UniS

Performance Evaluation of Web
Services as Management Technology

G. Pavlou, P. Flegkas, S. Gouveris
Centre for Communication Systems Research
University of Surrey, UK

http://lwww.ee.surrey.ac.uk/CCSR/Networks/

NMRG Bremen — 8-9 Jan 2004

| Web Services as Distributed
UniS Object Technology

Strong analogies to DOTs
« WSDL similar to CORBA IDL with service inheritance
 URI similar to CORBA IOR
« SOAP similar to CORBA GIOP
e SOAP over HTTP/TCP/IP similar to CORBA IIOP
 UDDI similar to CORBA Interface Repository and Naming/Trading
services

« Difference: loose message-passing coupling between clients-
servers

 Most implementations though take a static coupling approach
through stubs but through proprietary APIs

 “On the wire” interoperability only, no standard APIs

 No sophisticated services yet but work under way for transaction
and security, notification also required

NMRG Bremen — 8-9 Jan 2004

UniS Web Services for Management

 Exactly the same issues as using any other DOT

« The proposal presented in the previous talk could be
used, we have used for the performance measurements

« Notification facilities through EFD-like services with
filtering on event type very easy to realise
 Proper notification services with filtering on event content (like
In OSI-SM EFDs and CORBA) should eventually appear
 For example, the TCP information on a node becomes a
service with an advertised URI

« Methods as described in the previous talk are modelled
through operations with messages

NMRG Bremen — 8-9 Jan 2004

UniS Usability

« We experimented with three WS implementations
o Systinet WASP, Apache Axis and gSOAP (for small devices)

« Writing WSDL specs is a pain but all platforms
provide converters from Java/C++ object specs

« Apache Axis is not user-friendly, supporting only a
low-level SOAP API

« WASP and gSOAP support a CORBA-like stub-based
framework and usability is similar to CORBA

« The APIs are syntactically different but the abstractions are
similar, so it is relatively easy to deal with both

e But, of course, there is no code portability L

NMRG Bremen — 8-9 Jan 2004

UniS Evaluation

« We implemented the TCP protocol and connections in
CORBA and Web Services and compared the
performance of SNMP, CORBA and WS versions

 Hardwired values for TCP counters and connections
(40 connections) in order to only assess the
Infrastructure overhead and achieve repeatability
« We had to modify a SNMP agent implementation for this

« We used two modelling approaches for TCP
connections:

« Through get ConnNo(), get Connl nfo() methods

« Through separate interfaces and a get ConnRef s() /
get ConnURI s() method of the TCP interface/endpoint

NMRG Bremen — 8-9 Jan 2004

UnisS Environment

« WASP Web Services platform
« Orbacus CORBA platform
e NET-SNMP SNMP platform

« Both C++ and Java implementations, apart from the
NET-SNMP agent which was implemented in C
 Wanted to also see Java to C++ implementation differences

e GNU C/C++ 2.95, Java 2 SE JDK 1.3.1 versions on
Linux RedHat 7.3

e Two Celeron 1GHz Linux PCs with 256 Mb RAM
connected through a dedicated 100 Mb/s Ethernet

NMRG Bremen — 8-9 Jan 2004

UnisS Measurements

« We measured response times for the following
« A method returning a single TCP counter - 1Attr/1Method
« A method returning all the TCP counters — Nattr/IMethod
* Retrieving the whole table in two ways:
 Through 1 IDL/WSDL method and SNMP GetBulk — NMOs/1Method

« Through N methods for separate TCP connection interfaces /
endpoints in IDL/WSDL and SNMP GetNext — 1MO/1Method

e We also measured traffic incurred

 And we finally measured the memory footprint for the
managed system side for the C/C++ case

NMRG Bremen — 8-9 Jan 2004

| WS/SOAP vs SNMP & CORBA:
UnNiS Java Response Times

Response Time (Java)
250

200

150
§ @ SNMP
S @ CORBA
100 aows

50

lattr/Imethod Nattrs/1method NMOs/1method 1MO/1method

Response Time (msec)

lattr/lmethod [Nattrs/Imethod |NMOs/1method |1IMO/1method
SNMP 1 2 8 45
CORBA 2 4 6 97
WS/SOAP 5 9 40 250

NMRG Bremen — 8-9 Jan 2004

| WS/SOAP vs SNMP & CORBA:
UnNiS C++ Response Times

Response Time (C++)

250

200

150
§ O SNVP
€ m CORBA
100 ows
50
0
lattr/1method Nattrs/1method NMOs/1method 1MO/1method
Response Time (msec)
lattr/Imethod [Nattrs/Imethod [NMOs/1Imethod [1MO/1method
SNMP 0.8 1 6 20
CORBA 1.5 1.7 2.5 49
WS/SOAP 2.5 3.7 25 100

NMRG Bremen — 8-9 Jan 2004

WS/SOAP vs SNMP & CORBA:
Traffic Incurred

UniS

Traffic
90000
80000
70000
60000
50000
4 @ SNMP
>
< 40000 B CORBA
ows
30000
20000
10000
0
lattr/Imethod Nattrs/Imethod NMOs/1method 1MO/1method
Traffic (bytes)
lattr/Imethod [Nattrs/Imethod [NMOs/1method |1IMO/1method
SNMP 138 413 8160 15917
CORBA 280 316 2252 24157
WS 1390 2052 18266 81350

NMRG Bremen — 8-9 Jan 2004

10

| WS/SOAP vs SNMP & CORBA:
UniS C++ Memory Footprint

Memory (C++)
12000
10000 -
8000 -
%)
P;’\ 6000 - @ SNMP
2 m CORBA
ows
4000 -
2000
0 ‘
NMOs/1method 1MO/1method

Memory (kbytes)

NMOs/1method [1MO/1method
SNMP 1981 1981
CORBA 10236 10348
WS 3816 4180

Note: the SNMP managed system memory footprint is for the whole MIB-II
while the CORBA / WS ones are only for the TCP MIB-II part

NMRG Bremen — 8-9 Jan 2004

UniS Summary

« Javatimes roughly twice those of C++

« CORBA is very efficient for retrieving many attributes, the WS
time increases because of XML encodings

« CORBA is also very efficient for retrieving a whole table through
1 method in comparison to both SNMP and WS — WS is by far
the slowest (by 1 order of magnitude)

« The 1 object per TCP connection in both CORBA/WS results in
much slower response times and prohibitive amount of traffic
(includes IOR/URI retrieval first)

« CORBA traffic the smallest, WS traffic high but acceptable for
simple methods and table retrieval

« Memory footprint highest for CORBA, smallest for SNMP
e In summary, WS performance is not prohibitive

NMRG Bremen — 8-9 Jan 2004

