
Consensus-Oriented Parallelization:
How to Earn Your First Million

Johannes Behl
TU Braunschweig

behl@ibr.cs.tu-bs.de

Tobias Distler
FAU Erlangen-Nürnberg

distler@cs.fau.de

Rüdiger Kapitza
TU Braunschweig

rrkapitz@ibr.cs.tu-bs.de

ABSTRACT
Consensus protocols employed in Byzantine fault-tolerant
systems are notoriously compute intensive. Unfortunately,
the traditional approach to execute instances of such pro-
tocols in a pipelined fashion is not well suited for mod-
ern multi-core processors and fundamentally restricts the
overall performance of systems based on them. To solve
this problem, we present the consensus-oriented paralleliza-
tion (COP) scheme, which disentangles consecutive consen-
sus instances and executes them in parallel by independent
pipelines; or to put it in the terminology of our main target,
today’s processors: COP is the introduction of superscalar-
ity to the field of consensus protocols. In doing so, COP
achieves 2.4 million operations per second on commodity
server hardware, a factor of 6 compared to a contemporary
pipelined approach measured on the same code base and a
factor of over 20 compared to the highest throughput num-
bers published for such systems so far. More important,
however, is: COP provides up to 3 times as much through-
put on a single core than its competitors and it can make
use of additional cores where other approaches are confined
by the slowest stage in their pipeline. This enables Byzan-
tine fault tolerance for the emerging market of extremely
demanding transactional systems and gives more room for
conventional deployments to increase their quality of service.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.4.5 [Operating Systems]: Fault Tolerance; D.4.7
[Operating Systems]: Distributed Systems

General Terms
Design, Performance, Reliability

Keywords
Multi-Core, Scalability, BFT, State-Machine Replication

This work was partially supported by the German Research Council (DFG) under grant
no. KA 3171/1-2 and DI 2097/1-2.

c© Behl et al. 2015. This is the author’s version of the work. It is posted here for
your personal use. Not for redistribution. The definitive version was published in
Proceedings of the 16th International Middleware Conference.

Middleware ’15, December 07 - 11, 2015, Vancouver, BC, Canada
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3618-5/15/12 ...$15.00.
http://dx.doi.org/10.1145/2814576.2814800

1. INTRODUCTION
The world has been becoming small and it tends to meet

at central places. As a consequence, services face unprece-
dented loads: Financial systems, cloud infrastructures, and
social platforms have to cope with hundreds of thousands or
even several millions of transactions per second [1, 2, 3]. For-
tunately, the raising demand for extremely high throughputs
and low latencies is backed by new hardware technologies:
Multi- and many-core processors provide plenty of comput-
ing power, 10 gigabit Ethernet and InfiniBand give precious
network bandwidth, SSDs and upcoming NVRAM promise
to alleviate the bottleneck persistent storage. Thus, it is
not surprising that vendors of infrastructure and platform
services try to make use of these technologies and prepare
their offerings for almost incredible utilization [4, 5].

The problem: The sheer amount of hardware used in data
centers and cloud infrastructures to handle such workloads
leads to a situation where failures of system components
cannot be considered as exceptions, they are the rule [9].
Moreover, with raising complexity and smaller semiconduc-
tor feature sizes hardware will presumably become even less
reliable [12]. Nevertheless, unavailability due to failures is
not an option for services that connect millions and billions
of people and transact business in corresponding scale.

All this would yield a perfect ground for Byzantine fault-
tolerant (BFT) systems. Such systems are able to withstand
a bounded number of arbitrary faults and usually follow the
state-machine approach [13, 20, 28] or some variation of it: A
service implementation is replicated across multiple servers
and a consensus protocol carried out in consecutive instances
is used to establish an order in which the service replicas
process incoming requests to ensure consistency. Such BFT
consensus protocols make heavy use of compute-intensive
cryptographic operations, involve several rounds of message
passing between the replicas, and in most cases constantly
log to persistent storage. Hence, BFT systems would not
only help against the increasing susceptibility to errors of
today’s and tomorrow’s platforms but would at the same
time greatly benefit from their extraordinary performance.

However, if software is not able to parallelize, it cannot
profit from processors that scale more in width than depth,
that scale more in numbers of cores than with their single-
core performance. Highest bandwidth is not much worth
when the application that is supposed to use it cannot keep
the pace because it is limited by its inefficient use of actually
available computing resources. And when new memory tech-
nologies are accessed by the same mechanisms once devised
for the good old rotating hard disc drive, they can never
show their full potential. In short, software has to respect

the peculiarities of underlying platforms to get maximum
performance out of them; and in this respect, current BFT
implementations have at least much room for improvements.

One fundamental bottleneck of contemporary BFT sys-
tems is their approach for parallelizing the execution of the
consensus protocol. Usually, the implementation of the pro-
tocol is decomposed into functional modules such as the
management of client communication, replica message ex-
change, or the protocol logic. To support multi-core pro-
cessors, these modules are put into stages of a processing
pipeline and executed in parallel [11, 14]. This allows to han-
dle the interdependencies of consecutively performed con-
sensus instances and to preserve the established order on re-
quests in a straightforward manner. In fact, such a design is
so natural that not only BFT systems end up with it but also
other replicated systems that make use of consensus proto-
cols [10, 19, 26]. However, pipelines have the property that
they can only be as fast as their slowest stage. Indeed, to our
knowledge, the highest throughput published for BFT sys-
tems so far is about 90,000 operations per second [11]; hence
not enough for a lot of critical services nowadays. Unfortu-
nately, this problem cannot be solved by just using a bigger
iron because it is inherent to the design. Moreover, and as
our evaluation shows, parallelizing the stages of a pipeline
is not well suited to use modern processors efficiently.

Following these observations, we present COP, the consen-
sus-oriented parallelization scheme. COP’s basic approach
is to lower the dependencies between consecutive consensus
protocol instances, to process them in independent pipelines,
and to parallelize these pipelines in their entirety and not the
single stages they are composed of. Briefly, one could think
of COP as a superscalar design for replicated systems. That
way, the throughput of consensus instances scales well with
the number of operations a system has to process concur-
rently as long as there are enough computing and network
resources available. On our commodity servers with 12 cores
and aggregated 4 gigabit Ethernet bandwidth, our COP pro-
totype achieves 2.4 million operations per second whereas
a traditional pipelined configuration of the same prototype
is saturated at 400 thousand operations. More important
than these raw absolute numbers is: (1) COP scales. It can
make use of additional hardware resources where the pipe-
lined approach is limited by the slowest stage. (2) COP is
efficient. Even in a single-core setup where all approaches
are essentially compute-bound, it delivers up to 3 times as
much throughput as the state of the art. In sum, the per-
formance gained by COP can be used to employ Byzantine
fault tolerance on central critical services with their almost
insatiable throughput demand, or to increase the quality of
service of less demanding applications by investing it in ad-
ditional means for robustness or better latency guarantees.

The remainder of this paper is structured as follows: Sec-
tion 2 provides background on contemporary BFT systems
and Section 3 analyzes their implementations. Sections 4
and 5 present and evaluate COP, respectively. Finally, Sec-
tion 6 discusses related work and Section 7 concludes.

2. BFT STATE-MACHINE REPLICATION
In the following, we give an overview of the fundamentals

of BFT state-machine replication [13, 24] and analyze the
costs of the most important recurring tasks. Please refer
to Section 3 for a discussion on how the concepts presented
below are implemented in state-of-the-art BFT systems.

PREPREPARE PREPARE COMMIT REPLY

Execution Agreement

Execution Agreement

Replica 1

Replica N

Client

Client

Client

Figure 1: BFT state-machine replication.

2.1 Overview
In recent years, a large number of BFT systems based on

state-machine replication have been proposed [7, 11, 13, 14,
17, 20, 23, 29, 30, 32]. Despite their individual differences,
they all rely on the same basic control flow, shown in Fig-
ure 1: To invoke an operation, a client sends a request to
the replicated service where the request is then handled by
a BFT consensus protocol such as PBFT [13]. The protocol
is used by replicas to agree on a unique sequence number as-
signed to the request, which establishes a global total order
on all the operations invoked at the service. By executing
requests in this order, non-faulty replicas ensure that their
states are kept consistent. Having processed a request, a
replica sends the corresponding reply back to the client. The
client accepts the result after having verified its correctness
based on a comparison of the replies from different replicas.

2.2 Recurring Tasks and Their Costs
Below, we identify important tasks a replica needs to per-

form over and over again to provide its service. Besides pre-
senting details on these tasks, we also analyze their resource
costs in terms of CPU and network, as such information is
crucial for assessing performance scalability (see Section 3).

Message Authentication. Clients and replicas in a
BFT system authenticate the messages they send to en-
able recipients to verify that a message received (1) has not
been corrupted or altered during transmission and (2) origi-
nates from the alleged sender. Non-faulty nodes only process
messages that are properly authenticated. The particular
method of authentication used varies between different sys-
tems. However, in all cases it is assumed that an adversary
is computationally bounded and thus not able to manipulate
messages or send messages on another node’s behalf.

Message authentication is usually one of the most CPU-
intensive tasks in a BFT system. This is especially relevant
for use cases in which messages are large and the cost of
computing certificates in consequence more expensive.

Agreement. A consensus protocol ensures that all non-
faulty replicas agree on the same sequence number for a
request, even if some of them are faulty. To guarantee this,
a protocol instance consists of multiple phases. In the first

phase, a dedicated replica, the leader, proposes a request
and a sequence number to the other replicas, the followers.
After that, subsequent phases are run to validate that the
leader has provided followers with the same proposal and to
ensure that non-faulty replicas commit to the same request.

Agreeing on a request requires multiple phases of one-to-
all as well as all-to-all message exchanges and consequently
is responsible for a large part of inter-replica network traffic.
Apart from authenticating messages, the computational cost
of executing the logic of a BFT consensus protocol is low. A
common technique applied to reduce agreement overhead is
batching [7, 11, 13, 14, 17, 20, 23, 29, 30, 32], that is, ordering
multiple requests using the same protocol instance. Com-
pared with agreeing on single requests, batching offers the
benefit of requiring fewer messages to be authenticated and
exchanged, which saves both CPU and network resources.
The amount of data to be transmitted over the network can
be further reduced by performing the agreement on hashes
of requests instead of the requests themselves [13].

Execution. After a request has been committed by the
consensus protocol, it is handed over to the execution unit
of a replica. This unit hosts an instance of the service im-
plementation and is in charge of processing requests in the
order of their sequence numbers. As soon as the result is
available, a replica sends a reply back to the client.

The CPU cost of executing a client request highly depends
on the individual characteristics of the service implementa-
tion deployed: more complex applications typically involve a
higher computational overhead. Furthermore, resource costs
also differ between operations. With regard to network re-
sources, for example, read operations usually lead to larger
replies than write operations and therefore require more data
to be sent. Some BFT systems minimize this overhead by
letting only a single replica respond with the full reply while
all other replicas return reply hashes [13, 14, 20].

Checkpointing. To cope with situations where replicas
connect or reconnect to the group, BFT protocols must log
all exchanged protocol messages. To bound the size of the
log, replicas regularly agree on checkpoints including a hash
of the current service state and clean up all older messages.

Creating that hash can be expensive in terms of CPU cost,
especially when the service state is large. Service implemen-
tations can help to lower this cost by calculating parts of the
final hash in advance, for example, when write operations
are executed. Concerning network resources, agreeing on
checkpoints requires only a single all-to-all communication
phase. How resource-intensive checkpoints are in relation
to the normal request processing depends on the interval in
which they are established; usually, it is set to a couple of
hundreds or thousands of performed consensus instances.

3. BFT IMPLEMENTATIONS TODAY
In order to carry out the basic tasks described in the previ-

ous section, replicas of BFT systems usually rely on an archi-
tecture similar to the one illustrated in Figure 2: A request is
received by a module responsible for the network connection
to the client. After verified, the request is handed over to a
module that combines multiple requests to a batch, which
can then be ordered in a single consensus protocol instance.
The multiple phases of such instances are coordinated by a
module that encapsulates the protocol logic. For exchang-
ing protocol messages, connections to the other replicas are

HARDWARE

Service
Execution

CC

CC

CC

Client
Mngmt.

Protocol
Logic

Crypto Checkpoint

RC RC

C1

C2

C4

C3

C5

Replica Process CC: Client Connection
RC: Replica Connection

: Thread

Figure 2: Architecture overview of a contemporary
BFT replica utilizing task-oriented parallelization.

maintained. The cryptographic operations necessary to au-
thenticate messages can either be performed in-place or by a
separated module. Exchanged messages are logged and reg-
ularly cleaned up after the replicas have agreed on a check-
point. Once the order of a request or a batch of requests is
settled, it is delivered to the service implementation. When
executed, the result of a request is sent to the corresponding
client via the client connection (not depicted in the figure).

3.1 Task-Oriented Parallelization
The contemporary approach to parallelize such an archi-

tecture is to regard each replica as processing pipeline where
requests are concurrently received, ordered, executed, and fi-
nally replied [11, 14]1. For this, single functional modules
are separated and executed as pipeline stages in own threads.
It is possible, for instance, to decouple the execution of the
consensus protocol from the execution of the service imple-
mentation. In addition, client handling, batch compilation,
as well as the communication between replicas are also can-
didates for own stages. Eventually, such an approach leads
to a replica architecture where basic tasks are carried out by
dedicated threads that exchange their performed work via
in-memory queues to preserve the established request order.
That is, it leads to a task-oriented parallelization [27] and
an architecture resembling staged event-driven designs [31].

Although multi-cores can be used to some extent, paral-
lelizing replicas that way has several disadvantages:

Limited Throughput. Pipelines are only as fast as their
slowest indivisible stage. If the thread of a stage saturates
a processor core completely, it does not make any difference
how many other stages the pipeline comprises or how many
other cores are idle, the throughput of the replica will be
determined by this fully-loaded stage. Similarly, if a connec-
tion consumes the entire bandwidth of a network adapter,
without further measures, additional adapters or connec-
tions usually do not increase performance.

Limited Parallelism. In a task-oriented parallelization
scheme, the degree of parallelism is bound to the number of

1In fact, this is not confined to BFT systems but does also
apply to other replicated systems that use leader-based con-
sensus protocols to order requests [10, 19, 26].

tasks. If there are more cores available than tasks to carry
out, not all cores can be utilized. If there are more tasks than
cores, on the other hand, it incurs unnecessary scheduling
overhead. Generally, task-oriented parallelization makes it
difficult to align the number of threads to the number of
cores a specific platform offers.

Asymmetric Load. A general objective to improve the
throughput of a platform is to utilize its resources (e.g., cores
and network adapters) as evenly as possible. Considering
today’s standard processors with homogeneous cores, this
means that the replica’s threads of execution should have
an equal workload. In a pipelined architecture and a task-
oriented parallelization scheme, this can hardly be accom-
plished since stages of a pipeline inherently fulfill different
tasks, which makes it very difficult to balance their load.

High Synchronization Overhead. Compared to the
raw computational performance today’s processors are able
to deliver, moving data from one core to another, is a very
expensive undertaking [15]. Consequently, the pipeline ap-
proach of fixing the processing stations and transporting the
processed data (e.g., requests) from one station to the next
one is not optimal. In general, handing data over to the next
stage executed in a different thread entails the necessity of
synchronization and therefore impairs scalability.

3.2 Competing Design Decisions
Besides the question, how multi-core processors can be

utilized, implementations of BFT replicas face further de-
sign decisions that largely influence performance but that
typically do not have a simple answer.

Sequential vs. Parallelized Protocol Logic. Concern-
ing the protocol logic, one question is whether this central
driver for the ordering of requests and agreement between
replicas should be parallelized. At least, there are good rea-
sons not to do so: (1) Due to the multiple phases BFT
consensus protocols are composed of and due to the fault
model that covers arbitrary behavior, these protocols ex-
hibit complex control flows with many corner cases. Paral-
lelizing the logic could make this part even more complex,
especially since consensus protocols are usually specified in
a sequential manner. (2) By using instances of a consensus
protocol to agree on an order, these instances are not inde-
pendent anymore. They are basically used in a sequence,
which prevents at least an obvious parallelization. (3) Even
if instances were performed in parallel, the order that has
to be created by them must be established at some point;
sooner or later, they have to be serialized in any case.

That is, the potential benefit gained from parallelizing the
protocol logic has to outweigh the entailed extra work. Con-
sidering that, it seems to be more natural to execute the logic
sequentially and optionally to relieve it from some respon-
sibilities. In fact, we are not aware of any BFT prototype
that parallelizes this part or the protocol implementation.

Out-of-Order vs. In-Order Verification. The most
compute-intensive aspect of BFT consensus protocols is the
authentication of messages. Executing this task separately
from the protocol logic can increase the average performance
of a pipelined replica, but at the same time it hampers the
system’s efficiency and thus, can also limit the maximum
achievable performance: Parallelizing the authentication of
outgoing protocol messages does usually not incur greater
difficulties. These messages are initiated by the protocol

logic on the basis of the current state of running instances.
In contrast, if incoming messages are verified independently
of the protocol logic and hence independently of the or-
der established by consensus instances, the current protocol
state is not accessible for these operations. As a result, with
an out-of-order verification, all incoming protocol messages
have to be processed, although, for each protocol phase and
instance, a certain number of exchanged messages is redun-
dant and only required in the case of errors. First processing
a message in-order within the protocol logic and verifying
asynchronously afterwards if necessary usually does not im-
prove the throughput since the verification result is needed
at that moment to proceed with the protocol.

Briefly it can be stated: Verifying incoming messages in-
dependently of the protocol logic, thus out-of-order, is more
effective due to possible parallelization; verifying them in-
order is more efficient, since it can be determined if a mes-
sage and hence its verification is required in the first place.

Single- vs. Multi-Instance. Exhibiting a pipelined ar-
chitecture does not necessarily imply that a BFT replica is
able to process multiple consensus instances simultaneously.
Using a request pipeline, a replica, for example, can process
new incoming requests while it invokes the service imple-
mentation with already ordered ones. Whether the protocol
logic is able to manage the state of multiple ongoing consen-
sus instances is an independent design decision. Of course,
a multi-instance protocol logic promises better throughput,
but supporting multiple instances can make the implementa-
tion significantly more complex and it depends on the rest of
the system if situations can arise where instances complete
out of order. In fact, employing a multi-instance protocol
logic entails similar problems as its parallelization.

4. COP
As discussed in the last section, the traditional approach

for realizing replicas of BFT systems is not very well suited
for today’s multi-core processors. We argue that the prob-
lems are principally caused by regarding replicas primarily
as processing pipelines where requests have to be received,
then ordered, and finally executed and replied; even though
this kind of design might be implied by the state-machine
replication approach and the use of consensus protocols for
creating a total order. Instead of laying the focus on the
tasks that have to be carried out for all requests, or more
general, all jobs, alternatively, one can put the single re-
quests, the single jobs at the center of considerations; one
can emphasize the what opposed to the how. This notion
leads to a replica design where threads are organized around
the jobs that have to be carried out, contrary to the tradi-
tional approach of organizing the threads in a pipeline and
handing over the jobs from one stage to the next one.

4.1 The Basic Concept
Following this, we propose to structure replicas around

the instances of the consensus protocol employed within the
system to agree on operations. Further, we advocate par-
allelizing the execution of these instances as a whole in a
consensus-oriented parallelization scheme (COP), and not
the execution of tasks that have to be performed for all in-
stances as it is the state of the art.

Using a consensus-oriented parallelization as depicted in
Figure 3, consensus instances are assigned to and executed
by so-called pillars. Each pillar runs in a dedicated thread

Client M.

CC

Prot. Logic

Checkpoint

CC

RC RC

Service
Execution

C1 C2

CORE CORE CORE

C3

Client M.

CC

Prot. Logic

Checkpoint

CC

RC RC

CC: Client Connection
RC: Replica Connection
 : Thread

Figure 3: Replica with self-contained pillars of a
Consensus-oriented parallelization (COP).

and possesses private copies of all functional modules re-
quired to perform the entire consensus protocol and the
client handling. That means, pillars do not share any mod-
ifiable state and are generally separated from each other as
far as possible, for instance, by relying on private connec-
tions to other replicas. They work asynchronously and com-
municate with other components of the replica, if needed,
exclusively via (in-memory) message passing. If a pillar at
the leading replica receives a new request from a client or
enough requests to create a batch, it initiates a new con-
sensus instance by proposing it to the other replicas via its
connections to them. Once a consensus instance has been
completed, the outcome is propagated to the still existing
execution stage.2 Since pillars run in parallel and thus can-
not provide a total order on their own, the execution stage
has to enforce the order by means of the instances’ sequence
numbers before it invokes the service implementation. After
a request has been executed, the reply is handed over to and
sent by the initiating pillar (omitted in the figure).

Such a design has several advantages in conjunction with
today’s multi-core processors, thereby addressing the draw-
backs of traditional implementations discussed in Section 3:

Scaling Throughput and Parallelism. The through-
put of consensus instances can be scaled with the demand as
long as the platform provides the required resources. With
a pipelined approach, the throughput depends on the es-
sentially fixed pipeline that provides the consensus protocol
implementation; it is determined by the slowest stage even if
the platform could provide additional resources. With COP,
the throughput can be increased just by adding additional
pillars.3 Similarly, if the demand is low or the platform ex-
hibits fewer cores, the number of threads can be minimized
by reducing the number of pillars. This avoids unnecessary
scheduling overhead and increases the replica’s efficiency.

2One extension to the basic concept of COP is to partition
the service implementation thereby eliminating also the ex-
ecution stage. See Section 4.3 for more details.
3Which somewhat shamelessly suggests that COP scales
perfectly in terms of instance throughput. That is, however,
only partially true as will be discussed later.

Symmetric Load. Assuming that differences caused by
non-uniform requests are balanced out over time, pillars
have to perform the same work, they all carry out entire in-
stances of the consensus protocol. This is far better suited to
utilize homogeneous processor cores evenly than the stages
of a pipeline, which inherently fulfill different tasks. COP
is symmetric whereas the contemporary approach is asym-
metric. Thus, if one pillar saturates a core, it is likely that
all pillars saturate a core, thereby exploiting the maximum
performance of the available computing resources.

Reduced Synchronization Overhead. One objective
of COP is to keep the number of contention points between
threads as low as possible by separating their work as far as
possible. This does not only increase efficiency, but also its
scalability. Moreover, it reduces situations where data has
to be propagated from one thread to another, which leads
to a better usage of the processor caches.

Conciliated Decisions. Last but not least, COP uses a
parallelized protocol logic. However, instead of splitting the
logic itself as the contemporary pipelined approach could
suggest it, COP leaves the logic for single consensus in-
stances intact and partitions the sequence of instances. That
way, the protocol can still be implemented in close proxim-
ity to its theoretical specification. Compared to a pipelined
design, the implementation could in fact turn out simpler:
While a pipelined design tends to perform auxiliary tasks
asynchronously in own threads, the protocol implementa-
tion in COP can resemble implementations in completely
single-threaded replicas. For instance, cryptographic oper-
ations can be performed in-place when required; the paral-
lelization is carried out on another level. This combines the
effectiveness of out-of-order verification with the efficiency
of the in-order variant. Moreover, although a pillar of COP
can be realized as single-instance processing unit, construct-
ing it such that it can manage multiple ongoing instances at
a time seems to be more logical since most obstacles are
already solved with the parallelized protocol logic.

In sum, where state of the art is to use a single processing
unit for consensus instances and to make use of multi-cores
by dividing this unit into parallelized stages, COP multiplies
the complete unit and allows each instance to run widely
independently; where state of the art is a scalar pipelined
design, COP opts for superscalarity. In doing so, it scales
more in width than in depth, just like today’s processors.

4.2 In More Detail
As pointed out during the discussion of competing archi-

tecture decisions in Section 3.2, using a pipelined design that
is able to perform multiple consensus instances and paral-
lelizing the protocol logic share some of the difficulties re-
garding the implementation, for instance, when the order
has to be preserved. These difficulties are not a general limit
of BFT consensus protocols. Standard protocols in that area
do not require any order in which instances are completed;
they only require that operations are executed according
to the sequence numbers assigned to these instances [13].
Therefore, even if a parallelized protocol logic is used which
cannot prevent that instances are finished although prior
instances are still running, this is perfectly covered by the
standard protocol specification. Hence, a consensus-oriented
parallelization does not entail any changes on these proto-
cols and is therefore widely applicable.

4.2.1 Multiplied Protocol Logic
Nonetheless, to allow pillars to process consensus instances

independently, there are two things to consider: The com-
pleted instances must still enable the creation of a total order
and, since instances can be finished separately from that or-
der, it must be possible to determine which the next one is.

Both constraints suggest to rely on a one-dimensional se-
quence of instances as it is done by traditional systems.
Using a global counter to generate the sequence numbers
of instances would, however, create a contention point be-
tween the pillars; they would have to refer to that global
counter when they initiated a new consensus instance. This
can be avoided by partitioning the sequence numbers ac-
cording to a fixed scheme. One possibility is to distribute
sequence numbers in a round-robin manner among the pil-
lars: If NP pillars are used for a replica, each of them can
calculate the sequence number of its next consensus instance
by c(p, i) = p+iNP where p denotes the number of the pillar
and i a local counter increased for each initiated instance.

The execution stage enforces the total order across all in-
stances from all pillars by delivering requests to the service
implementation in consecutive order according to the se-
quence numbers. For this, pillars inform the execution stage
about the requests that were subject of a finished consensus
instance and about the sequence number assigned to it.

This mechanism assumes that all sequence numbers are
eventually used; the sequence of instance numbers must not
contain gaps. When clients and the client management are
also partitioned among the pillars as shown in Figure 3, that
is not necessarily given: If no client assigned to a particular
pillar sends any request, that pillar has nothing to agree on
and thus will not initiate instances with its sequence num-
bers. Since the execution stage has to wait for the very next
sequence number, the requests processed by other pillars will
never be executed. To solve this, pillars can explicitly hand
over the responsibility for particular sequence numbers to
other pillars or ask for outstanding requests that have to be
ordered. When there are no unordered requests available, it
can become necessary to initiate empty consensus instances
which do not order any requests but let replicas agree on
skipping particular sequence numbers. Although empty in-
stances are comparably cheap in terms of required resources,
the system should try to balance the load across pillars by
redistributing the responsibilities for client connections or
by disabling pillars that are not needed.

4.2.2 Shared Checkpointing
Using COP, the generation of checkpoints is, like in tradi-

tional systems, coordinated by means of the established total
order. When the execution stage has processed the requests
assigned to particular, predefined sequence numbers, it ini-
tiates the creation of a new checkpoint. First, it retrieves
the hash of the current service state. Then it instructs one
of the pillars to perform the agreement on this checkpoint.
Which pillar is in charge of which checkpoint is predefined,
since in that case there is no leader who could implicitly
determine a pillar by sending a proposal. To distribute the
additional load caused by checkpoints across pillars, again,
a round-robin scheme is employed.

When a checkpoint becomes stable, that is, when enough
replicas agreed on it, the pillar responsible for that check-
point informs all other pillars about the reached agreement.
In doing so, the handling of checkpoints introduces a regu-

lar point where pillars have to communicate with each other,
thus, it introduces a regular point of contention besides the
single execution stage. However, propagating stable check-
points among all pillars fulfills two purposes: First, it en-
ables all pillars to clean up their message log more regularly.
Since consensus instances are performed independently by
the pillars, with COP, there is not one central log for stor-
ing protocol messages but one log for each pillar. Second,
it keeps the pillars in step. Due to different workloads there
can be times in which some pillars make progress faster than
others, that is, in which they have a higher throughput of
consensus instances. This makes only sense up to some de-
gree because the execution stage has to adhere to the total
order anyway. Although there are other options, it is easier
to establish a limit how far pillars are allowed to drift apart.
When a checkpoint is propagated to all pillars, its sequence
number can serve as baseline for such a limit.

4.2.3 Private Connections
COP’s main objective is to give BFT replicas access to

the potential of modern multi-cores. This does not stop at
the frontier of a replica’s process. Yet, there are further rea-
sons why COP’s pillars use their own set of connections to
communicate with other replicas: (1) If only a single con-
nection to another replica existed, access to it would require
synchronization at one layer or the other. A single con-
nection would be a contention point among the pillars. (2)
Many BFT prototypes use TCP for a reliable transmission
of messages; but TCP also ensures an order of messages and
maintaining that order prevents parallelism. Since consen-
sus instances are performed in parallel and the total order is
enforced before requests are delivered to the service, there
is no necessity to maintain an order across all pillars at the
transport level. Using multiple connections, operating sys-
tem and network adapters can handle them independently.
(3) Network adapters often use multiple queues to process
packets and to transfer them from and to the main memory.
Further, modern operating systems try to process network
packets on the same core as the application. Using multi-
ple connections and accessing each connection always with
the same thread facilitates such techniques. (4) Finally, if a
platform provides multiple network adapters, using multiple
connections is a viable way to make use of them.

All in all, one principle behind the consensus-oriented
parallelization is to attain scalability and symmetry in the
context of basically homogeneous systems by integrating as
many tasks as possible into a processing unit that performs
jobs in their entirety and by multiplying this unit according
to the demand and the platform resources available.

4.3 The Extended Picture
Symmetry is important for COP. Not only that it helps

to utilize replicated platform resources more evenly thereby
giving better access to their full potential, it also simplifies
the configuration of the system. Adapting replicas of a sys-
tem with equivalent pillars according to the needs is much
simpler than with a pipelined design and lots of differently
behaving threads. COP as presented so far is, however, not
entirely symmetric; at least two points incur asymmetry:
the execution stage and the different roles among the repli-
cas. An extended variant of COP with partially parallelized
execution is depicted in Figure 4. In its most extreme form,
COP removes both of these points even completely.

Execution

Replica 1

Pre-Exect

Agree

Client M.

2

5

8

Pre-Exect

Agree

Client M.

1

4

7

Pre-Exect

Agree

Client M.

3

6

9

Execution

Replica N

Pre-Exect

Agree

Client M.

2

5

8

Pre-Exect

Agree

Client M.

1

4

7

Pre-Exect

Agree

Client M.

3

6

9

Figure 4: Illustration of a system employing COP with offloaded service tasks in parallelized pre- and post-
execution together with a leader rotation that considers the assignment of consensus instances to pillars.

4.3.1 Incorporated Service
The traditional state-machine replication relies on a de-

terministic state machine to provide the service implementa-
tion, where the deterministic behavior is required to guaran-
tee consistency among the replicas. This characteristic of the
traditional technique typically prevents a parallelized execu-
tion of the replicated service and thus, a lot of different con-
cepts have been proposed to tackle this problem [18, 22, 23].

With a consensus-oriented parallelization of the agree-
ment protocol, there exists a point in the system not present
in other designs: When the pillars completed a consensus in-
stance, the corresponding requests are eligible for execution
and they have a fixed place in the total order. The total
order, however, has not been enforced yet. This happens
not until the outcome of the instance is propagated to the
execution stage. Consequently, at this point, requests can
be preprocessed concurrently, directly at the pillar, without
losing some kind of order which had to be recreated.

This leads to a design in which parts of the service im-
plementation that do not need to rely on the total order
to ensure consistency are offloaded into the pillars. For
instance, a service implementation can parse requests and
pre-validate them already at this point thereby relieving the
single-threaded executing stage from these tasks. The same
holds for the way back. Since client connections are han-
dled within the pillars, the execution stage does not send
replies itself but delegates it to the pillar maintaining the
connection to the requesting client. To relieve the execution
stage further, a service implementation can decide to carry
out only the tasks within the total order that are essential
to ensure consistency, for instance, when modifiable state is
involved, and to leave the preparation of final return values
and reply messages for the offloaded part in the pillars.

Eventually, if applicable for the replicated service, the ser-
vice implementation can be partially or completely parti-
tioned across all pillars [25]. In the most extreme incar-
nation of COP, these pillars also perform their own check-
pointing, which basically leads to independently replicated
service partitions located within the same address space.

Nevertheless, even if a central, single-threaded execution
stage remains, today’s processors allow appropriate service
implementations to handle several millions of transactions

per second within a single thread [1]. Thus, as long as it
is relieved from blocking operations, the execution stage is
unlikely to become the bottleneck, especially in processing
systems for not compute-intensive business transactions.

4.3.2 Rotated Roles
As said, besides the execution stage, another remaining

point of asymmetry in a system employing COP is caused
by the different roles replicas play. Particularly the message
starting a new consensus instance leads to different resource
usage at the replicas: The leader in the group initiates new
instances by sending an authenticated proposal containing
information about the requests that shall be ordered; conse-
quentially, the other replicas, the followers, have to receive
that proposal and need to verify it. Both, the direction of
the transmission and the kind of cryptographic operation
make a difference for that message because it is typically
larger than other messages of the consensus protocol. This
is the more true when not only hashes of the requests are
contained in the proposal but the complete requests.4

To balance the differences among roles, a common tech-
nique is to appoint a different replica as the leader for every
instance according to some predefined scheme [29]. Typi-
cally, the leader is chosen round robin, thus the role is ro-
tated: Given N replicas in the system, the leading replica l
for an instance c is determined by l(c) = c mod N .

Used in conjunction with COP, however, the scheme for
rotating roles must not interfere with the distribution of in-
stances across pillars. For example, if instances are also dis-
tributed in a round-robin style as presented in Section 4.2.1,
the pillar p responsible for an instance c is given by p(c) =
c mod NP . Thus, if the number of pillars NP and the num-
ber of replicas N are not coprime, some pillars would never
get the leader role. If NP = N = 4, replica 1 would be
the leader for the instances 1, 5, 9, etc. which are only in-
stances performed by its first pillar. The other three pil-
lars of replica 1 would never be in charge to play the leader.

4This depends on the communication pattern that is used by
the protocol implementation. If only hashes of the requests
are included in the proposal, this message becomes smaller
but the protocol implementation gets more complex since
new corner cases and dependencies are introduced.

Therefore, the schemes for rotating roles and instance distri-
bution must be coordinated. As an example, Figure 4 uses a
block-wise scheme for rotating roles: l(c) = (c/NP) mod N .

5. EVALUATION
In order to evaluate the consensus-oriented parallelization

and compare it with the traditional task-oriented, pipelined
approach, we created a prototype that employs this new
scheme; and we call this prototype simply COP.

The Subjects.
The prototype COP is written in Java and implements the

classic PBFT [13]. The pillars are realized as multi-instance
processing units with in-order verification. Thus, as stated
in Section 3, each pillar is able to maintain multiple running
consensus instances and verifies messages only when neces-
sary. Moreover, we designed COP such that we can reuse
large parts of it for another prototype; a prototype, how-
ever, that employs a traditional task-oriented multi-instance
pipeline with in-order verification and additional authenti-
cation threads; consequently, we call this prototype TOP.

In other words, in the context of the evaluation, COP and
TOP denote two prototypes sharing most of their imple-
mentation but relying on a consensus-oriented and a task-
oriented parallelization, respectively. This allows us, to com-
pare both concepts on the same code base, with the same
features, with the same characteristics as long as they are
not directly linked to the parallelization scheme.

Further, we compare COP and TOP with BFT-SMaRt [11].
BFT-SMaRt has been developed for several years now. It
is an ongoing effort to provide a practical and reliable soft-
ware library implementing BFT state-machine replication.
It is also written in Java and based on a replication protocol
similar to PBFT. To make use of multiple cores, it employs
a traditional pipelined architecture. Opposed to TOP, it is
single-instance, it carries out one consensus instance at a
time, and it verifies protocol messages out-of-order.

As supposedly always, comparing concepts on basis of dif-
ferent implementations comes not without difficulties. For
example, entailed by the consensus-oriented parallelization,
our prototype is able to use multiple network adapters by
establishing multiple connections whereas BFT-SMaRt uses
only a single connection between each pair of replicas. To
level the playing field as far as we could, we extended BFT-
SMaRt such that it establishes one connection between each
pair of replicas for each available network adapter and uses
these connections alternately. Further, client connections
are distributed over available adapters as well. All in all, this
setup regarding network connections matches the setup used
in TOP. Moreover, we removed a performance-critical issue
in BFT-SMaRt concerning the sending of replies. Lastly,
we noticed that client handling in BFT-SMaRt is not very
efficient. Since our objective is not to compare the qual-
ity of particular implementations in different prototypes, we
choose the manner in which we generate the workload for
BFT-SMaRt very carefully to circumvent its difficulties in
this regard. In the remainder of this section, we use BFT-
SMaRt to refer to the original system5 measured in a com-
parable configuration as in [11] and we use BFT-SMaRt* to
denote the system modified in the way as described.

5We use the latest available version as of this writing, which
is revision 374, dated Jan. 30 2015, downloaded from http:
//bft-smart.googlecode.com/svn/trunk/.

We do not include other publicly available prototypes such
as the original PBFT implementation [13], UpRight [14], or
Prime [7] in the evaluation. PBFT and Prime are basi-
cally single-threaded and UpRight has other design goals
than performance [14]. How PBFT and UpRight perform in
comparison to BFT-SMaRt can be found in [11].

The Setup.
We conduct all measurements using four replicas hosted

by dedicated machines. These machines are equipped with
two Intel Xeon E5-2430v2 processors, each comprising six
cores running with 2.50 GHz and supporting two hardware
threads via simultaneous multithreading, amounting to 24
hardware threads. Further, they possess 16 GB main mem-
ory and four 1 Gb Ethernet adapters. We configure each net-
work adapter to use three queues for receiving and sending
data. This results in a total of twelve interrupts for network
transmission; thus we can assign each to a dedicated core.
In addition to the replica machines, we use five comparably
equipped machines for clients. On all machines runs a 64 bit
Ubuntu 14.04 with a Linux 3.13 kernel. We use the HotSpot
JVM with Java 1.8. Connections are established via a fully
switched network. We measured a maximum data rate of
about 118 MB per second on Ethernet level in one direction
over a single adapter using a standard benchmark tool.

The implementations for the clients and the replicated ser-
vices are the same for all prototypes. In order to allow this,
we wrote the necessary adapter code for BFT-SMaRt. Fur-
ther, we run all prototypes with BFT-SMaRt’s default con-
figuration concerning message authentication and instruct
them to create a checkpoint every 1,000 consensus instances.

Clients generate the workload by constantly issuing a lim-
ited number of asynchronous requests. While doing so, they
measure the time between sending a request and obtain-
ing a stable result. This allows us to calculate the average
throughput and average response time for performed opera-
tions comprising sending the request, ordering and executing
it, and delivering the result. COP and TOP also measure
several quantities at the replicas, for example, the through-
put of consensus instances. CPU and network utilization are
monitored on all machines. All benchmarks run 120 seconds,
are carried out five times, and results are averaged.

5.1 Multi-Core Scalability
First, we want to evaluate how the considered prototypes

with their different parallelization schemes behave with an
increasing amount of available computing resources. We are
interested in the raw maximum throughput of the paral-
lelized consensus protocols; therefore we deploy a single-
threaded service implementation that does not perform cal-
culations but answers totally ordered requests with replies
of configurable size. Yet for this test, both, requests and
replies do not transport any application payload. We vary
the amount of available computing resources by confining
the process of the Java Virtual Machine for each replica to
a certain number of cores. The generated workload is cho-
sen such that it completely saturates the measured system.
The whole benchmark is conducted in two variants, with
and without batching of requests.

Figure 5a shows the results for that benchmark with dis-
abled batching. Each request is ordered by a dedicated con-
sensus instance. In that configuration, neither BFT-SMaRt,
nor our enhanced version BFT-SMaRt* exceed 2,500 op-
erations per second (ops/s). BFT-SMaRt uses a single-

http://bft-smart.googlecode.com/svn/trunk/
http://bft-smart.googlecode.com/svn/trunk/

0

50

100

150

200

250

300

0 2 4 6 8 10 12

Th
ro

u
gh

p
u

t
[1

,0
0

0
 o

p
s/

s]

Number of cores (2 hardware threads each)

BFT-SMaRt

BFT-SMaRt*

TOP

COP

(a) Unbatched

0

200

400

600

800

1.000

1.200

1.400

0 2 4 6 8 10 12

Th
ro

u
gh

p
u

t
[1

,0
0

0
 o

p
s/

s]

Number of cores (2 hardware threads each)

BFT-SMaRt

BFT-SMaRt*

TOP

COP

(b) Batched

Figure 5: Maximum throughput of considered prototypes with increasing number of cores.

instance pipeline, thus it can only increase its throughput
by means of batching. Without batching, its throughput
is largely determined by the network latency between the
replicas. Possessing a multi-instance pipeline, TOP is able
to achieve 14,000 unbatched ops/s using a single core with
two hardware threads. While it scales perfectly and doubles
its throughput with one additional core, it reaches its limit
already with six cores. From that point on, it is confined
by the slowest stage in the pipeline and can hardly make
use of additional cores. Backed by all twelve cores it peaks
at 58,000 ops/s. COP starts with roughly 49,000 ops/s us-
ing two pillars on two hardware threads. Thus, it is able
to provide almost 3.5 times as much throughput as TOP in
that configuration. Both systems utilize the two available
hardware threads completely; it is the consensus-oriented
parallelization that allows COP to get considerably more
throughput out of the same computing resources. Like TOP,
it scales perfectly with one additional core but the gain de-
creases with each additional core. As discussed in the pre-
vious section, with a consensus-oriented parallelization, two
points of contention remain, the creation of checkpoints and
the execution stage. Since the interval of checkpoints is
linked to the number of performed consensus instances and
the execution stage is called with the outcome of every in-
stance, both points are most influential in this benchmark
where batches are disabled. However, opposed to TOP,
COP does not come to its limit, not even with twelve cores
where it processes 258,000 ops/s, 4.5 times as much as the
maximum throughput achieved by the state-of-the-art par-
allelization scheme employed in TOP.

In the second configuration of this benchmark, we con-
duct the measurements with enabled batching. The results
are depicted in Figure 5b. As expected, with batching, BFT-
SMaRt is able to scale its throughput. Using a single core, it
handles 34,000 ops/s, which increases up to 173,000 ops/s in
the twelve-core setup. At eight cores, it exhibits a through-
put of 152,000 ops/s; thus 80 % more than the 84,000 ops/s
published by the creators of BFT-SMaRt last year [11]. This
divergence can be explained with the slightly better proces-
sors, newer versions of the Linux kernel and the JVM as well
as a newer version of BFT-SMaRt that are used by us. Our
modified version, BFT-SMaRt*, scales from 84,000 ops/s
with one core to 316,000 ops/s with twelve cores, which is
approximately a factor of 2 compared to the original ver-
sion. For TOP, the curve is comparable to the curve of
the unbatched configuration, even though the absolute num-

bers are much higher: Starting from 69,000, it ends with
410,000 ops/s. With a single core it is 18 % slower than
BFT-SMaRt* due to a higher number of threads incurring a
greater scheduling overhead in the case of TOP and smaller
differences in the protocol realization. COP used with batch-
ing scales almost perfectly up to six cores: With each ad-
ditional core, the throughput per core is only decreased by
about 2 %. It achieves 190,000 ops/s on a single core setup
and over 1 million ops/s when it can rely on six cores. Due
to batching, only 1,000 to 5,000 consensus instances per sec-
ond are necessary to obtain such a throughput. Compared
to the unbatched case, a lot more requests are processed
before a new checkpoint is created and the execution stage
is called significantly less often, but with batches instead of
single requests. With more than six cores, COP profits less
from additional computing resources; using twelve cores the
throughput is only increased to 1.27 million ops/s. The rea-
son: This is the only configuration so far which is limited
by the network. At a throughput of 1.27 million ops/s, we
measure at the leader 458 MB/s of outgoing traffic. That
is more than 97 % of what we determined as the maximum
combined bandwidth of the four 1 Gb Ethernet adapters the
replica machines are equipped with.

5.2 Application Payload
In the next benchmark, we examine the average response

time with increasing workload and different application pay-
loads for requests and replies. We use the same microbench-
mark service implementation as above and enabled batch-
ing. Figure 6a depicts the results for this benchmark with-
out payload and Figure 6b the results with a payload size
of 1024 bytes for each, requests and replies. We omit re-
sults for 128 bytes and 4 kilobytes. Besides the maximum
throughputs, they are similar to the ones presented here.

The expectation for such kind of benchmark is that with
lower throughput, the response times do only slowly in-
crease. When the system comes closer to its saturation,
the increase in the response time gets larger. Finally, in a
completely saturated system, the response times continue to
increase but the throughput stagnates or even declines. As
the figures show, the results reflect this expectation.

The maximum achieved throughputs in Figure 6a corre-
spond to the results of the first benchmark with twelve cores
and batching. The average response times of all measured
systems stay within 2 milliseconds as long as no saturation
sets in. Conspicuous is the curve for COP. With more than

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1.000 1.200 1.400

La
te

n
cy

 [
m

s]

Throughput [1,000 ops/s]

BFT-SMaRt

BFT-SMaRt*

TOP

COP

(a) 0 byte

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

La
te

n
cy

 [
m

s]

Throughput [1,000 ops/s]

BFT-SMaRt

BFT-SMaRt*

TOP

COP

(b) 1 kilobyte

Figure 6: Response time with increasing workload and varying payload for requests and replies.

0

100

200

300

400

500

600

700

800

0 25 50 75 100

Th
ro

u
gh

p
u

t
[1

,0
0

0
 o

p
s/

s]

Percentage of read requests

BFT-SMaRt BFT-SMaRt* TOP COP

Figure 7: Maximum throughput with varying pro-
portion of read requests for a coordination service.

600,000 ops/s, the response time steadily increases but the
system is not saturated until 1.25 million ops/s. In relation
to the other systems, this is a longer time between the first
symptoms of saturation and its actual onset. However, COP
is the only system that is confined by the available network
bandwidth, even in that configuration where the messages
do not carry any application payload.

With a payload of 1 kilobyte for requests and replies, the
picture changes slightly. As can be expected, the attained
throughputs are significantly lower. BFT-SMaRt peaks at
20,000 ops/s compared to 173,000 ops/s without payload.
BFT-SMaRt* drops back to the level of BFT-SMaRt even
though it has access to all four network adapters. The prob-
lem is that the proposal sent by the leader quickly becomes
larger with increasing payload size and that this message
cannot be distributed over multiple connections. Hence,
BFT-SMaRt* suffers from the same bottleneck as BFT-
SMaRt in that benchmark. TOP reaches 56,000 ops/s be-
fore it is limited by its slowest stage. Again, COP is the
only system that can really take advantage of the available
network bandwidth. At a maximum throughput of about
95,000 ops/s, the leader sends almost 440 MB/s.

5.3 Coordination Service
So far, to examine the basic properties and performance

of our considered BFT systems, we used a microbenchmark
service implementation that does not generate application
workload. For our next benchmark, we implemented a coor-
dination services with an API that resembles the one from

ZooKeeper [19]. By means of such a service, groups of clients
can coordinate themselves by creating nodes in a hierarchi-
cal namespace and by storing and retrieving small chunks
of data in and from those nodes, for example. To increase
its performance, the original ZooKeeper orders only oper-
ations totally that modify service state. Opposed to such
write operations, read operations are executed locally by the
replica connected to a requesting client, resulting in a weak-
ened consistency model. Contrary, the coordination service
implemented by us provides strongly consistent read opera-
tions, that is, it orders them in the same way as write oper-
ations and executes all requests in a single service thread.

In that benchmark, we confront the systems with clients
that constantly store and retrieve data, that is, write and
read nodes. For that purpose, prior to test runs, the service
is prepared by creating 10,000 nodes each with 128 byte of
data. We vary the proportion of read to write operations.
Reading a node entails smaller request messages but larger
replies. When a node is written, the request is larger and the
reply smaller. Batching is enabled for all measurements and
we take the throughput for completely saturated systems.

The results of this benchmark are given in Figure 7. When
clients only write nodes, BFT-SMaRt achieves a throughput
of 104,000 ops/s. The throughput increases with an increas-
ing proportion of read requests, in case of BFT-SMaRt to
169,000 ops/s with 100 % reads. The reason is that the larger
replies of read operations affect all replicas whereas with the
larger requests of write operations, the limiting factor is the
proposal of the leader. As seen in the last benchmark with
varying payload size, this is also the explanation why BFT-
SMaRt* cannot achieve a significantly higher throughput
when the percentage of read requests is small. With 100 %
read requests, however, it can handle 36 % more operations
per second than the original system: 231,000. TOP starts
with 213,000 and reaches 383,000 ops/s when nodes are ex-
clusively read. Again, COP is the only system that is limited
by the network: It processes between 565,000 and 672,000
operations per second and we measure up to 460 MB/s of
outgoing traffic at the leader.

5.4 Explore the Limits
With our final benchmark, we revisit the first one: The

systems are deployed with the microbenchmark service im-
plementation and the number of available processor cores
is varied. This time, we want to examine what a maximum
configuration can look like. For that purpose, we incorporate

0

500

1.000

1.500

2.000

2.500

0 2 4 6 8 10 12

Th
ro

u
gh

p
u

t
[1

,0
0

0
 o

p
s/

s]

Number of cores (2 hardware threads each)

TOP

TOP (rotate, 3 replies)

COP

COP (rotate, 3 replies)

Figure 8: Fixed vs. rotating roles with three reply-
ing replicas regarding batched throughput.

the concept of rotating roles as presented in Section 4.3.2.
Moreover, we relieve one replica for every request from send-
ing replies. In our setup with four replicas, three replies suf-
fice to enable clients to determine the correct result even if
one reply is incorrect. We activate batching and only evalu-
ate TOP and COP with these settings because BFT-SMaRt
does not implement the described measures.

As the results depicted in Figure 8 show, TOP cannot
profit from the efforts meant to improve the overall system
performance. The difference between the leading replica and
the following ones is small concerning used computing re-
sources. Since TOP is compute-bound, there is not much to
gain when the roles are rotated; and sparing one reply out of
four does not have a larger influence on the CPU utilization.

However, as pointed out during the discussion of the first
benchmark, COP with batching is not limited by the avail-
able computing resources but by the network; and regarding
network utilization, the role of a replica makes a significant
difference. Therefore, COP greatly benefits from both ad-
ditional measures: Freed from the limiting factor network,
by less replies and rotating the roles, it scales almost per-
fectly with additional cores. Given twelve cores with two
hardware threads each, it peaks at about 2.4 million opera-
tions per second; almost two times as much as in the case of
fixed roles, and a factor of about 6 compared to the highest
throughput we measured for TOP with its state-of-the-art,
pipelined, task-oriented parallelization scheme. Even with
a single core on four replicas and that configuration, COP
achieves 257,000 ops/s; supposedly enough for a lot of tra-
ditional deployments while still leaving reserves for better
response time guarantees or particularly robust BFT con-
sensus protocols with a high demand on throughput [8].

6. RELATED WORK
In recent years, different approaches have been applied

to improve the performance and scalability of state-machine
replication in general and BFT systems in particular. To-
wards this end, several works, for example, proposed proto-
cols that allow BFT systems to benefit from benign condi-
tions, such as the absence of faults or the lack of contention,
by relying on optimistic sub protocols [17, 20]. Minimiz-
ing the number of protocol phases and/or the number of
messages to be exchanged, these sub protocols reduce the
amount of work each replica has to perform per request,
thereby enabling replicas to handle a higher workload. The
same goal can be achieved by introducing trusted compo-

nents and consequently relaxing the fault model [20, 30]. As
COP neither depends on a particular protocol nor assumes
a specific fault model, we expect all these approaches to be
able to profit from a COP-based implementation.

Multiple BFT systems have addressed the problem of pro-
viding throughput scalability, that is, increasing throughput
by utilizing more than the minimum number of replicas re-
quired for fault tolerance. While Q/U [6] for this purpose
relies on a custom quorum-based protocol, ODRC [16] can
be integrated with different agreement-based protocols, in-
cluding for example PBFT [13]. In both cases, the key factor
enabling these systems to scale is that each replica only ex-
ecutes a subset of all requests. Kapritsos et al. [21] have
presented a technique to make use of the same principle at
the agreement stage by distributing the task of request or-
dering across multiple overlapping clusters of replicas. COP,
in contrast, does not target scalability at system level, but
focuses on scalability at replica level. Our evaluation has
shown that by exploiting the potential of multi-core proces-
sors, COP is able to order more than 2 million requests per
second without resorting to additional replicas.

Ours is not the first work towards efficiently utilizing mul-
ti-core processors for state-machine replication. In the con-
text of crash fault tolerance, Santos et al. [26] proposed a
threading architecture for replicas that borrows ideas from
staged event-driven designs [31]. Systems based on Multi-
Ring Paxos establish a number of distinct multicast groups
between replicas and use a deterministic merge mechanism
to combine the resulting independent orders [10]. All these
approaches organize threads around modules that realize
parts of the consensus protocol or single roles of replicas
similar to the task-oriented parallelization scheme discussed
in Section 3.1. P-SMR [25] partitions the state of the ser-
vice implementation and handles both agreement as well as
execution for different partitions in parallel. Rex [18] al-
lows concurrent execution on the leader replica and after-
wards ensures that followers are kept consistent by relying
on traces of non-deterministic decisions made by the leader.
To record such traces, the system requires applications to
coordinate access to shared data using a set of synchroniza-
tion primitives provided by Rex. In contrast, integrating an
application with COP does not necessarily involve extensive
modifications. However, to further increase performance,
COP offers the possibility to offload parts of the applica-
tion (e.g., preprocessing of requests, see Section 4.3.1) into
COP pillars. In the context of Byzantine fault tolerance,
CBASE [23] was the first system that introduced parallelism
at the execution stage by processing independent operations
concurrently. More recently, Eve [22] applied an approach
that first executes a batch of requests in parallel on each
replica and then tries to verify that the resulting states and
outputs match across replicas. If verification is successful
a replica can proceed, otherwise it has to roll back. Due
to non-faulty COP replicas only processing agreed requests,
their states are always kept consistent. Consequently, our
approach also supports service applications for which rolling
back the execution of requests is costly or even impossible.

Recently proposed systems such as Prime [7] and RBFT [8]
trade off performance for robustness by executing protocols
that have more phases and exchange more messages than
PBFT. Based on our experiences with the current COP pro-
totype, we expect consensus-oriented parallelization to be an
ideal match for these protocols that would allow them to not
only provide strong resilience but also high throughput.

7. CONCLUSION
In this paper, we presented the consensus-oriented par-

allelization (COP) scheme. Contrary to the contemporary
task-oriented approach, COP enables systems relying on a
Byzantine fault-tolerant consensus protocol to really exploit
the capabilities of modern mutli-core processors. On com-
modity server hardware with twelve cores and a total of 4 Gb
network bandwidth, a prototype implementation of COP at-
tains 2.4 million operations per second; 6 times as much as a
task-oriented approach measured on the same hardware and
the same code base. To our knowledge, it is the first system
of this type that is able to deliver more than a million opera-
tions per second. This gives Byzantine fault tolerance access
to the upcoming market of extremely demanding transac-
tional systems. Further, COP is significantly more efficient
on setups with fewer cores, which allows also conventional
deployments to take advantage of this new technique.

References
[1] http://martinfowler.com/articles/lmax.html.

[2] http://www.businessinsider.com/amazons-cloud-can-
handle-1-million-transactions-per-second-2012-4.

[3] https://gigaom.com/2011/12/06/facebook-shares-
some-secrets-on-making-mysql-scale.

[4] https://www.flamingspork.com/blog/2014/06/03/1-
million-sql-queries-per-second-mysql-5-7-on-power8.

[5] http://blog.foundationdb.com/databases-at-14.4mhz.

[6] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K.
Reiter, and J. J. Wylie. Fault-scalable Byzantine fault-
tolerant services. In Proc. of the 20th Symp. on Operat-
ing Systems Principles (SOSP ’05), pages 59–74, 2005.

[7] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Prime:
Byzantine replication under attack. IEEE Trans. on
Dependable and Secure Computing, 8(4):564–577, 2011.

[8] P.-L. Aublin, S. B. Mokhtar, and V. Quéma. RBFT: Re-
dundant Byzantine fault tolerance. In Proc. of the 33rd
Int’l Conf. on Distributed Computing Systems (ICDCS
’13), pages 297–306, 2013.

[9] L. A. Barroso, J. Clidaras, and U. Hölzle. The data-
center as a computer: An introduction to the design of
warehouse-scale machines. Morgan & Claypool Pub-
lishers, 2013.

[10] S. Benz, P. J. Marandi, F. Pedone, and B. Garbinato.
Building global and scalable systems with atomic mul-
ticast. In Proceedings of the 15th International Confer-
ence on Middleware (MW ’14), pages 169–180, 2014.

[11] A. Bessani, J. Sousa, and E. Alchieri. State machine
replication for the masses with BFT-SMaRt. In Proc.
of the 2014 Int’l Conf. on Dependable Systems and Net-
works (DSN ’14), pages 355–362, 2014.

[12] S. Borkar. Designing reliable systems from unreliable
components: The challenges of transistor variability
and degradation. IEEE Micro, 25(6):10–16, 2005.

[13] M. Castro and B. Liskov. Practical Byzantine fault tol-
erance. In Proc. of the 3rd Symp. on Operating Systems
Design and Impl. (OSDI ’99), pages 173–186, 1999.

[14] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi,
M. Dahlin, and T. Riche. UpRight cluster services. In
Proc. of the 22nd Symp. on Operating Systems Princi-
ples (SOSP ’09), pages 277–290, 2009.

[15] T. David, R. Guerraoui, and V. Trigonakis. Everything
you always wanted to know about synchronization but
were afraid to ask. In Proc. of the 24th Symp. on Operat-
ing Systems Principles (SOSP ’13), pages 33–48, 2013.

[16] T. Distler and R. Kapitza. Increasing performance
in Byzantine fault-tolerant systems with on-demand
replica consistency. In Proc. of the 6th Europ. Conf. on
Computer Systems (EuroSys ’11), pages 91–105, 2011.

[17] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić.
The next 700 BFT protocols. In Proc. of the 5th Euro-
pean Conf. on Computer Systems (EuroSys ’10), 2010.

[18] Z. Guo, C. Hong, M. Yang, D. Zhou, L. Zhou, and
L. Zhuang. Rex: Replication at the speed of multi-
core. In Proc. of the 9th European Conf. on Computer
Systems (EuroSys ’14), 2014.

[19] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for Internet-scale
systems. In Proc. of the 2010 USENIX Annual Techni-
cal Conf. (ATC ’10), pages 145–158, 2010.

[20] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle,
S. V. Mohammadi, W. Schröder-Preikschat, and
K. Stengel. CheapBFT: Resource-efficient Byzantine
fault tolerance. In Proc. of the 7th European Conf. on
Computer Systems (EuroSys ’12), pages 295–308, 2012.

[21] M. Kapritsos and F. P. Junqueira. Scalable agreement:
Toward ordering as a service. In Proc. of the 6th Work-
shop on Hot Topics in System Dependability (HotDep
’10), 2010.

[22] M. Kapritsos, Y. Wang, V. Quéma, A. Clement,
L. Alvisi, and M. Dahlin. All about Eve: Execute-verify
replication for multi-core servers. In Proc. of the 10th
Symp. on Operating Systems Design and Implementa-
tion (OSDI ’12), pages 237–250, 2012.

[23] R. Kotla and M. Dahlin. High throughput Byzantine
fault tolerance. In Proc. of the 2004 Int’l Conf. on De-
pendable Systems and Networks (DSN ’04), pages 575–
584, 2004.

[24] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Transactions on Programming
Languages and Systems, 4(3):382–401, 1982.

[25] P. J. Marandi, C. E. Bezerra, and F. Pedone. Rethink-
ing state-machine replication for parallelism. In Proc. of
the 34th Int’l Conf. on Distributed Computing Systems
(ICDCS ’14), pages 368–377, 2014.

[26] N. Santos and A. Schiper. Achieving high-throughput
state machine replication in multi-core systems. In
Proc. of the 33rd Int’l Conf. on Distributed Computing
Systems (ICDCS ’13), pages 266–275, 2013.

[27] D. C. Schmidt and T. Suda. Transport system archi-
tecture services for high-performance communications
systems. IEEE Journal on Selected Areas in Commu-
nications, 11(4):489–506, 1993.

[28] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys, 22:299–319, 1990.

[29] G. S. Veronese, M. Correia, A. Bessani, and L. C. Lung.
Spin one’s wheels? Byzantine fault tolerance with a
spinning primary. In Proc. of the 28th IEEE Int’l Symp.
on Reliable Distributed Systems (SRDS ’09), 2009.

[30] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung,
and P. Veŕıssimo. Efficient Byzantine fault-tolerance.
IEEE Transactions on Computers, 62(1):16–30, 2013.

[31] M. Welsh, D. Culler, and E. Brewer. SEDA: An archi-
tecture for well-conditioned, scalable Internet services.
In Proc. of the 18th Symp. on Operating Systems Prin-
ciples (SOSP ’01), pages 230–243, 2001.

[32] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for
Byzantine fault tolerant services. In Proc. of the 19th
Symp. on Operating Systems Principles (SOSP ’03),
pages 253–267, 2003.

	Introduction
	BFT State-Machine Replication
	Overview
	Recurring Tasks and Their Costs

	BFT Implementations Today
	Task-Oriented Parallelization
	Competing Design Decisions

	COP
	The Basic Concept
	In More Detail
	Multiplied Protocol Logic
	Shared Checkpointing
	Private Connections

	The Extended Picture
	Incorporated Service
	Rotated Roles

	Evaluation
	Multi-Core Scalability
	Application Payload
	Coordination Service
	Explore the Limits

	Related Work
	Conclusion

