply fast, it
achieves over 1 million operations per second in a setup with
only four cores, excelling other published systems by more
than an order of magnitude.



References
[1] http://www.businessinsider.com/amazons-cloud-

can-handle-1-million-transactions-per-second-
2012-4.

[2] https://gigaom.com/2011/12/06/facebook-shares-
some-secrets-on-making-mysql-scale.

[3] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Re-
iter, and J. J. Wylie. Fault-scalable Byzantine fault-tolerant
services. In Proceedings of the 20th Symposium on Operating
Systems Principles (SOSP ’05), pages 59–74, 2005.

[4] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Byzantine replica-
tion under attack. In Proceedings of the 38th International
Conference on Dependable Systems and Networks (DSN ’08),
pages 197–206, 2008.

[5] ARM. Security technology building a secure system using
TrustZone technology (white paper). ARM Limited, 2009.

[6] P.-L. Aublin, S. B. Mokhtar, and V. Quéma. RBFT: Redun-
dant Byzantine fault tolerance. In Proceedings of the 33rd
International Conference on Distributed Computing Systems
(ICDCS ’13), pages 297–306, 2013.

[7] J. Aumasson and L. Merino. SGX Secure Enclaves
in Practice – Security and Crypto Review. https :
//www.blackhat.com/docs/us- 16/materials/us-
16-Aumasson-SGX-Secure-Enclaves-In-Practice-
Security-And-Crypto-Review.pdf, 2016.

[8] J. Behl, T. Distler, and R. Kapitza. Hybster — A highly par-
allelizable protocol for hybrid fault-tolerant service replica-
tion. http://publikationsserver.tu-braunschweig.
de/get/64440.

[9] J. Behl, T. Distler, and R. Kapitza. Consensus-oriented par-
allelization: How to earn your first million. In Proceedings
of the 16th Middleware Conference (Middleware ’15), pages
173–184, 2015.

[10] A. Bessani, J. Sousa, and E. Alchieri. State machine replica-
tion for the masses with BFT-SMaRt. In Proceedings of the
44th International Conference on Dependable Systems and
Networks (DSN ’14), pages 355–362, 2014.

[11] M. Castro. Practical Byzantine Fault-Tolerance. PhD thesis,
MIT, 2001.

[12] M. Castro and B. Liskov. A correctness proof for a practi-
cal Byzantine-fault-tolerant replication algorithm. Technical
report, Cambridge, MA, USA, 1999.

[13] M. Castro and B. Liskov. Practical Byzantine fault toler-
ance. In Proceedings of the 3rd Symposium on Operating Sys-
tems Design and Implementation (OSDI ’99), pages 173–186,
1999.

[14] M. Castro, R. Rodrigues, and B. Liskov. BASE: Using ab-
straction to improve fault tolerance. ACM Transactions on
Computer Systems, 21(3):236–269, 2003.

[15] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz.
Attested append-only memory: Making adversaries stick to
their word. In Proceedings of 21st Symposium on Operating
Systems Principles (SOSP ’07), pages 189–204, 2007.

[16] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti.
Making Byzantine fault tolerant systems tolerate Byzantine

faults. In Proceedings of the 6th Symposium on Networked
Systems Design and Implementation (NSDI ’09), pages 153–
168, 2009.

[17] M. Correia, N. F. Neves, L. C. Lung, and P. Veríssimo. Worm-
IT – A wormhole-based intrusion-tolerant group communica-
tion system. Journal of Systems and Software, 80(2):178–197,
2007.

[18] M. Correia, N. F. Neves, and P. Veríssimo. How to tolerate half
less one Byzantine nodes in practical distributed systems. In
Proceedings of the 23rd Symposium on Reliable Distributed
Systems (SRDS ’04), pages 174–183, 2004.

[19] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira.
HQ replication: A hybrid quorum protocol for Byzantine fault
tolerance. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI ’06), pages 177–
190, 2006.

[20] T. Distler, C. Cachin, and R. Kapitza. Resource-efficient
Byzantine fault tolerance. IEEE Transactions on Computers,
65(9):2807–2819, 2016.

[21] T. Distler and R. Kapitza. Increasing performance in Byzan-
tine fault-tolerant systems with on-demand replica consis-
tency. In Proceedings of the 6th European Conference on
Computer Systems (EuroSys ’11), pages 91–105, 2011.

[22] T. Distler, R. Kapitza, I. Popov, H. P. Reiser, and W. Schröder-
Preikschat. SPARE: Replicas on hold. In Proceedings of
the 18th Network and Distributed System Security Sympo-
sium (NDSS ’11), pages 407–420, 2011.

[23] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
the ACM, 32:374–382, Apr. 1985.

[24] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić. The
next 700 BFT protocols. In Proceedings of the 5th European
Conference on Computer Systems (EuroSys ’10), 2010.

[25] Z. Guo, C. Hong, M. Yang, D. Zhou, L. Zhou, and L. Zhuang.
Rex: Replication at the speed of multi-core. In Proceedings
of the 9th European Conference on Computer Systems (Eu-
roSys ’14), 2014.

[26] J. Hendricks, S. Sinnamohideen, G. R. Ganger, and M. K.
Reiter. Zzyzx: Scalable fault tolerance through Byzantine
locking. In Proceedings of the 40th International Conference
on Dependable Systems and Networks (DSN ’10), pages 363–
372, 2010.

[27] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:
Wait-free coordination for Internet-scale systems. In Pro-
ceedings of the 2010 USENIX Annual Technical Conference
(ATC ’10), pages 145–158, 2010.

[28] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mo-
hammadi, W. Schröder-Preikschat, and K. Stengel. Cheap-
BFT: Resource-efficient Byzantine fault tolerance. In Pro-
ceedings of the 7th European Conference on Computer Sys-
tems (EuroSys ’12), pages 295–308, 2012.

[29] M. Kapritsos, Y. Wang, V. Quéma, A. Clement, L. Alvisi,
and M. Dahlin. All about Eve: Execute-verify replication for
multi-core servers. In Proceedings of the 10th Symposium on
Operating Systems Design and Implementation (OSDI ’12),
pages 237–250, 2012.

http://www.businessinsider.com/amazons-cloud-can-handle-1-million-transactions-per-second-2012-4
http://www.businessinsider.com/amazons-cloud-can-handle-1-million-transactions-per-second-2012-4
http://www.businessinsider.com/amazons-cloud-can-handle-1-million-transactions-per-second-2012-4
https://gigaom.com/2011/12/06/facebook-shares-some-secrets-on-making-mysql-scale
https://gigaom.com/2011/12/06/facebook-shares-some-secrets-on-making-mysql-scale
https://www.blackhat.com/docs/us-16/materials/us-16-Aumasson-SGX-Secure-Enclaves-In-Practice-Security-And-Crypto-Review.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Aumasson-SGX-Secure-Enclaves-In-Practice-Security-And-Crypto-Review.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Aumasson-SGX-Secure-Enclaves-In-Practice-Security-And-Crypto-Review.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Aumasson-SGX-Secure-Enclaves-In-Practice-Security-And-Crypto-Review.pdf
http://publikationsserver.tu-braunschweig.de/get/64440
http://publikationsserver.tu-braunschweig.de/get/64440


[30] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. In Proceed-
ings of the 21st Symposium on Operating Systems Principles
(SOSP ’07), pages 45–58, 2007.

[31] R. Kotla and M. Dahlin. High throughput Byzantine fault tol-
erance. In Proceedings of the 34th International Conference
on Dependable Systems and Networks (DSN ’04), pages 575–
584, 2004.

[32] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda.
TrInc: Small trusted hardware for large distributed systems.
In Proceedings of the 6th Symposium on Networked Systems
Design and Implementation (NSDI ’09), 2009.

[33] P. J. Marandi, C. E. Bezerra, and F. Pedone. Rethinking
state-machine replication for parallelism. In Proceedings of
the 34th International Conference on Distributed Computing
Systems (ICDCS ’14), pages 368–377, 2014.

[34] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar. Innova-
tive instructions and software model for isolated execution. In
Proceedings of the 2nd Workshop on Hardware and Architec-
tural Support for Security and Privacy (HASP ’13), 2013.

[35] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The honey
badger of BFT protocols. In Proceedings of the 2016 Confer-
ence on Computer and Communications Security (CCS ’16),
pages 31–42, 2016.

[36] M. Pease, R. Shostak, and L. Lamport. Reaching agreement
in the presence of faults. Journal of the ACM, 27(2):228–234,
1980.

[37] H. P. Reiser and R. Kapitza. Hypervisor-based efficient proac-
tive recovery. In Proceedings of the 26th Symposium on Reli-
able Distributed Systems (SRDS ’07), pages 83–92, 2007.

[38] J. M. Rushby. Design and verification of secure systems.
In Proceedings of the 8th Symposium on Operating Systems
Principles (SOSP ’81), pages 12–21, 1981.

[39] N. Santos and A. Schiper. Achieving high-throughput state
machine replication in multi-core systems. In Proceedings of
the 33rd International Conference on Distributed Computing
Systems (ICDCS ’13), pages 266–275, 2013.

[40] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computing
Surveys, 22(4):299–319, 1990.

[41] J. Sousa and A. Bessani. From Byzantine consensus to BFT
state machine replication: A latency-optimal transformation.
In Proceedings of the 9th European Dependable Computing
Conference (EDCC ’12), pages 37–48, 2012.

[42] R. van Renesse, C. Ho, and N. Schiper. Byzantine chain
replication. In Principles of Distributed Systems, pages 345–
359. Springer, 2012.

[43] G. S. Veronese, M. Correia, A. Bessani, and L. C. Lung.
Spin one’s wheels? Byzantine fault tolerance with a spinning
primary. In Proceedings of the 28th Symposium on Reliable
Distributed Systems (SRDS ’09), pages 135–144, 2009.

[44] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung.
EBAWA: Efficient Byzantine agreement for wide-area net-
works. In Proceedings of the 12th Symposium on High-

Assurance Systems Engineering (HASE ’10), pages 10–19,
2010.

[45] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and
P. Veríssimo. Efficient Byzantine fault-tolerance. IEEE Trans-
actions on Computers, 62(1):16–30, 2013.

[46] M. Vukolić. The quest for scalable blockchain fabric: Proof-
of-work vs. BFT replication. In IFIP WG 11.4 Workshop on
Open Research Problems in Network Security (iNetSec ’15),
pages 112–125, 2015.

[47] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cec-
chet. ZZ and the art of practical BFT execution. In Pro-
ceedings of the 6th European Conference on Computer Sys-
tems (EuroSys ’11), pages 123–138, 2011.

[48] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for Byzan-
tine fault tolerant services. In Proceedings of the 19th Sym-
posium on Operating Systems Principles (SOSP ’03), pages
253–267, 2003.


	Introduction
	Background
	Hybrid Yet Parallel – The Problem and the Approach
	Existing Hybrids Revisited
	Someone to Trust
	Cope with Equivocation
	Order Requests
	Change Views to Conclude

	Hybster
	TrInX – SGX-Based Trusted Counters
	The Basic Protocol
	Ordering
	Checkpointing
	View-Changes

	COP Inside
	Independent Ordering
	Shared Checkpointing
	Distributed View-Changes


	Evaluation
	Trusted Subsystem
	Multiple Cores and Scalability
	Payloads and Latency
	Coordination Service

	Related Work
	Conclusion

