NMRG 2006

An Introduction to Promise Theory

part I

Mark Burgess

Pervasive, autonomous computing

- Personal consumer electronics autonomy
- Multiple services, no central control
 - Today: in data centres and server rooms
 - Tomorrow: in walls and malls
- Agents are autonomous in their policies

Questions?

How do we (can we?) arrange for a consistent policy in a distributed system?

How do we manage (control?) devices and rulesets in a distrubuted system?

Hard to answer – requires some notion of cooperation between nodes. But who is in control?

Policy conflicts

- Assume that all nodes will follow a consistent set of rules (no conflicts)
 - Assumes they have common goals?
- Often policy is dictated from a central location
 - Is this this obvious solution to harmony?
- What about distributed systems?
 - Pervasive computing
 - Devices have many masters/mistresses
 - Cooperation with policy is voluntary

Bad habits...

- We tend to think in terms of hierarchy and centralization
 - Hard to break out of this mo(u)ld
 - If you build everything on a presumed truth, you are unlikely to exceed it
- Start at too high a level
 - End up tripping over our shoe-laces

Protocol and timing

- Worry too much about ordering
- Event-Condition-Action (ECA)
 - Triggered fire-fighting
 - Policy in farmer or egg?
- Forget about the sequences
 - Timing should matter less if we have stability

Logics?

- (Modal) logic is often used to try to prove whether nodes will have conflicts
 - Doesn't tell us how to fix things
 - Doesn't tell us how to set things up in the first place
 - How do we formulate propositions to be proven?
- Logic = verification
 - Not a "constructive" method
 - Need an architect, not an art critic

Start again

- Try to begin with the extreme viewpoint
 - Make it primitive and constructive
 - Make it intuitive and distributed (graphs)
 - Make it analyzable (labelled graphs)
 - Make sure it is tied to existing research on <u>autonomy</u>
- Base it around snapshots/epochs in time
 - Sequential interaction seldom interesting for policy
 - Define what you want not how to get there
 - Triggered events model as services

Don't forget autonomy

- Voluntary cooperation
- Each atom is an autonomous agent
 - You cannot force one to do anything
 - It decides for itself
 - Want centralization? Build it from the bricks!
 - Direct relationship to cooperative game theory (economic cooperation)

Promise theory

- A combination of graph theory and set theory
 - Exceeds "Boolean" logic constructive
 - Handles constraints on possible behaviours
 - Handles relationships, not just true/false rules
 - Service model: "I promise you service S" (SLA)
- Directed graph

Typed/labelled graph

Promise types:

- Service promises (promise to constrain behaviour)
- Cooperative promise (promise to do the same as)
- Usage promise (promise to make use of)

• Atomicity rule:

- Only one promise of a given type per pair:
- Broken promise => two different promises

Example

Consistency

- Any node is free to promise anything
- But when is it breaking its promises (SLA)?
 - Basic promise S
 - C(S) and U(S) tell us about structural dependency
 - Use these to reconstruct cooperative structure

Other examples

Cfengine is an autonomous agent –

- how do we model it? cfagent content same contents data copy destination objects () Method agent use data source π_{yes}/π_0 cfagent argument $\pi_2/\pi_{\text{-yes}}$

Summary

- Integrates logic, planning and heuristics
- Promises describe steady equilibria
- Time is only a distraction we want stability
- Very easy to use lots of graph theory results
- Lots of theorems to be proven (re-enter logic)
- A theory for pervasive peer computing

"I will speak daggers to her, but use none My tongue and soul in this be hypocrites" --WS (Hamlet)