Simulating Queueing Networks with OMNeT++

Nicky van Foreest

April 3, 2002

Abstract

This documents aims at providing a quick introduction to simulating
queueing networks with OMNeT++. It should get the interested user
up and running with a simple M/M/1 FIFO queueing demo. After this
the user can start exploiting more of OMNeT++’s functionality based
on the extensive user manual included in the standard distribution. The
software that comes with this document is a rudimentary library of OM-
NeT++ functions useful for queueing simulation.

Contents

1 Introduction

OMNeT++ is a discrete event simulation environment based on C++.
Andras Varga is the principal author and currently maintains it.

When I started to use it for simulating queueing networks, I was some-
what awed by the amount of functionality that OMNeT++ provides and
the size of the user manual. Besides this, I had no experience with C++
programming, which was an extra hurdle in becoming acquainted with
the power of the tool. Hence I had to invest some time to find out which
parts and functionalities of OMNeT++ are specially useful for queueing
systems analysis, and how to get it working. My hope is that after you
have read this document the burden of learning OMNeT++ is somewhat
lessened and that your appetite has grown towards exploiting it for your
own researches in the realm of queueing networks.

Summarized my goals of this document and software are to:

e provide a start for queueing systems simulation with OMNeT++
e give some useful pointers to the user manual of OMNeT++

e provide a start of an extensive software library that enables users to
quickly set up queueing simulations.

In this tutorial I assume that the reader has experience with program-
ming, at least with C, and has some basic understanding of queueing
theory, say the first few sections of the chapter on queueing theory of [?].
Furthermore, I will not explain the details of the code. These are for the
reader to study. This may seem like a thread, but the code is not hard to
understand.

Perhaps I should have started by mentioning the advantages of using
OMNeT++. I refrain from doing this at this point of the document, but
instead postpone it to the end. The reason for this is twofold. In the

first place the OMNeT++ user manual and the OMNeT++ home page
mention plenty of examples. In the second place, I want to focus on my
personal experiences, and this is less important than having you starting
to play with OMNeT++ and this demo.

1.1 Where to get the software?

You can find OMNeT++ at http://www.hit.bme.hu/phd/vargaa/omnetpp.
htm If you are too lazy to type this in, a search with google.com on
omnetpp will give an instant hit.

If you want to make advanced plots of the simulation results, make sure
to get gnuplot: http://wuw.gnuplot.org

1.2 Feedback

Please do not hesitate to send me your comments, especially if you think
it contains inaccuracies, unclear passages, etc. When you have something
to contribute to the software library, please inform me so that I can in-
clude it in this package. I will grant full acknowledgment with respect to
authorship.

My email address is: n.d.vanforeest@math.utwente.nl

OMNeT++ related questions can be posted at the OMNeT++ mailing
list: omnetpp-1@it.swin.edu.au. Chances are high that Andras himself
answers your questions.

1.3 Structure of this document

First of all, in chapter 7?7, I want to discuss a working example of a queue-
ing simulation in OMNeT++. The implemented example is the archetypal
M/M/1 FIFO queue. The example will be slightly baroque in terms of
its output—it will be more than you will typically need—but I want to
show as many features of OMNeT++ as possibly appropriate with this
one example. Chapter ?? will hint upon some ways to change the way
the simulation works, the simulation parameters, the simulation output,
and the like. Chapter ?? will be devoted to understanding the imple-
mentation of the example. The last section lists a few of the interesting
ways in which the current example can be extended so as to turn it into
a full-fledged library of queueing simulation tools.

1.4 Acknowledgments
Andrés: Thanks a lot for OMNeT++.

1.5 Versions

1. Jan 2001
2. May 2001

2 Simulating the M/M/1 FIFO queue

2.1 Getting the simulation to run

The first step is of course to install OMNeT++. Before running the
M/M/1 example it is a good idea to check that OMNeT++ and all the

software it depends on is installed properly. I usually test this by running
one of the standard samples included in the OMNeT++ distribution, such
as the Nim game.

Once you are convinced that OMNeT++ works, run opp-makemake
-f in the directory that contains the source files, supposedly queues, to
make a Makefile. The binary opp_-makemake should be provided with
OMNeT++. In case it cannot be found, try running it directly from
the src/utils/ directory of the OMNeT++ distribution. Once you have
a Makefile, a simple make should do to get the binaries for the FIFO
simulation.

A general remark is of importance here. In case you change something
in one of the files, you should run make again. When you decide to copy
all files to another directory, or include other files in this directory, run
opp-makemake -f again. As an aside, run make clean to remove all
object files and binaries.

The binary to run has the same name as the directory that contains the
Makefile that was generated by opp_makemake. In my case this is queues.
Run queues. If everything works the way it should, a few windows should
pop up.

I consider it a bit too much work to type in make and then the binary
again and again. Therefore I included a very simple script run which does
this for me.

2.2 Running the demo

Once the simulation has started you should see two windows:

e A graphics window showing a small queueing network: a job gener-
ator, a FIFO queue, and a job sink.

e The other, called OMNeT++/TKenv, containing the main functionality
to run the simulation.

Double click on the FIFO widget on the canvas in the graphics window.
A new box should appear, called (Fifo) fifonet.fifo[0]. Click on
Objects/Watches. You will see a few lines with text appear. The line
with the string (cQueue) contains the word (empty). This will change to
the number of customers in queue (= one less the number in the system
when a customer is served) once the simulation is running. Then double
click on the line with the word Job Distribution. You will see a blank
blue (that is, on my screen) window. Here a histogram will show the
probability density function of the number of jobs in the system as seen
by an arriving job. Finally, click on the line Jobs in system. A yellow
canvas will come up. This will contain a simple plot of the number of jobs
in the system, the one in service included.

Now you can start the simulation by pressing the RUN-button in the
OMNeT++/TKenv window. In the graphics window you should see jobs
hopping from the generator to the queue, and from the queue to the
sink. Press STOP after several seconds. The first line of the (Fifo)
fifonet.fifo[0] window will now, with probability > 0, show that the
queue contains some customers. When you double click on this line, an-
other window will tell you which jobs are currently waiting in the queue.

To be able to distinguish between individual customers may seems
not very interesting from a queueing perspective; the M/M/1 queueing
model assumes that customers do not have real identity—they only differ
by their service requirements and arrival time. However, when studying

more complicated models, for instance when jobs have different type, this
information becomes relevant. It becomes even more important if you
want to study protocol and queue interactions, such as when multiple
TCP sources share buffered resources, i.e., routers.

The histogram window should now contain a few black bars. When you
put your mouse on one, it will change color. (Mine becomes gray.) There
is a line at the bottom of window that contains the number of arrivals
that observed a certain number of jobs in front of it in the system. In
other words, if cell # 1 contains 10, this means that 10 arrivals saw one
job in the system.

Clicking on the Job Distribution line in the (Fifo) fifonet.fifo[0]
window with the right mouse button, enables you to choose between a
graphical representation of the gathered data, and a textual one, called
Object. I discussed the graphical one above. The text information will
provide you with aggregate statistics such as the mean number of jobs
found upon arrival, etc.

The last step will be to press EXPRESS in the OMNeT++/TKenv window;
I leave the other buttons for you to discover. In fact, my best general
advise is to press on any buttons you may see, and find out what they do.
Do not forget that often both mouse buttons, the left and the right, can
be used for different effects.

2.3 Analyzing the simulation results

If you have not interrupted the simulation by pressing on one of the big red
STOP buttons, the simulation will finish after having generated 5000 jobs.
On my machine this takes less than a second, and it is not a particularly
fast one.

Notice that the textual and graphical representations of the histogram
are updated after the simulation has finished. The OMNeT++/Tkenv window
contains as well a number of results. You might need to scroll a bit up
and down in the window to view all the simulation results.

The directory will now contain a few new files as well.

e fifo.sca This file contains the statistics that were gathered in the
variable jobDist of class cDoubleHistogram, see the user manual
section 6.13, such as the number of jobs generated, the histogram
data, etc. Please have a look at it now. The textual info of the
histogram should be contained in this file too.

e fifo.vec This file contains info about the dynamics of the number
of jobs in the system. You should process this with the OMNeT++
tool plove. Chapter 9 of the user manual contains the instructions.
Briefly, start up plove. The left most button allows you to load
the file. Send it to the right window with the arrow button in the
middle. Press PLOT!. Now gnuplot should fire up and show the
dynamics of the job distribution. You may have to fiddle around
with the options to get a nice graph.

In general you can process these files, with awk for instance, or another
C++ program for that matter, to postprocess it. You might instead want
to do the post-processing in the function Fifo::finish, about which I
will talk later. Here comes in the some of the power of OMNeT++'s
use of a real programming language: you can incorporate your own post-
processing functions in the simulation itself, in case you want to.

Summarizing, OMNeT++ provides a number of ways to present simu-
lation data:

e dynamically, by means of jobs jumping from one node in the network
to another;

e graphically, by means of dedicated collection classes such as cOutVector;

e verbally, by means of the ev << statement in the code which is out-
put to the canvas of the OMNeT++/Tkenv window;

e by means of files.

3 Modifying the basic example

The above discussed only one type of queue, the M/M/1 queue, with one
specific parameter setting. You probably want to simulate other types of
queues, more generic service distribution, etc. Another interesting degree
of freedom is to speed up the simulation by leaving out the windows.

3.1 Changing the simulation

I will discuss some ways to change and extend the current simulation
environment. The most important way to do this is with the omnetpp.ini
file, see chapter 8 of the user manual for all details.

Changing the interarrival and service rate Change the num-
bers in omnetpp.ini related to the exponential distribution. Mind that
the interarrival rate and service rate are the inverse of the parameters you
specify, e.g. fifonet.fifo[1].service_time = exponential(2) means
that the expected service duration = 1/u = 2.

You cannot only change this via the omnetpp.ini file. Another possi-
bility is to press Params in the (Fifo) fifonet.fifo[0] window. Click
for instance on the line with service_time. Now you edit the field in the
window that will appear, for instance try another distribution, see the
next paragraph. Do not forget to press the Enter key on your keypad to
make the edit effective.

Changing the interarrival and service distribution OMNeT++
provides a few standard distributions, such as the uniform and exponen-
tial distribution, see sections 4.9.6 and 6.13 of the user manual. In case
you need other distributions, you have to build them yourself. This is
in itself quite interesting, see Ross [?], and, of course, Knuth[?]. Once
you know, mathematically speaking, what to do, OMNeT++ makes the
implementation very easy. You should define your new distribution in
the file distributions.cc. I have already provided a few simple exam-
ples. Note that you can use the standard distributions of OMNeT++ in
your new functions right away. Once you have implemented your new
distribution, you can simply use its name in omnetpp.ini and pass ap-
propriate parameters to it. Explicitely, if you want to use, as an ex-
ample, the distribution perturbedExponential, which you can find in
the file distribution.cc as the service distribution, than you should
use the following line in omnetpp.ini: fifonet.fifo[0].service_time
= perturbedExponential(2,1) Take any parameters you like, for this
distribution, but check out the code first in case you do not want to be
surprised during the simulation.

Changing the network The omnetpp.ini parameter fifonet.num buffers
enables you to make a network of tandem queues. Changing it from the
current value 1 to say k, will put £ queues in tandem. You should as
well change the line fifonet.fifo[0] .service_time = exponential(2)
to fifonet.fifo[*].service_time = exponential(2), that is, the 0 has
to change to * to reference all fifos, instead of just the first one with
id zero. I actually chose a slightly different approach here. First I give
fifo[0] its value, and then the others by means of the *.

You will find included as well a ring network. This is built out of simple
fifo queues that are connected sequentially to each other. If you want to
run it, you have to change a few lines in omnetpp.ini. This file contains
where the changes should be made. Since the ring is a closed queueing
network, there are no external arrivals of jobs, neither sinks. Therefore
these two are not included in the ring. Furthermore, the buffers should
contain some initial number of jobs, that will start circling around. You
can set these numbers by the parameter ring.fifo[*] .num_init_jobs =
20 to be found in omnetpp.ini.'

More general networks are for you to build. Section 4.10 and 6.19 of
the manual will tell you how. You should as well consult the following
OMNeT++ samples. The sample directory token provided with the stan-
dard OMNeT++ distribution shows a circular network. The £ddi sample
shows a large network. (Do not forget to click on one of the rings to see
how complicated networks you can actually simulate with OMNeT++.)

Changing the job scheduling Only FIFO scheduling is imple-
mented at the moment. In case you are interested in building other ones,
go ahead.

Changing the random number generator For the more suspi-
cious of you, section 6.9 of the OMNeT++ user manual discusses the
random number generator. You can replace this with your own if you
want this.

3.2 Speeding up the simulation

If you are convinced that everything works the way it should, and you are
just interested in numerical output, you can run the simulation straight
from the prompt with the cmdenv mode. No more windows will appear,
only the output files will be produced. Due to this, the simulation will
become quicker as well.

To achieve this, change these lines in the Makefile

User interface (uncomment one) (-u option)
#USERIF_LIBS=\$ (CMDENV_LIBS)
USERIF_LIBS=\$(TKENV_LIBS)

to

User interface (uncomment one) (-u option)
USERIF_LIBS=\$ (CMDENV_LIBS)
#USERIF_LIBS=\$ (TKENV_LIBS)

1For the interested. If you analyze the expected number of jobs in the queues, and add
them, it will appear as if one job is missing, i.e, this is the application of the Arrival Theorem,
see e.g. [7?].

Do a make clean and make to remove all window related code from
the simulation executable. Now it should work. Be aware that a new
opp-makemake -f reverts the makefile to the old situation, i.e., the simu-
lation with tk windows.

You will want these options in the following section of omnetpp.ini:

[Cmdenv]
runs-to-execute = 1
module-messages = no
verbose-simulation = no
Display-update = 1h

Play with these options to discover that the number of lines of simulation
output will be a bit to much to handle. See section 8.5 of the manual for
more info.

The user manual contains as well some more hints to speed up the
simulation still further, see sections 6.18 and 8.7.

4 The implementation of the M /M /1 sim-
ulation

Before starting the main subject of this chapter, I need to define one
concept: a functional entity. A functional entity is a part of a simulation
that carries out a specific action on a job, or a message. For example,
a server or a message generator are functional entities. They are, so to
say the essential functional units that take care of one process step in the
lifetime of a job, or message. The implementation of such entities will be
called modules. Now back to the simulator.

The simulation environment is built out of, mainly, two types of files.
The .ned files roughly describe how the entities should communicate;
the .cc files contain the C+4 code that implement the behavior of the
entities. These file types I will discuss in some more detail below. I expect
you to have the .ned and .cc files belonging to this demo at hand.

After having read this, be sure to check out the discussion of the Nim
game in the manual as well, and the samples fifol and fifo2. They are
instructive and show additional functionality of OMNeT++ relevant for
queueing systems analysis.

4.1 A basic approach to understanding the code

There are various ways to try to understand the implementation of a new
simulation, for instance, this demo or one of the sample simulations. I
found the following approach the most useful. First I run it, of course, to
get an understanding of where the various entities reside and how they
exchange jobs. Then I work through the files belonging to each entity
separately. I start with reading the .ned file to understand what goes
in and out of a module, and the parameters it will need. Then I give
the header files a brief look to become familiar with the module’s specific
internal variables and functions. Finally I study the C++ code belonging
to the module. Once I somewhat understand what it does, I tackle the
next module in the chain, that is, the module that gets its messages from
the one I studied. Working this way, I gained a quicker understanding of
what was going on than by first working through all .ned files, than all
the C++ files, etc.

In this document I will not, however, follow the above suggestion,
mainly for brevity. Here I only want to illustrate certain key points of the
simulation, and leave the studying for you.

4.2 The .ned files

Each entity in a simulation needs to communicate via messages with it-
self and other entities. Messages can be used for various purposes. One
is to represent jobs that need service at queues. Another is to convey
information of the entity’s state to itself in the future, or to other entities.

Specifically, the fifo example contains three entities: a source module,
a fifo module and a sink module. The source module generates messages
that represent jobs. These job-messages are sent to the fifo module. This
in turn delays the messages according to the present queue, then services
them, and finally sends the messages to the sink module. The sink module
processes these messages to extract some final statistics. The sink is where
the messages leave the queueing network. The sink module releases as well
the memory allocated to the job messages.

Clearly all these modules need in- and output gates to receive and
send messages. The .ned file specifies these gates. In our example, the fifo
module has an input and an output gate. Furthermore these modules may
need parameters such as service rate, queue size, etc. These parameters
need be declared in the .ned files too. The definition of the parameters,
i.e., giving them a value, takes place when the simulation starts.

The next step is to glue all the modules together to form a network.
This should be done by means of another .ned file that defines a compound
module. This new module uses the simple modules and connects them into
networks. Besides this it passes parameter values on to them during the
simulation. Finally it gives some directives on where on the canvas the
simple modules should appear. To state this in terms of the fifo queue,
FifoNet, defined in fifonet.ned, connects the output of the source to
the input of the fifo queue, and the output gate of the queue to the sink.
Consult fifonet.ned for all details. Take especially notice of the syntax,
and be aware of when to use a comma ‘,’, and a semicolon I made
some time consuming errors by not using them in the appropriate way.

Note that this hierarchy of modules—simple modules forming com-
pound modules, forming in turn other compound modules—provides a very
efficient way to build large, complex queueing networks. Start by building
the parts, and then connect these parts to larger compound modules up
to entire networks.

€
3.

4.3 The .cc and .h files

Now we have defined all entities that take part in the process cycle
of job-messages, and specified the routing between these entities in the
compound modules, we should tell how each entity should process job-
messages. In concrete terms, the generator should generate jobs with
certain interarrival times distributed according to some specified proba-
bility distribution. These jobs are represented by a message, so that in
fact the generator generates messages. Then it sends these messages out
of its output gate. If you will have a look at gen.cc you will see that it
will produce in total fifonet.gen.num messages messages, each sepa-
rated some time ia_time apart. These two parameters are defined in the
file omnetpp.ini.

fifo.cc contains the heart of the simulation. Once you understand
this code, you have mastered the most important aspects of OMNeT++.
It may be somewhat hard, but keep on, other people could understand it
too.

At the fifo queue jobs arrive, and depending on whether the server
is idle or not, have to spend time in the queue. Lets first consider the
function Fifo: :handleMessage and see what it does. Suppose the server
is busy. Then the event stack of the simulator should contain an event
that indicates when the job’s service is supposed to be finished. If you
think a bit about how to implement such events, taking into account that
all events are related to messages, you will understand that the server
should send itself an endService message at the moment a job’s service
starts, to indicate when this job’s service should stop. This endService
message will be put on the event stack by the event scheduler (not to be
confused with the queueing scheduler!). At some point in time, the event
scheduler will remove this message from the stack, and will give it to the
fifo module. Once this module receives the endService message, it knows
that the job’s service has ended, and that it should send it to the sink.
When the queue is empty after the departure, the server should just wait.
On the other hand, if there are jobs in queue, it should take the job in
front of the queue, and start another service period. Now have a look at
fifo.cc and think deeply about it until you understand what is exactly
going on. Remember well that a simulation entity has no other means
to communicate with itself in the future than via self-messages, and that
these messages have to be put on the internal event stack.

fifo.cc contains four more functions. The functionality of Fifo::initialize
should be clear from its implementation. The function Fifo: :finish pro-
cesses part of the simulation results when the simulation has finished. The
other two functions Fifo::serviceRequirement and endService enable
you to specify what to do when a job starts service—here only a random
service duration is generated—and when it leaves. This provides inter-
esting flexibility with respect to queueing simulation. For instance, in
multi-class networks, jobs may change class from service station to ser-
vice station, or a fraction may be sent back for another processing step
at the server, etc. etc. Do not be tempted too easily to handle this
kind of functionality in the handleMessage function. It can become quite
complex.

The last module of interest, the sink, should be a breeze once you have
mastered the above. It is a good idea to think about why we compute
the waiting time of a job is this module, and why this is not possible in
fifo.cc. This is of course by no means a generic property of OMNeT++,
but just a consequence of the current implementation of the queueing
entity.

5 Interesting extensions

There are a couple of interesting extensions to make to this fifo example.
Let me number up a few.

e More interarrival and service distributions, such as an efficient im-
plementation of the Coxian distribution, multi-server stations, etc.

e Other scheduling disciplines, such as Processor Sharing, Last Come
First Serve pre-emptive resume, etc.

e More methods to statistically analyze simulation results

e Efficient implementations to simulate rare events.

In case you decide to build one of these extensions, please tell me so that
I can take it up in the distribution.

6 Why use OMNeT++ for queueing sys-
tem simulation?

Up to a few month ago, I worked for a large telecommunication company.
(I only recently started to work for a university. Hence my time to write
this document, and do some good to the global community) In one of
the projects, we tried to reduce the convergence time of a distributed
network restoration protocol. The interaction between the protocol, the
involved timers, and the states of the queues in the equipment became
soon completely intractable, analytically speaking. Hence we decided to
analyze the behavior of the network and equipment with a simulator. As
the developers wrote the protocol in C4++ we wanted to use this code, as
it would be implemented in real equipment, and carry it over with minor
modifications to the simulation environment. Besides this we needed a
graphical environment to see whether the protocol messages traveled the
way we wanted, and ended up in the right queues. OMNeT++ provided
this, and more.

The general experiences I gained during this and other projects with
respect to simulation complex systems were briefly as follows:

e Using production code in a simulator saves a major amount of time
compared to having to redesign the work in some kind of ‘high-
level’, seemingly user friendly simulation environment. Besides this,
the simulation itself helps to test the real code, that is, the code that
will actually implemented in commercial equipment.

e Having insight in the code of the simulation environment is helpful to
understand details of the simulation. Furthermore, it can be neces-
sary to extend parts of the tool’s functionality. Being dependent on
companies to give you support, but keeping you securely away from
the details of the implementation of their simulator, is not always
what you want. Worse, you have to wait for their answer, which not
always relates to your question ... :-(.

Based on the above experiences as well as on some past work with com-
mercial simulators, I want to point out some advantages, at least in my
opinion, of running queueing simulations within OMNeT++-.

e The behavior of systems is programmed in a ‘normal’ programming
language, in this case C++. This provides the user way more flexi-
bility than a ‘high-end’, tool-specific programming environment. For
instance, if you use Bones, your programming skills gained during
working with Bones only apply to the Bones environment. Besides
this, these high-end languages appear, as long as you stick to the pro-
vided tutorials, to be quite generic. But when you try your hands on
your own examples, you will feel how restrictive these tool-specific
languages sometimes are.

e As a consequence of the use of C++, OMNeT++ is flexible and
extensible. As an example, you can easily implement your own job
interarrival and service distributions, statistical tests on the simula-
tion results, more general networks, scheduling distributions, etc.

10

o It is under GPL license.

e OMNeT++ enforces ‘separation of concerns’. You have to specify
the separate functional entities, such as queues, schedulers, job gen-
erators, separately from routing functionality, that is the definition
of the network topology.

Let me say one more thing about the first bullet. Of course, these com-
mercial tools allow you to specify parts of the system in your own code,
and connect this code with the simulation platform by means of software
hooks. But then you have to figure out how this works plus all debugging,
and you still have to program in a real programming language.

With respect to the last item, I hesitated to use the possibly vague
words ‘object-oriented’, but that is what it really is. In my experience
this is a bonus, as it makes the simulation environment modular. You
can easily change only one part, or a module. As long as the interfaces
between the modules remain the same, everything will remain working.
Changing the topology is easy too. Take for instance this demo. If you
want to build Jackson networks—a bunch of M/M/1 queues connected
in a network such that jobs can arrive and leave the network—you only
have to figure out how to set up such networks. the functionality of job
sources, sinks and service stations is already there, ready to use. If you
want to change some of the service rates, you can easily do this in the
omnetpp.ini file.

Let me stop here, and let you convince yourself about the uses of
OMNeT++.

References

[Knu97] D.E. Knuth. The art of computer programming, volume 2,
Seminumerical algorithms. 3 edition, 1997.

[Ros93] S.M. Ross. Introduction to Probability Models. Academic Press,
5th edition, 1993.

11

