A Smart Mall Scenario Using Promise Theory

Siri Fagernes

19th NMRG Meeting in Stockholm, January 12-13, 2006

Motivation

- Give an example of Promise Theory as analysis tool.
- Analyse the behavioural patterns of autonomous agents in a Pervasive Computing Scenario.

Outline

- 1 The Smart Mall Scenario
- 2 The Promises
- Game Modelling and Analysis
- Summary

The Smart Mall

The scenario includes the following actors:

- 1 Internet Service Provider (ISP).
- 1 mall.
- 3 Shops.
- 10 Customers.

Wireless Networks

- Throughout the mall (the global network).
- Local networks within range of each shop.
- Ad-hoc networks, formed by customers.

Mall features

- Mall and shops can send out information to online customers.
- Customers can forward received messages to other reachable customers.
- Forwarded messages are rewarded with Mall Credits.

Autonomous agents

- ISP (node 1).
- Mall management (node 2).
- Shop (node 3, 4, 5).
- Customer (node 6 15).

Benefits and loss (currency)

- ISP:
 - Payment for provided service (gain).
 - Cost of providing service (loss).
- Mall/shops:
 - Turnover/profit.
 - Reputation/popularity among customers.
- Customers:
 - Credits.
 - Information.
 - Battery power.

Potential conflicts

Between customers:

Overflow of messages vs. gaining more credits.

Between customer and mall

- Mall wish to reach customers ⇒ need them to download messages.
- Customers have limited battery power ⇒ not interested in message overflow.
- Mall provides Internet access ⇒ Customers might be tempted to exploit it.

Promise types

Promise body	Units	Category
$q, q \geq q_n$	Mb/sec	Service
r, r = R	Credits per message	Service
$i, i \in \{T, F\}$	True/False	Service
$d, d \in \{T, F\}$	Messages per hour	Use-message
$f, f \geq f_n$	Messages per hour	Service
$If, If \leq I_n$	Messages per hour	Use-value

Example promises

- If ≤ I_n: Keep the rate of forwarded messages below I_n (between customers).
- q ≥ q_n: Provide a minimum QoS of q_n (from ISP to mall, from mall/shops to customers).
- r = R: Reward customer with R credits per forwarded message (from mall/shops to customers).

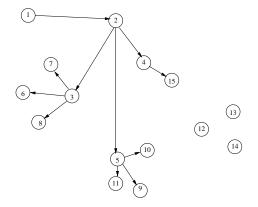


Figure: The *q*-promise graph without labels.

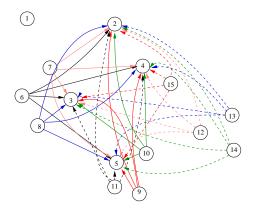
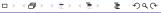



Figure: The d/f-promise graph without labels. The graphs for d and f are the same.

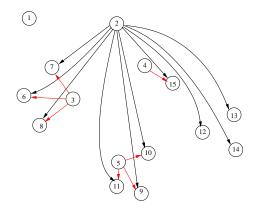



Figure: The *r*-promise graph without labels.

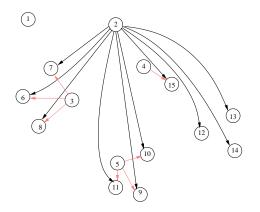



Figure: The *i*-promise graph without labels.

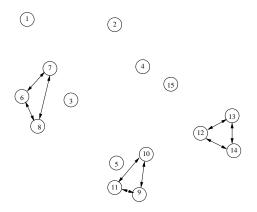


Figure: The If-promise graph without labels.

Basic moves for each player

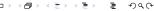
Cooperate: Keep promise.

Defect: Fail to keep promise.

Example payoff matrix

ISP, Mall	Mall cooperate	Mall defect	
ISP cooperate	$P_s - C_s$, $S - P_s$	0 – C _s , S	
ISP defect	P_s , $C_r - P_s$	0, <i>C</i> _r	

Table: Payoff matrix for the ISP-Mall game.



Parameters: ISP-Mall game

- *P*_s: The price or fee the mall has to pay for service.
- C_s: The cost for the ISP as a consequence of providing the service.
 - S: The agreed level of service. This parameter is a numerical unit, associated with the *value* of the service.
- *C_r*: The cost incurred by not having a sufficient Internet service/connection.

Games in the network

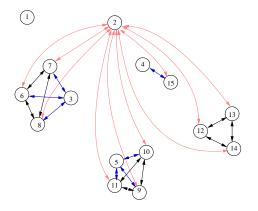


Figure: The graph of various bargaining games within the network.

Analysis: derived roles

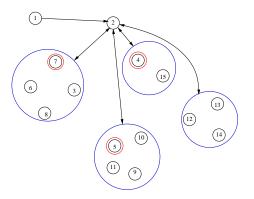


Figure: A simplified schematic graph based on the derived roles.

Example: Level of cooperation (probability)

```
0.9
              0.0
0.0
                     0.0
                             0.0
                                    0.0
                                           0.0
                                                  0.0
                                                         0.0
                                                                0.0
                                                                        0.0
                                                                               0.0
                                                                                      0.0
                                                                                             0.0
                                                                                                    0.0
0.0
       0.0
              1.7
                     1.7
                             1.7
                                    1.7
                                           1.7
                                                  1.7
                                                         1.7
                                                                1.7
                                                                        1.7
                                                                               1.7
                                                                                      1.7
                                                                                             1.7
                                                                                                    1.7
0.0
       0.0
              0.0
                     0.0
                             0.0
                                    2.5
                                           2.5
                                                  2.5
                                                         0.0
                                                                0.0
                                                                               0.0
                                                                                      0.0
                                                                                             0.0
                                                                                                    0.0
                                                                        0.0
0.0
       0.0
              0.0
                     0.0
                                           0.0
                                                  0.0
                                                         0.0
                                                                0.0
                                                                        0.0
                                                                               0.0
                                                                                      0.0
                                                                                             0.0
                                                                                                    2.6
0.0
       0.0
              0.0
                     0.0
                             0.0
                                    0.0
                                           0.0
                                                  0.0
                                                         2.4
                                                                2.4
                                                                        2.4
                                                                                      0.0
                                                                                             0.0
                                                                                                    0.0
                                                                               0.0
0.0
       1.4
              1.4
                                    0.0
                                           0.7
                                                  0.7
                                                         0.0
                                                                        0.0
                                                                               0.0
                                                                                      0.0
                                                                                             0.0
                                                                                                    0.0
       1.8
0.0
              1.8
                     1.8
                                    0.9
                                           0.0
                                                  0.9
                                                         0.0
                                                                0.0
                                                                        0.0
                                                                               0.0
                                                                                      0.0
                                                                                             0.0
                                                                                                    0.0
0.0
       1.8
              1.8
                     1.8
                                    0.9
                                           0.9
                                                  0.0
                                                         0.0
                                                                0.0
                                                                        0.0
                                                                               0.0
                                                                                      0.0
                                                                                             0.0
                                                                                                    0.0
0.0
       1.4
              1.4
                                    0.0
                                           0.0
                                                  0.0
                                                         0.0
                                                                0.7
                                                                        0.7
                                                                               0.0
                                                                                      0.0
                                                                                             0.0
                                                                                                    0.0
0.0
       1.0
              1.0
                     1.0
                                    0.0
                                                  0.0
                                                         0.5
                                                                0.0
                                                                                             0.0
                                                                                                    0.0
                             1.0
                                           0.0
                                                                        0.5
                                                                               0.0
                                                                                      0.0
0.0
       0.4
              0.4
                     0.4
                             0.4
                                    0.0
                                                         0.2
                                                                0.2
                                                                                      0.0
                                                                                             0.0
                                                                                                    0.0
                                           0.0
                                                  0.0
                                                                        0.0
                                                                               0.0
0.0
       1.6
              1.6
                                    0.0
                                           0.0
                                                  0.0
                                                         0.0
                                                                0.0
                                                                        0.0
                                                                               0.0
                                                                                      0.8
                                                                                             0.8
                                                                                                    0.0
0.0
       1.8
              1.8
                                    0.0
                                           0.0
                                                  0.0
                                                         0.0
                                                                0.0
                                                                       0.0
                                                                               0.9
                                                                                      0.0
                                                                                             0.9
                                                                                                    0.0
0.0
       1.6
              1.6
                     1.6
                             1.6
                                    0.0
                                           0.0
                                                  0.0
                                                         0.0
                                                                0.0
                                                                        0.0
                                                                               0.8
                                                                                      0.8
                                                                                             0.0
                                                                                                    0.0
0.0
              1.4
                                    0.0
                                                         0.0
                                                                       0.0
                                                                               0.0
                                                                                      0.0
                                                                                             0.0
                                                                                                    0.0
                                           0.0
                                                  0.0
                                                                0.0
```

Figure: The sum matrix of probabilities for promises of all types, estimated over time.

Analysis: importance ranking

Rank	Agent numbers		
position	A (Senders)	A ^T (Receivers)	$A + A^{T}$
1	2	3	2
2	13	4	3
3	7	5	5
4	8	2	7
5	12	6	8
6	14	7	4
7	3	8	6
8	6	11	13
9	9	10	9
10	15	9	12
11	10	15	14
12	5	12	15
13	1	14	10
14	11	13	11
15	4	1	1

Table: Ranking of the nodes from top to bottom. The topmost nodes are most powerful (A^T) , or most subservient (A). Rank values for nodes $\{7,8\}$ and $\{12,14\}$ are identical in each case, indicating a symmetry. Also, the rank positions for $\{3,4,5\}$ are identical for A^T .

Analysis: rank contour I

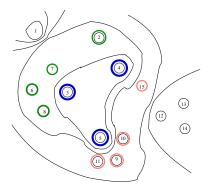


Figure: A rank contour for the model, showing the influentialness or 'power' the agents have to attract promises (strong receivers), $eig(A^T)$.

Analysis: rank contour II

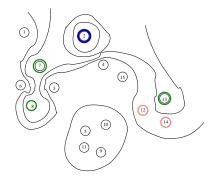


Figure: A rank contour of the 'willingness' of the nodes to offer and keep promises (strong senders), eig(A).

Analysis: removal of node

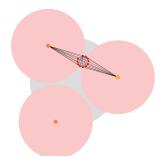


Figure: Eliminating the mall node 2 isolates the ISP node and forms two network regions dominated by two of the shops and bridged by the intermediary customers.

Summary

- We have explored a Pervasive Computing Scenario, using promises.
- We have demonstrated how the use of *Promise theory* can help predicting *coalitions* and *structures*.

