Network Music Performance

Zefir Kurtisi

Institut für Betriebssysteme und Rechnerverbund Technische Universität Braunschweig

March 13, 2007

Challenges and Achievement

Summary and Future Work

Outline

About

Introduction

Challenges and Achievements

Summary and Future Work

Challenges and Achievement

Summary and Future Wor

About

Goals

Enable distributed Network-centric Music Performances for E-Learning and recreational purposes using

- today's hardware
- today's networks

Initialization

- Idea by Xiaoyuan Gu
- Initialized as a practicum for students in the summer term 2004

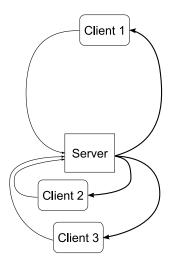
Progress

- practicum version proved the concept
- recent work led to stable prototype working in fast WANs (like DFN)
- future work on movement towards the home user

Challenges and Achievement

Summary and Future Worl

Overview


Features

Meeting above Goals requires support for

- Realtime Rehearsal
- Rehearsal On-Demand

Basic Principle

Centralized NMP-Server synchronizes and mixes audio data of all participating Clients and returns mix with minimal latency.

Challenges and Achievement

Summary and Future Work

Classification

NMP is an interdisciplinary field between

- Music
- Psychology
- Physics
- Engineering
- Computer Science

Contribution

We focus our work in some areas of Computer Science like

- Networks
- Hardware evaluation
 - · Audio and Network cards, Audio Equipment
- Audio Processing
 - Audio Manipulation, Compression, Mixing and Synchronization
- Realtime critical aspects of Operating Systems
 - Content Switching, Thread Scheduling
 - Audio APIs and Frameworks

Challenges and Achievement

Critical Requirement

Musicians' Demand

Music and Psychology shows that musicians' delay tolerance is very low and depends on

- Musician (skill, personality) and Instrument
- Composition and Music style

As a rough estimation a total delay of 30ms should be provided.

Technical Challenge

To be practically relevant NMP should not exceed this delay in total, including

- delay in the end-systems (client and server) for
 - processing and buffering
- network latency including
 - propagation time and de-jittering

Challenges and Achievement

Summary and Future Wor

Related Work

Is this not the same like...

- VoIP? ⇒ P2P, no mixing and syncronization, higher delay-tolerance
- Internet Audio Conferences? ⇒ same as VoIP
- Network Games? ⇒ no packet-based mixing and synchronization

Similar Work

- Internet2
 - HYDRA and the Miro Quartet (imsc-USC)
 - SoundWire (CCRMA-Stanford)
 - Transatlantic Master Class
- MIDI-based
 - VirJa Virtual Jazz Session System
 - eJaming
- NMP (Alexander Carot) ⇒ P2P, no mixing

Challenges and Achievements

Objectives

Main goal

Provide a system that operates with a maximum total delay of 30ms.

Results

Some results and facts not discussed here

- best results using 48kHz sampling rate at 16bps with 128 sample-blocks
- there are no realtime capabilities in desktop operating systems
 - Windows shows the worst reactivity, threads stall for 100s of ms
 - Mac OS/X is significantly better, threads stall up to 50ms
 - Linux is best, threads stall for up to 30ms, improvable through RtLinux or RTAI
- RtAudio is used as platform independent Audio API
- packet losses degrade audio quality
 - FEC and error concealment strategies are mandatory
- frequency transforming audio codecs introduce too large buffer delays, we are restricted to
 - uncompressed audio (PCM)
 - nonlinear sample-based requantization (ADPCM)
 - lossless non-transforming entropy coding (FLAC)

TECHNISCHE UNIVERSITÄT

Delay Analysis in the Endsystems

Delay Sources

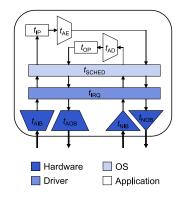
- hardware buffers
- buffers for data transformation
- processing time (CPU cycles)
- resource sharing (scheduling)
- system stalls (periphery IO)

Buffer Delay Granularity

Buffering delay granularity is set by audio card buffering through

- buffer size, here 128 samples/buffer
- sampling frequency, here 48kHz
- \Rightarrow results in buffering delay $t\varphi = 2.66ms$

Challenges and Achievements


Client Delay

The client has to pass and process data from one hardware device to another.

Minimal latency

Assuming negligible processing delay, the minimum buffering delay is

- one audio block in the audio card's playout buffer (DAC)
- one audio block in the audio card's record buffer (ADC)
- one audio block in the audio card's driver for output
- one audio block for processing and network de-jitter

Result

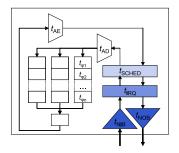
The client's lower delay bound is $4 \cdot t\varphi$, here 10.66ms

Challenges and Achievements

Server Delay

The server has to

- de-jitter incoming audio packets
- synchronize all audio streams
- mix audio data (linear or positional)
- send mixed audio to each client

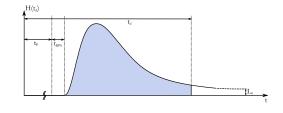

Minimal latency

Assuming ideal network conditions with no jitter

- no de-jitter buffer is needed
- one audio buffer is needed for synchronization
- \Rightarrow The server's lower delay bound is $t\varphi$, here 2.66ms

Conclusion

Client and Server require a minimum delay of $5 \cdot t\varphi$, here 13.33ms



Challenges and Achievements

Network Delay

Restrictions

- no QoS
- no retransmissions
- late packets are lost packets

Result

- we can estimate propagation delay upon network distance
- we can not estimate or predict total network delay
- \Rightarrow no direct control over network, we can only react

Musicians' Tradeoff

Tolerable Audio Quality Degradation ⇔ Tolerable Latency

Challenges and Achievements

Summary and Future Work

Conclusion

NMP should be possible in a stable network and could potentially connect musicians up to 500km apart (round-trip).

Conclusion

NMP should be possible in a stable network and could potentially connect musicians up to 500km apart (round-trip).

Reality Check

- works in the institute's network with latencies down to 13.3ms
- works in the DFN (German Research Network) between IBR and Lübeck (500km round-trip)

Some Measurements

Type	Network Buffer		Total Delay	Packet Loss Statistics		
	[packets]	[ms]	[ms]	mean	max	dev
LAN	0	0	13.3	0.060%	2.4%	0.173%
LAN	2	5.3	18.7	0.015%	1.6%	0.101%
WAN	6	16.0	29.3	0.689%	6.9%	1.254%
WAN	10	26.7	40.0	0.216%	3.8%	0.519%

Challenges and Achievements

Summary and Future Work

Summary

Status so far

- working prototype has been developed
- theoretical delay bounds have been achieved
- realtime performances are practicable in fast broadband networks

Open Issues

- many interdisciplinary issues
 - do musicians prefer constant or adaptive latencies?
 - define parameter sets for different combinations of musician, instrument, style, etc.
- audio compression
 - can we achieve better data reduction if we knew instrument, etc.
- can we expand NMP to larger scale networks (e.g. to home users)
 - which impact has the lower (uplink) network capacity of e.g. ADSL
 - are ISP networks stable enough for this application
 - how to cope with the triangular routing problem

...

Thank You!

Questions?

<kurtisi@ibr.cs.tu-bs.de>