NetFlow/IPFIX Usage in Network Management

Benoit Claise, Cisco Systems

EMANICS/IRTF-NMRG Workshop, October 2008

Extensibility and Flexibility Requirements Phases Approach

- Traditional NetFlow with the v5, v7, or v8 NetFlow export
 New requirements: build something flexible and extensible
- Phase 1: NetFlow version 9

Advantages: extensibility

Integrate new technologies/data types quicker (IPv6, BGP next hop, Layer 2, etc.)

Integrate new aggregations quicker

Note: for now, the template definitions are fixed

Phase 2: Flexible NetFlow

Advantages: cache and export content flexibility

User selection of flow keys

User definition of the records

Exporting Process

Metering Process

Flexible Flow Record: Key Fields

IPv4		Routing
IP (Source or	Payload Size	src or dest AS
Destination)		Peer AS
Prefix (Source or	Packet Section (Header)	Traffic Index
Destination)		Forwarding
Mask (Source or	Packet Section (Payload)	Status
Destination)		IGP Next Hop
Minimum-Mask	TTL	BGP Next Hop
(Source or Destination)		
Protocol	Options bitmap	Flow
	Sampler ID	Sampler ID
Fragmentation Flags		Direction
Fragmentation	Precedence	
Offset		Interface
ID	DSCP	
Header Length	TOS	Input
		Output
Total Length		

Transport	
Destination Port	TCP Flag: ACK
Source Port	TCP Flag: CWR
ICMP Code	TCP Flag: ECE
ICMP Type	TCP Flag: FIN
IGMP Type	TCP Flag: PSH
TCP ACK Number	TCP Flag: RST
TCP Header Length	TCP Flag: SYN
TCP Sequence Number	TCP Flag: URG
TCP Window-Size	UDP Message Length
TCP Source Port	UDP Source Port
TCP Destination Port	UDP Destination Port
TCP Urgent Pointer	

© 2008 Cisco Systems, Inc. All rights reserved. Cisco Public 3

Flexible Flow Record: Key Fields

IPv6	
IP (Source or Destination)	Payload Size
Prefix (Source or Destination)	Packet Section (Header)
Mask (Source or Destination)	Packet Section (Payload)
Minimum-Mask (Source or Destination)	DSCP
Protocol	Extension Headers
Traffic Class	Hop-Limit
Flow Label	Length
Option Header	Next-header
Header Length	Version
Payload Length	

Multicast
Replication Factor
RPF Check Drop
Is-Multicast

Layer 2

Source VLAN

Destination VLAN

Source MAC address

Destination MAC address

Flexible Flow Record—Non-Key Fields

Counters Bytes Bytes Long Bytes Square Sum Bytes Square Sum Long Packets Packets Long

Timestamp sysUpTime First Packet sysUpTime First Packet Total Length Minimum Total Length Maximum TTL Minimum TTL Maximum

 Plus any of the potential "key" fields: will be the value from the first packet in the flow

What about IPFIX and PSAMP?

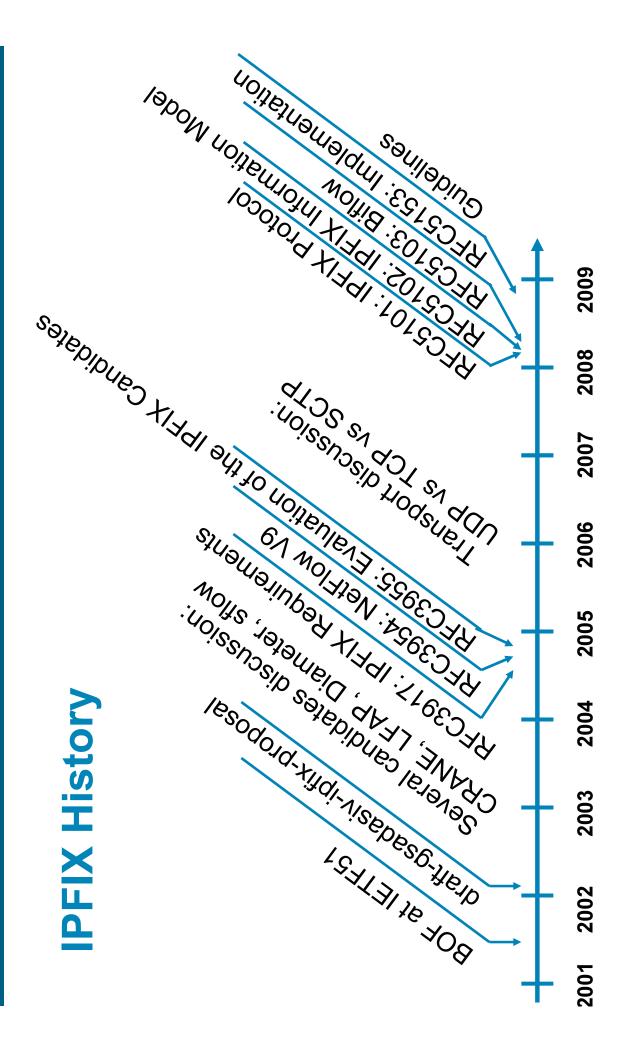
Metering Process

This is PSAMP (only filtering, sampling, hashing)

Exporting Process

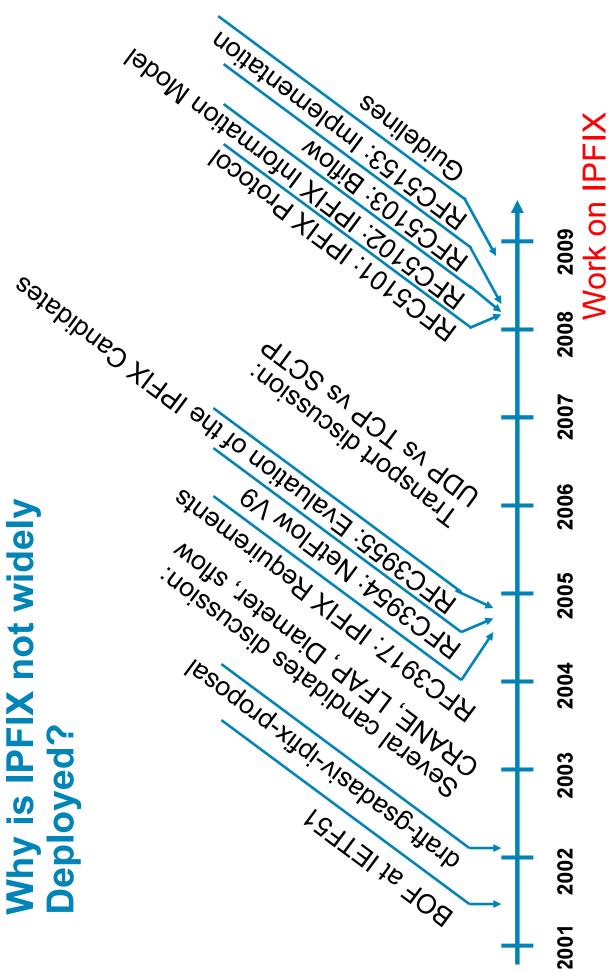
This is IPFIX

Flex Motet PN Lext Flow


RFC3917: Requirements

Shared Information Model

One flow record composed of one packet?


IPFIX/PSAMP configuration via XML

IPFIX and PSAMP are complimentary: no more boundary

Why is IPFIX not widely Deployed?

Work on NetFlow V9

Why is IPFIX not widely Deployed Yet?

What's missing in NetFlow v9:

Variable length, a problem with strings

Security

Template Withdrawal Message

The value is in the Metering Process

 Note: we will implement IPFIX Export per SCTP Stream draft-ietf-ipfix-export-per-sctp-stream-00

NetFlow as Alternative to syslog?

- Firewall: better throughput and connection/s by using NetFlow as opposed to Syslog
- What's in a name?

We do export MAC address, VLAN, MPLS info

Remove IP;-)

We can define anything we want as Information Elements

IPFIX became a generic streaming protocol

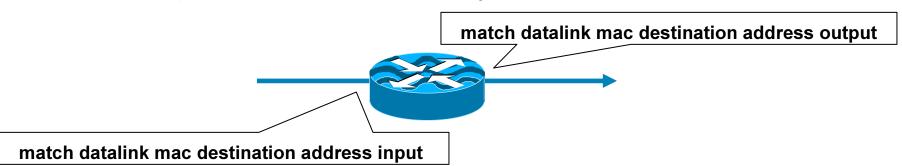
Change to "IP Flexible Information eXport?"

Metering Process Challenge Flexible NetFlow is very Flexible...

- Easier to shoot yourself in the foot
- Let's not forget that the router still has to route packets
- Might need some consulting services for every customers

No one size fits all

Metering Process Challenge Flexible NetFlow is very Flexible...


```
match datalink mac {destination address input | source
address {input | output}}
```

destination address input destination MAC address of packets received by the router

source address source MAC address

input Packets received by the router

output Packets transmitted by the router

Example of MPLS PE with QoS ... and a distributed system

Performance Challenge Moving Bottleneck

- "consume a lot of CPU"
 - -> packet sampling
 - -> metering process in hardware
- "collision in the cache"
 - -> improved the hash function
 - -> increased the cache size
- "consume much bandwidth"
 - -> flexible flow record
 - -> per interface, per direction
 - -> export cache type per collector
- Next one: the collector?
 - -> do we need an overlay network of collectors? for example, for data retention

IPFIX Limitation Field Not Observed

No specific value for "not observed"

Example: ICMP type, port number, TCP window size for UDP traffic

Which one to choose?

Specific value per information element?

• "If a specific Information Element is required by a Template, but is not available in observed packets, the Exporting Process MAY choose to export Flow Records without this Information Element in a Data Record defined by a new Template" RFC5101

IPFIX Limitation No Structure Data

"MPLS Label and MPLS Label Position" lesson learned

The content of one value depends on the content of another one: this breaks the design

RFC5102: mplsTopLabelStackSection, mplsLabelStackSection[2-9]

List export

output interface for multicast

AS in the AS-PATH

RFC5101 "If an Information Element is required more than once in a Template, the different occurrences of this Information Element SHOULD follow the logical order of their treatments by the Metering Process."

Hardcode the intelligence in the collector?

Challenge Overload The Options Template

Options Template is used for ...

Statistics Information in the IPFIX protocol (The Metering Process Statistics, The Metering Process Reliability Statistics, Exporting Process Reliability Statistics)

The Flow Keys Option Template

Reducing Redundancy

ifIndex/interface name matching Etc...

- Yes everything is possible with Options Template Record
- This complicates the collecting process

IPFIX/PSAMP Future Architecture?

- Enable several cache type for different purposes, exported to different exporters
- Optimized cache type

For example, the core traffic matrix

Generic cache type

The collector would quickly configure a new cache type, with a specific filter, for verification

For example, security

"Advanced Network Monitoring Brings Life to the Awareness Plane" Andreas Kind, Spyros Denazis, Xenofontas Dimitropoulos, Benoit Claise IEEE Communications Magazine, 2008

IPFIX/PSAMP Future Challenge

• More and more observation points

Before/after QoS

Before/after WAN optimization

On different line cards (i.e. different observation domain)

Flow record correlation is a MUST

Biflow is good start

 Two different aspects to the IPFIX Mediation Function current work ...

What if we could start IPFIX from scratch?

Flexible Header

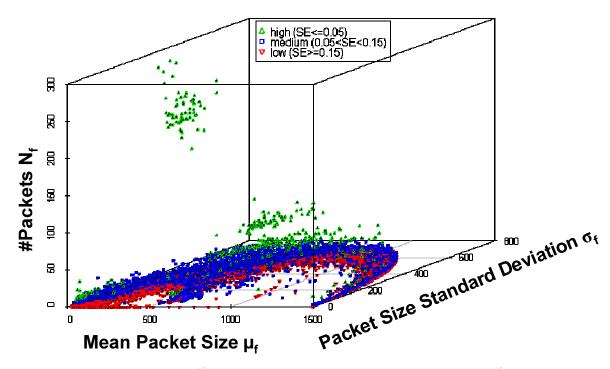
Containing information elements

Some more information element attributes

in the template definition: pre or post, key-field or not, etc.

In the flow record: observed or not

XML templates as an answer to structure data?


Accuracy of (Packet) Sampled NetFlow Research Project

- Mathematical model valid for random sampled NetFlow
- Square sum of bytes available in Flexible NetFlow

"collect counter bytes squared long" in the CLI

 "Packet Sampling for Flow Accounting: Challenges and Limitations",

Tanja Zsebý , Thomas Hirsch, Benoit Claise, PAM 2008 Estimation Accuracy (PLT_NZIX1, S24D00, Cisco, f=5%

$$St \, dErr_{rel}[\hat{S}um_f^{}] = \frac{St \, dErr_{abs}[\hat{S}um_f^{}]}{Sum_f^{}} = \frac{\sqrt{\frac{N^2}{n} \cdot \left(\sigma_{x_f}^2 \cdot P_f + \mu_{x_f}^2 \cdot (P_f - P_f^2)\right)}}{N_f \cdot \mu_{x_f}^{}}$$

2 2008 Cisco Systems, Inc. All rights reserved. Cisco Public 2U

Some more Reading

Network Management:

Accounting and Performance Strategies

The definitive guide to collecting usage information from Cisco networks.

statistical translations

Benoît Claise, CCIE* No. 2868 Ralf Wolter

© 2008 Cisco Systems, Inc. All rights reserved. Cisco Public 21