

Distributed Real-time Monitoring with Accuracy Objectives

Alberto Gonzalez Prieto
Laboratory for Communication Networks
KTH Royal Institute of Technology
Stockholm, Sweden

Outline

- Continuous Monitoring
- Accuracy in Monitoring
- A-GAP: a Distributed Solution
- Evaluation through Simulation
- Discussion

Continuous Monitoring

- Provide continuous estimates (in time) of management variables (aggregates)
- Aggregates
 - Network-wide variables computed from device variables accross the network
 - SUM, AVERAGE, MAX, MIN, etc
 - Examples
 - Number of VoIP flows in the domain
 - Most loaded link(s)

Accuracy

- Monitoring an aggregate without error
 - Requires negligable network delays and processing delays
 - Pull approach
 - Poll at Nyquist frequency
 - Push approach
 - Report local variables changes as they occur
 - Unfeasible in large networks
 - Large management overhead
 - Processing load
 - Traffic
 - Non-scalable
- Fundamental Trade-off: accuracy vs overhead

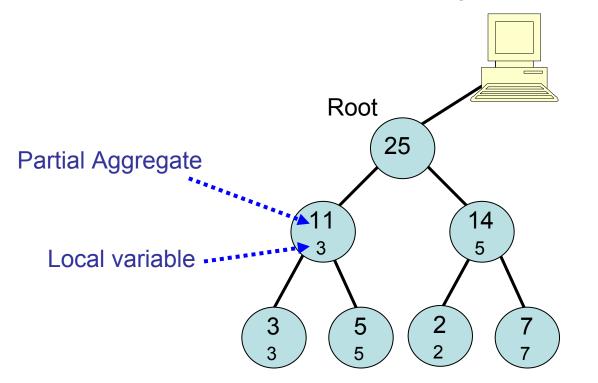
System Functionality

Problem statement

 Minimize the maximum load over all nodes for a configurable average (absolute) error of the estimation of the global aggregate

Examples

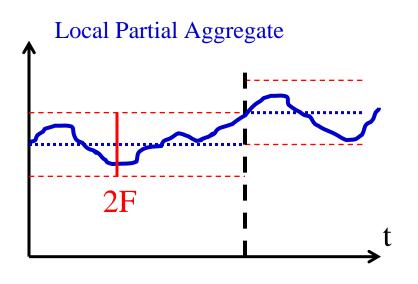
- Estimate number of ongoing voice conversations in the domain with an average error below 5 %
- Estimate P2P traffic volume in the domain with an average error below 10 %


Related Work

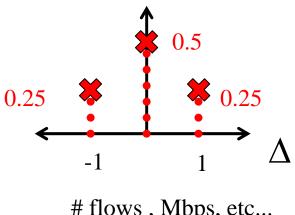
- Olston et al.:
 - First to discuss the accuracy vs overhead trade-off (ACM Sigmod 2001)
 - Centralized approach (Sigmod 2001 & 2003, IEEE Data Engineering Bulletin 2005)
- Deligiannakis et al.:
 - Distributed approach: makes use of an aggregation tree (EDBT 2004)
- In both works
 - Accuracy expressed in terms of maximum error
 - Overhead metric: overall management traffic
 - Proposals are based on filters
 - Use globally synchronized rounds of operation

GAP: Generic Aggregation Protocol


- Creates and maintains and aggregation tree
 - Spanning tree
- Event-driven


Management Station

Filter-based Approaches


- Each node (n) in the aggregation tree has a configurable filter
- Filter functionality:
 - Filter out updates
 - Filter width: Fⁿ
 - On arrival of an update from a child
 - Calculate new partial aggregated value
 - If variation > Fⁿ
 - Send update to parent in the tree
 - Fⁿ determines:
 - Accuracy
 - Generated overhead
- Fn: decision variables

A-GAP: Stochastic Model

- Modeling the Dynamics of Local Variables
 - discretized in time and value
 - one-dimensional random walk model
 - variation over time: sequence of steps of different sizes: $sspdf(\Delta)$.
 - Steps are independent
 - Applied in similar contexts before
 - Facilitates an algorithmic solution

flows, Mbps, etc...

A-GAP: Stochastic Model (2)

- Modeling Aggregation Trees
 - Model to relate
 - Filter widths
 - Management overhead (load)
 - Estimation error
 - Assumes statistical independence among local variables
- Lack of a closed form (for now)
 - However, we can evaluate candidate solutions

A-GAP: Stochastic Model (3) Modeling a Node

(1)
$$T_{ij}^{n} = \begin{cases} sspdf_{in}^{n}(j-i) & \text{for } j \neq 0 \\ sspdf_{in}^{n}(-i) + \sum_{k=-\infty}^{-(F^{n}+i+1)} sspdf_{in}^{n}(k) + \sum_{k=F^{n}+i+1}^{\infty} sspdf_{in}^{n}(k) & \text{for } j = 0 \end{cases}$$

(2)
$$sspdf_{out}^{n}(\Delta) = \begin{cases} sspdf_{in}^{n}(\Delta) * \pi^{n}(\Delta) & \text{for } |\Delta| > F \\ \sum_{\Delta = -F^{n}}^{F^{n}} sspdf_{in}^{n}(\Delta) * \pi^{n}(\Delta) & \text{for } \Delta = 0 \\ 0 & \text{for any other } \Delta \end{cases}$$

- (3) $\operatorname{epdf}_{\operatorname{out}}^{\operatorname{n}}(\Delta) = \operatorname{epdf}_{\operatorname{in}}^{\operatorname{n}}(\Delta)^* \pi^{\operatorname{n}}(\Delta)$
- (4) $\lambda^n = nc^n (1-sspdf_{out}^n(0))$

* stands for convolution

A-GAP: Stochastic Model (4) Modeling the Aggregation Tree

(5)
$$\operatorname{epfd}_{\operatorname{in}}^{\operatorname{n}}(\Delta) = \operatorname{epdf}_{\operatorname{out}}^{\operatorname{c1}}(\Delta)^{*} \operatorname{epdf}_{\operatorname{out}}^{\operatorname{c2}}(\Delta)^{*} \operatorname{epdf}_{\operatorname{out}}^{\operatorname{c3}}(\Delta)^{*}...$$

(6) sspdfⁿ_{in} (
$$\Delta$$
)= $\sum_{c \in children} sspdf^{c}_{out}(\Delta)nc^{c} / \sum_{c \in children} nc^{c}$

A-GAP: Design Principles

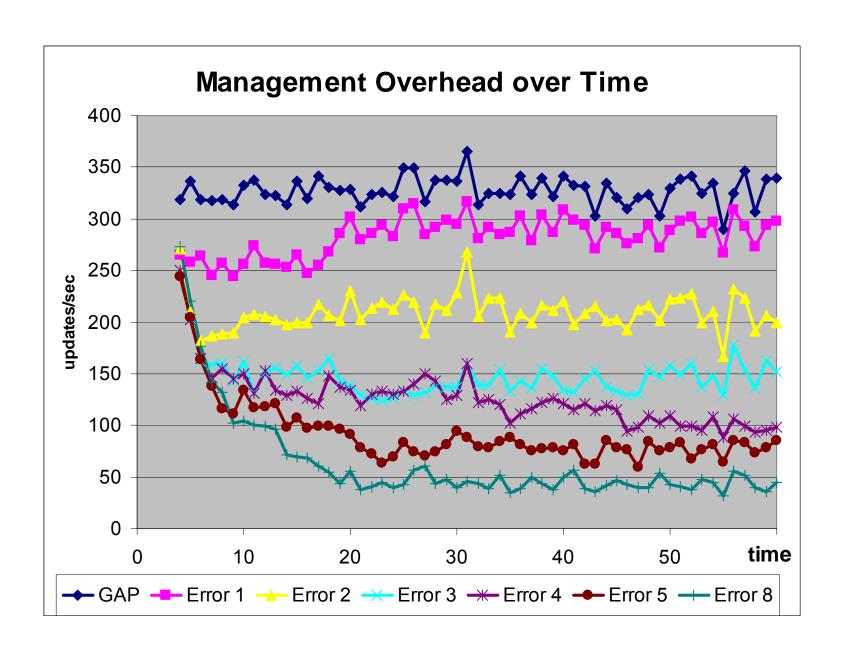
- Decentralized and Asynchronous
 - Scalability and robustness
- Based on GAP
 - Spaning tree
 - Incremental aggregation
 - All nodes execute same code

Heuristic

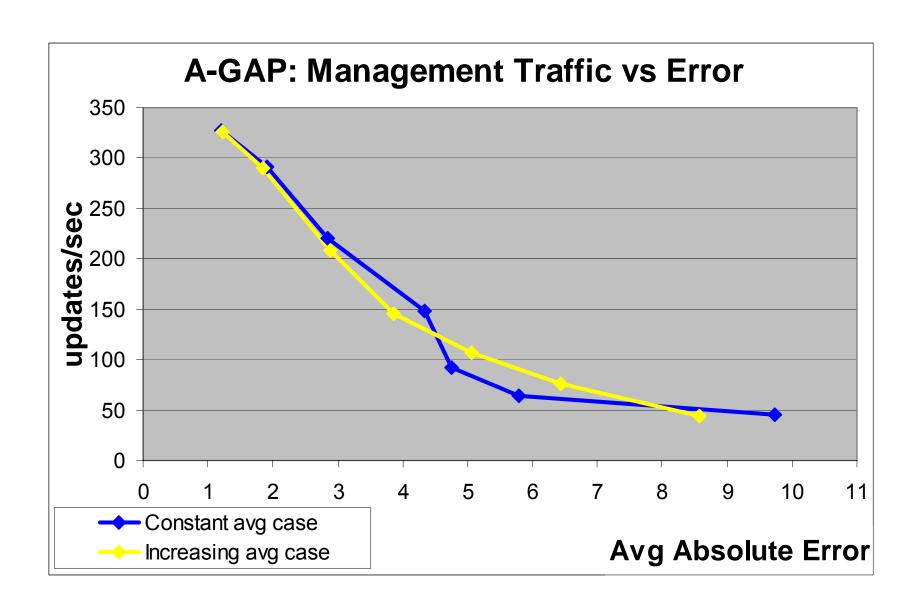
- Global problem mapped into local problems
 - Minimize processing load for a given accuracy regarding its partial aggregate
 - Mechanism: periodically re-compute filters of children

A-GAP: Pseudo-code

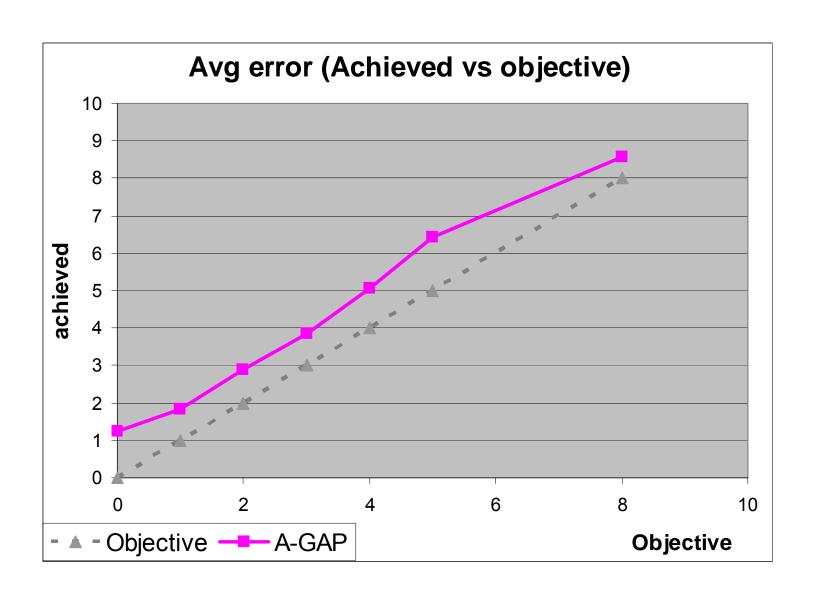
```
F1:
1 every T seconds
   if backoff flag is clear
3
        request statistics from children (sspdf_in, epdf_in, nc)
        select η children in a round-robin fashion
4
5
        compute new filters for selected children
6
        compute new accuracy constraints for children (obj_i=\alpha \cdot obj_n \cdot e_ratio)
        send new filters and constraints to children
8
        compute local statistics (sspdf_in, epdf_in, nc)
   if backoff flag checked
10
        send backoff message to children
```

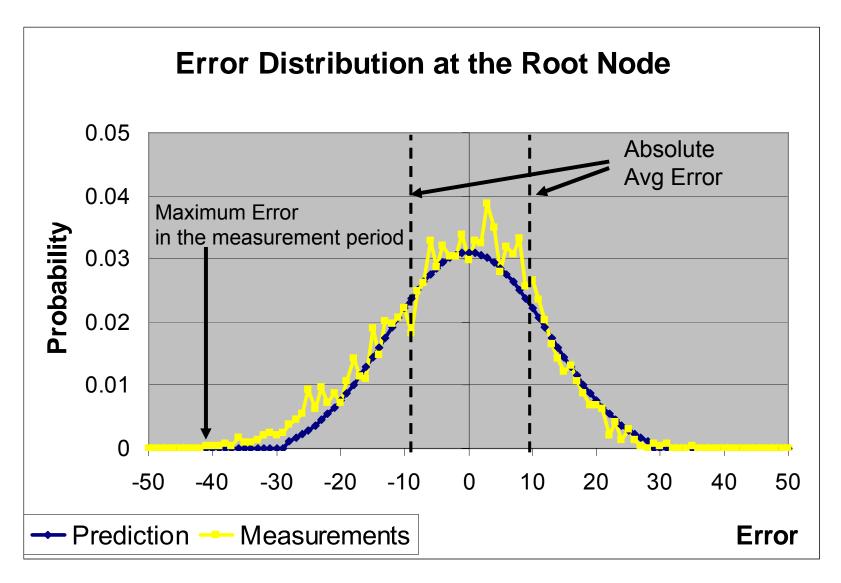

A-GAP: Pseudo-code

```
F2:
   on message received from parent
   if message type is new filter and accuracy constraint
13
        set new filter and accuracy constraint
14
        if new filter width < current filter width
15
                set backoff flag
16
        else
17
                clear backoff flag
18 if message type is backoff
        restore filter from the last cycle
19
        set backoff flag
20
```

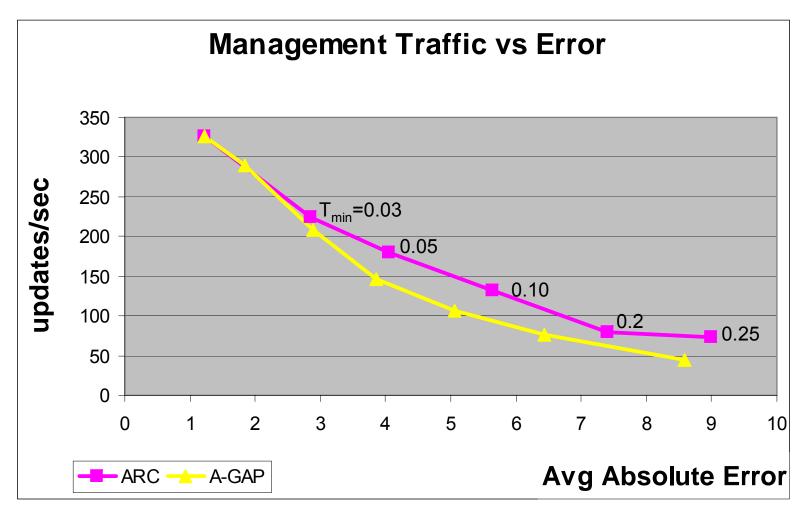

Evaluation through Simulation

- Scenario
 - Abovenet
 - 654 nodes
 - 1332 links
 - Filters re-computed once per second asynchronously
 - Scenario 1: Constant Average Aggregate
 - 50% sources have a step size of 1
 - 50% sources have a step size of 2
 - Scenario 2: Increasing Average Aggregate
 - Value of the sum increases linearly with time
 - $\sim 60/ \sec$


Evolution over Time


Trade-off

Achieving the Objective



Distribution of the Estimation Error

Very long tail: maximum error is 180

Benchmarking against a Rate-control Scheme

 Determination of the operating point is difficult for a rate-control scheme

Computational Cost of A-GAP

- Can be qualitatively controlled
 - Recomputation interval
 - Number of filters re-computed per interval

Discussion

- Goal of A-GAP
 - Accuracy objectives in terms of average absolute error (vs max)
- Characteristics of A-GAP
 - Decentralized, asynchronous
 - Heuristic: global problem mapped into local problems
- Trade-off (achievements)
 - Can be controlled
 - Significant overhead reductions: 85% for objective of 8 units
- A-GAP enables Performance Prediction at the MS
 - Computation of trade-off curve at run-time (overload avoidance)
 - Achieve estimation of error distribution

Future Work

- Real-time estimation of random walk model parameters
- Implementation of A-GAP on testbed