Challenges in Distributed Management

Rolf Stadler

Laboratory for Communication Networks KTH Royal Institute of Technology Stockholm, Sweden

20th NMRG Meeting, Utrecht, Oct 18-19, 2006

Objective and Implications

Goal

 scalable, robust management system with low complexity for large-scale, dynamic network environments

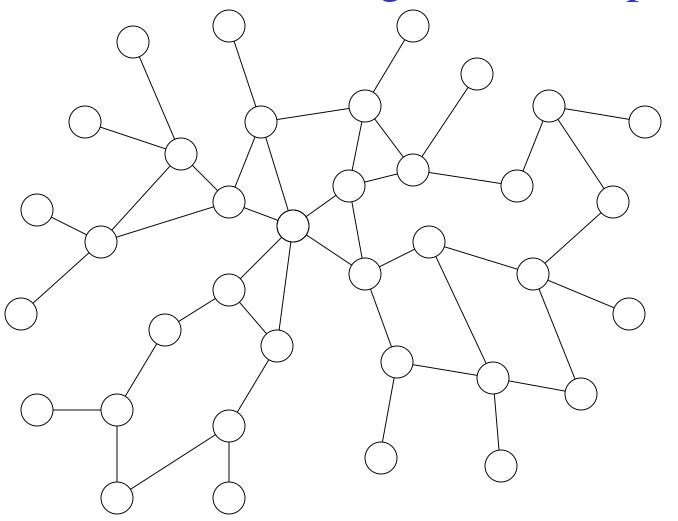
Approach

- decentralization of functionality, self-organization
- split the management plane into two
 - a thin, pervasive layer with end-to-end functionality part of the managed system
 - traditional FCAPS functions

Implications

- research methodology
 more formal methods, more probabilistic functions
- overlap with other communities: sensor networks/embedded systems, streaming databases, data mining
- later: equipment manufacturers, standardization

What and How


Functionality

- efficient network-wide monitoring
 polling aggregates, top k queries; continuous monitoring,
 trigger exceptions when system state leaves operational envelope self-tuning monitoring functions
- independent local control actions following global policies auto-configuration

Design space

- engineering a light self-organizing layer
- create and *maintain management* overlay with suitable topology
- protocols for processing management information: tree-based, flooding, gossip, random walks deterministic vs. probabilistic

The Network as a Management Computer

The hard Problems

Challenges

- understand and control *trade-offs* between completion time, accuracy, overhead, robustness.
- interdomain management
- safety and security

Other communities with similar research focus

- sensor networks "in network processing" our domain has different constraints
 - minimize energy needed for an operation vs. having a bound on load on nodes
 - building link-level overlays
 vs. mapping general overlays on physical infrastructure
 - aggregating a single variables
 vs. aggregating hundreds or thousands
- streaming databases
 - aggregate time series of a single variable
 vs. aggregating of 100s of local variables, aggregating over space