
ntop.org

Improving Passive Packet Capture:
Beyond Device Polling

Luca Deri <deri@ntop.org>



ntop.org

Packet Capture: State of the Art

• Many available passive network monitoring tools are based 
on libpcap (http://www.tcpdump.org) or winpcap (http://
winpcap.polito.it)

• Despite libpcap offers the very same programming interface 
across different OSs, the library performance are very 
different depending on the platform being used.

• Some library components (e.g. BPF packet filtering) have 
been implemented into the kernel for better performance.



ntop.org

Packet Capture: Open Issues

• Monitoring low speed (100 Mbit) networks is already possible 
using commodity hardware and tools based on libpcap.

• Sometimes even at 100 Mbit there is some (severe) packet 
loss: we have to shift from thinking in term of speed to 
number of packets/second that can be captured analyzed.

• Problem statement: monitor high speed (1 Gbit and above) 
networks with common PCs (64 bit/66 Mhz PCI bus) without 
the need to purchase custom capture cards or 
measurement boxes.



ntop.org

Libpcap Performance
on a Vanilla OS

Testbed:
•   Sender: Dual 1.8 GHz Athlon, 3Com 3c59x Ethernet card
• Collector: VIA C3 533 MHz, Intel 100Mbit Ethernet card
• Network Switch: Cisco Catalyst 3548 XL
• Traffic Generator: tcpreplay (http://tcpreplay.sourceforge.net/)

Traffic Capture Application Linux 2.4.x FreeBSD 4.8 Windows 
2K

Standard Libpcap 0.2 % 34 % 68 %

mmap Libpcap 1 %   

Kernel module 4 %   

Percentage of captured packets [~80K packet/sec, ~45 Mbit]



ntop.org

Libpcap Performance
Using Polling

• Device Polling significantly improved the performance on a 100 Mbit Ethernet 
card

• Linux still performs much worse than FreeBSD at userspace

• Linux kernel performance is basically the same of FreeBSD at userspace

Traffic Capture Application Linux 2.6

with NAPI

FreeBSD 4.8

with Polling

Standard Libpcap 5.6 % 99.9 %

Mmap Libpcap Not (yet) working  

Kernel module 99.5 %  

Percentage of captured packets (same test setup)



ntop.org

Libpcap Performance
at Gbit Speeds

• While FreeBSD is usable at 100 Mbit, at Gbit the packet loss is greater 
(Linux still performs much worse).

• Device polling, nor card interrupt mitigation, is not enough for capturing 
almost everything.

• It is necessary to rethink the traffic capture architecture to achieve better 
speeds.

Traffic Capture Application FreeBSD 4.8 with Polling

Standard Libpcap 148’000 (~3.7%)

Dropped packets [4’000’000 packet sample] (165-195k pkt/sec, ~480Mbit)



ntop.org

Polling vs. non Polling

 Input Rate
 No Polling
 Device Polling

Sidenote. Polling is usually disabled by default in OSs as:

• Slow polling can have negative effects on packet timestamp precision.

• Fast polling can take over all/most of the available CPU cycles.



ntop.org

Proposed Solution: Driver 
Packet Ring

Read Pointer

Write Pointer

Incoming Packets

Outgoing Packets
Userspace

Adapter Driver

Circular Buffer
(ring)

Network
Adapter

mmap()



ntop.org

Driver Packet Ring: Features [1/2]

•

• The card driver (not the kernel) fills up the buffer.

• Features like packet sampling and filtering can be efficiently 
implemented into the driver (otherwise the packet arrives to 
the kernel/userland then is filtered/discarded).

• The bucket copy operation is very fast (memcpy() with no 
memory handling needed) so even with kernel that does not 
support device polling, under strong traffic conditions the 
system is usable.



ntop.org

• Straight path from the driver to userspace with no kernel 
overhead (beside the PCI bus). Note that packets are transfer 
over the PCI bus via DMA and that interrupts arrive only 
when the packet is already available to the driver.

• Packets are not queued into kernel network data structures 
but directly accessible to user-space applications.

• The mmap() primitive allows userspace applications to 
access the circular buffer with no overhead due to system 
calls such as in the case of socket calls.

Driver Packet Ring: Features [2/2]



ntop.org

Driver Packet Ring: Main Advantages

• Enable people to capture packets at (almost) wire speed 
without having to purchase a dedicated card or measuring 
box.

• It exploits both polling and interrupt mitigation (if available).

• Common belief that coding into the kernel is more efficient 
than in userspace is not completely correct. In fact a kernel 
module is slower than a userland application+ring as 
packets have to traverse kernel structures until they can talk 
with the kernel module.



ntop.org

Driver Packet Ring: Validation

Traffic Capture Application Linux 2.6

with NAPI

FreeBSD 4.8

with Polling

Standard Libpcap  96.3% (148’000 drops)

Circular Buffer Libpcap > 99.99% (160 drops)  

Captured packets [4’000’000 packet sample] (165-195k pkt/sec, ~480Mbit)

• Linux drops most of the packets at startup (polling issue?), little loss over 
the time.

• The CPU load on the Linux PC is < 10% (i.e. there’s room for improvement), 
whereas is very high on FreeBSD (little CPU time left to measurement 
applications).



ntop.org

Driver Packet Ring: Current Status

• Port of the code to Linux 2.6.
• Currently available only for Intel cards (10/100/1Gb/10Gb).

• Easy to port to other card drivers as the code is device 
independent.

• Enhanced libpcap to seamlessly support the ring.

• Successfully tested several applications (e.g. tcpdump) on top 
of the ring in order to validate the code.

• Both ntop and nProbe (homegrown NetFlow v5/v9 probe for 
IPv4/6) run on top of the ring.



ntop.org

Work in Progress / Future 
Work

• Testing at 10 Gbit using a commercial card (e.g. Intel 10 Gbit) 
and comparison of its performance with custom cards (DAG, 
Combo6).

• Wishlist: port it to *BSD in order to evaluate the overall 
performance gain on a non-Linux platform.



ntop.org

Availability

• Paper and Documentation:
http://luca.ntop.org/Ring.pdf

• Code (GNU GPL2 license):
http://sourceforge.net/projects/ntop/


