

Performance Evaluation of Web Services as Management Technology

G. Pavlou, P. Flegkas, S. Gouveris Centre for Communication Systems Research University of Surrey, UK

http://www.ee.surrey.ac.uk/CCSR/Networks/

Web Services as Distributed Object Technology

- Strong analogies to DOTs
 - WSDL similar to CORBA IDL with service inheritance
 - URI similar to CORBA IOR
 - SOAP similar to CORBA GIOP
 - SOAP over HTTP/TCP/IP similar to CORBA IIOP
 - UDDI similar to CORBA Interface Repository and Naming/Trading services
- Difference: loose message-passing coupling between clientsservers
 - Most implementations though take a static coupling approach through stubs but through proprietary APIs
- "On the wire" interoperability only, no standard APIs
- No sophisticated services yet but work under way for transaction and security, notification also required

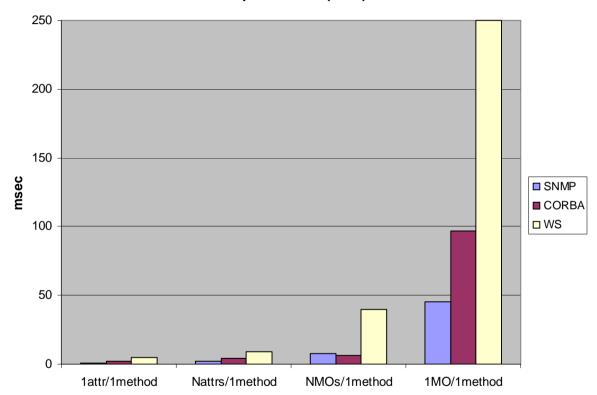
Unis Web Services for Management

- Exactly the same issues as using any other DOT
- The proposal presented in the previous talk could be used, we have used for the performance measurements
- Notification facilities through EFD-like services with filtering on event type very easy to realise
 - Proper notification services with filtering on event content (like in OSI-SM EFDs and CORBA) should eventually appear
- For example, the TCP information on a node becomes a service with an advertised URI
 - Methods as described in the previous talk are modelled through operations with messages

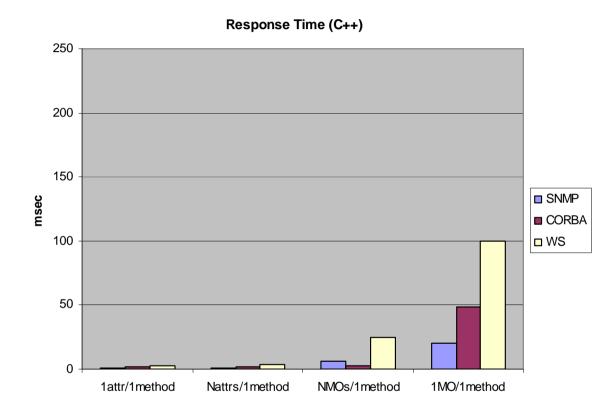
- We experimented with three WS implementations
 - Systinet WASP, Apache Axis and gSOAP (for small devices)
- Writing WSDL specs is a pain but all platforms provide converters from Java/C++ object specs
- Apache Axis is not user-friendly, supporting only a low-level SOAP API
- WASP and gSOAP support a CORBA-like stub-based framework and usability is similar to CORBA
 - The APIs are syntactically different but the abstractions are similar, so it is relatively easy to deal with both
 - But, of course, there is no code portability L

- We implemented the TCP protocol and connections in CORBA and Web Services and compared the performance of SNMP, CORBA and WS versions
- Hardwired values for TCP counters and connections (40 connections) in order to only assess the infrastructure overhead and achieve repeatability
 - We had to modify a SNMP agent implementation for this
- We used two modelling approaches for TCP connections:
 - Through getConnNo(), getConnInfo() methods
 - Through separate interfaces and a getConnRefs() / getConnURIs() method of the TCP interface/endpoint

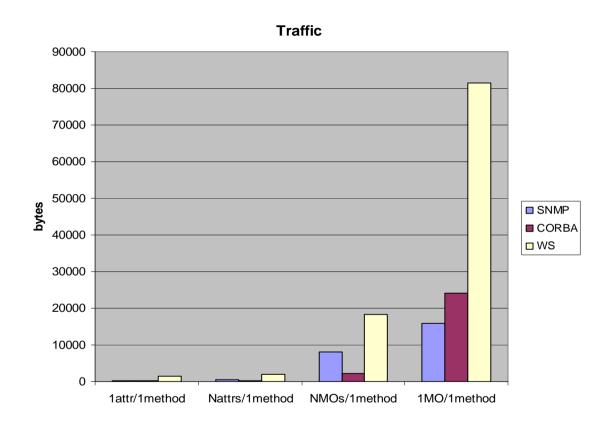
Environment


- WASP Web Services platform
- Orbacus CORBA platform
- NET-SNMP SNMP platform
- Both C++ and Java implementations, apart from the NET-SNMP agent which was implemented in C
 - Wanted to also see Java to C++ implementation differences
- GNU C/C++ 2.95, Java 2 SE JDK 1.3.1 versions on Linux RedHat 7.3
- Two Celeron 1GHz Linux PCs with 256 Mb RAM connected through a dedicated 100 Mb/s Ethernet

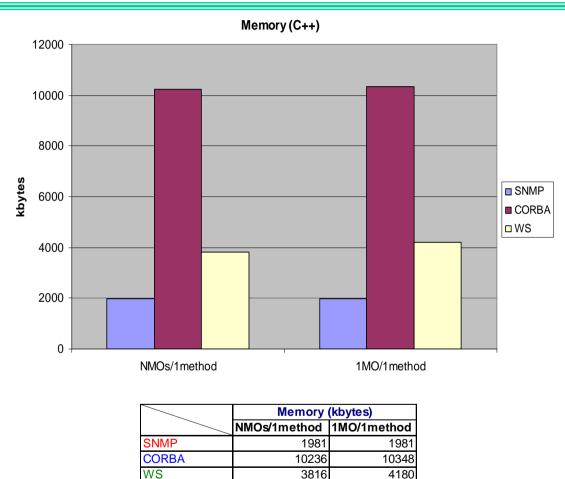
- We measured response times for the following
 - A method returning a single TCP counter 1Attr/1Method
 - A method returning all the TCP counters *Nattr/1Method*
 - Retrieving the whole table in two ways:
 - Through 1 IDL/WSDL method and SNMP GetBulk NMOs/1Method
 - Through N methods for separate TCP connection interfaces / endpoints in IDL/WSDL and SNMP GetNext – 1MO/1Method
- We also measured traffic incurred
- And we finally measured the memory footprint for the managed system side for the C/C++ case


Unis WS/SOAP vs SNMP & CORBA: Java Response Times

Response Time (Java)


	Response Time (msec)				
	1attr/1method	Nattrs/1method	NMOs/1method	1MO/1method	
SNMP	1	2	8	45	
CORBA	2	4	6	97	
WS/SOAP	5	9	40	250	

Unis WS/SOAP vs SNMP & CORBA: C++ Response Times


	Response Time (msec)				
	1attr/1method	Nattrs/1method	NMOs/1method	1MO/1method	
SNMP	0.8	1	6	20	
CORBA	1.5	1.7	2.5	49	
WS/SOAP	2.5	3.7	25	100	

	Traffic (bytes)				
	1attr/1method	Nattrs/1method	NMOs/1method	1MO/1method	
SNMP	138	413	8160	15917	
CORBA	280	316	2252	24157	
WS	1390	2052	18266	81350	

WS/SOAP vs SNMP & CORBA: C++ Memory Footprint

Note: the SNMP managed system memory footprint is for the whole MIB-II while the CORBA / WS ones are only for the TCP MIB-II part

UniS

- Java times roughly twice those of C++
- CORBA is very efficient for retrieving many attributes, the WS time increases because of XML encodings
- CORBA is also very efficient for retrieving a whole table through 1 method in comparison to both SNMP and WS – WS is by far the slowest (by 1 order of magnitude)
- The 1 object per TCP connection in both CORBA/WS results in much slower response times and prohibitive amount of traffic (includes IOR/URI retrieval first)
- CORBA traffic the smallest, WS traffic high but acceptable for simple methods and table retrieval
- Memory footprint highest for CORBA, smallest for SNMP
- In summary, WS performance is not prohibitive