
Byzantine Consensus in Vehicle Platooning
via Inter-Vehicle Communication

Martin Wegner, Wenbo Xu, Rüdiger Kapitza, Lars Wolf
Institute of Operating Systems and Computer Networks

Technische Universität Braunschweig, Germany
Email: (wegner|wxu|kapitza|wolf)@ibr.cs.tu-bs.de

Abstract—Cooperative driving and platooning have recently
gained focus. Letting vehicles reach consensus to implement
joint decisions is an essential service in this context. To address
this problem, we propose a novel consensus protocol named
BFT-ARM that fits real sensor values and can tolerate t(<
n/3) Byzantine nodes out of n. BFT-ARM guarantees that
the decision is close to the median of all good nodes. We also
present the simulation framework ArteryLTE to evaluate our
protocol. 1

Keywords—Cooperative driving, Byzantine consensus, Inter-
Vehicle Communication

I. INTRODUCTION

In recent years, an increasing amount of Advanced Driver
Assistance Systems (ADASs) can be seen in automobiles.
This also includes the development of cooperative driving
functions. Many of these applications can be improved by
exchanging data via Inter-Vehicle Communication (IVC)
to improve safety, resource usage, energy efficiency and
driving experience [1]. One example of cooperative driving
is platooning, where a group of vehicles can follow each
other automatically and keep the optimal distance among
each other [2, 3]. Apart from following passively, there are
also a number of useful applications which first need to
agree on a common value for a cooperative decision. For
example, in certain application scenarios vehicles will need
to detect the traffic condition or weather condition in their
surroundings to adjust their operations to, or to calculate the
best route according each vehicle’s own navigation device,
or to set a preferred speed for the cruise control, etc. The
common properties of such applications are: 1) The value is
required to be agreed among all vehicles. 2) The value to be
agreed upon can be measured individually by each vehicle.
3) Even if some faulty vehicles do not follow the common
decision, the safety of others is not violated.

We also consider the existence of faulty or malicious
nodes in the group. Faulty behaviours do not only include
crash faults but also arbitrary faults like bit flips or providing
inaccurate, inconsistent and even malicious values. All these
faults are referred to as Byzantine faults [4]. The Byzantine

1This work is part of the DFG Research Unit Controlling Concurrent
Change, funding number FOR 1800.

consensus protocol aims at achieving consensus among all
correct participants, despite of a limited number of faulty
nodes. Examples of such protocols can be found in [5, 6].

Most Byzantine consensus problems assume the value
domain is discrete and limited, for instance the binary
consensus [5] or multi-value consensus [7]. However, in
automobile applications, especially those involving sensor
values, the values can be continuous and “smooth”, e. g.,
speed, distance, temperature, etc.

In this work, we designed a new consensus protocol for
the continuous value domain in vehicle platooning named
BFT-ARM (Byzantine Fault Tolerant and Asynchronous
Real-value consensus with Median validity). We also build a
simulation framework based on our previous work and will
use it to evaluate the consensus protocol.

The paper is organized as follows. Section II discusses
related work. Section III defines the system model and gives
the problem statement. Section IV presents the design of
BFT-ARM and section V introduces the evaluation frame-
work. Section VI concludes the paper.

II. RELATED WORK

In the Byzantine consensus problem, each node has an
input value and tries to reach consensus on one of these,
and there are a limited number of Byzantine nodes [5].
An important aspect of the Byzantine consensus problem
is how to define the validity of the agreed value. There are
different opinions from different viewpoints. E. g., Neiger
distinguishes the Validity and Strong Validity [8]. The former
requires that—if all correct nodes have the same input
value—they will decide on that value, but does not guarantee
anything when the input values are different. The latter,
Strong Validity, requires that the decided value comes from
a correct node. Then Neiger proves that achieving Strong
Validity requires at least t · |D| nodes, where t is the
maximum tolerable Byzantine nodes and D is the domain of
the input values. This means a tremendous number of nodes
are necessary when the input value domain is large.

A recent work of Stolz and Wattenhofer proposes a
weaker requirement compared to Strong Validity, called
median validity [9]. It only requires that the agreed value is
close to the median of all good nodes which, especially with

a continuous value domain, is useful. However, their proto-
col assumes a synchronous communication where message
transmission time has a known upper bound. This assump-
tion is not applicable in Inter-Vehicle Communication. So,
we designed our new BFT-ARM protocol to achieve median
validity.

There is also some other work from the viewpoint of
control theory to manage platooning with a consensus
strategy [10]. While this is useful for another family of
applications like instant speed and distance control, it is an
orthogonal direction to our work.

III. SYSTEM MODEL AND PROBLEM STATEMENT

System Model: In the following, a platoon consists of n
vehicles, or—more abstract—nodes: {p1, p2, . . . , pn}. Every
node has an input value xi ∈ R 2, e. g., from its sensor or
configuration. A node is called correct if 1) its input value
is correct and 2) it exactly follows the protocol. Among all
the nodes, up to t (< n/3) nodes can be faulty, meaning
that they can behave arbitrarily such as taking an incorrect
value from a malfunctioning sensor or actively work against
the protocol.

Consensus problem: BFT-ARM achieves consensus on
a value v ∈ R satisfying the following conditions:

• Agreement: No two correct nodes decide differently.
• Termination: Every correct node eventually decides.
• Validity: The decided value of correct nodes v is valid

(see definition below).

Inspired by the work of Stolz et al. [9], the validity is
defined in the following way: Assuming there are actually
f (6 t) faulty nodes during runtime, not known by the
consensus algorithm. Let SG be the sorted array of input
values of all good nodes (the index starts from 0). Then
SG[dn−f2 e − 1] represents the median value of SG.

Definition 1. Validity: a decision v is valid, if

SG[dn− f

2
e − 1− t] 6 v 6 SG[dn− f

2
e − 1 + t] (1)

In other words, a valid value is the one within the range
of the middle (2t+ 1) correct nodes.

Network: Nodes asynchronously communicate via mes-
sages over the network. That means that messages can be
duplicated or corrupted or, in principle, can experience an
unbounded delay, i. e. they are lost. However, eventually
synchronicity is required to overcome the FLP impossi-
bility [11]. While previous approaches achieve termination
only with known upper bounds for delays (cf. Section II),
BFT-ARM is able to cope with unknown bounded delays of
messages.

2In practice, the value space is still a finite set limited by the platform.
We do not discuss Turing uncomputable numbers or real computation here.

p1

p2

p3

p4

START INIT PROPOSE SUPPORT DECIDE START

Figure 1. BFT-ARM in normal case.

Digital Signature and Trusted Subsystem: The mes-
sages are signed with digital signatures. A message m signed
by a node i is notated as 〈m〉σi

. We also assume that every
node possesses a trusted subsystem for message authentica-
tion and verification with a monotonic counter. The value
of the counter can be used to authenticate some special
messages, and increases by 1 after that. The receiver of one
of these messages can also verify that this message has the
valid counter value without any gaps to the previous one.
Examples of such a subsystem applied in Byzantine fault
tolerant systems can be found in [12, 13]. Furthermore, we
assume that faulty nodes cannot break the digital signature
mechanism nor the trusted subsystem.

IV. BFT-ARM DESIGN

A. Normal case operation

The normal case protocol is illustrated in Figure 1.
It can be divided into 6 steps:

1) The leader pi periodically activates a consensus request
with a broadcast 〈START, seq, pi〉σi

. seq is a sequence
number generated by the trusted counter.

2) Upon a received START message, each node pj firstly
verifies the sequence number. If it is a valid sequence
number, it broadcasts (including to itself) with its input
value in 〈INIT, seq, pj , xj〉σj

.
3) When the leader received (n − t) values (including

itself), it sorts the received values and picks the median
value vmed. Then it proposes vmed together with the
(n−t) original signed INIT messages attached as a cer-
tificate ~cm. Namely: 〈PROPOSE, seq, pi, vmed, ~cm〉σi

.
4) Upon a node pj received the PROPOSE message, it

verifies that vmed is really the median of all the values
in ~cm. If so, it broadcasts 〈SUPPORT, seq, pj , vmed〉σj

.
5) Upon a node pj received d(n + t + 1)/2e

SUPPORT for the same vmed, it broadcasts
〈DECIDE, seq, pj , vmed〉σj

.
6) Upon a node pj received d(n+ t+ 1)/2e DECIDE for

the same vmed, it decides vmed.

From step 3 on, BFT-ARM is similar to the PBFT
protocol [6]. So if the leader proposes the correct vmed
matching the certificate, all correct nodes will decide vmed.

Now we prove that vmed is valid according to Definition 1.

2

Theorem 1. Let SA be the sorted array of the input values
of any (n− t) nodes. The median of SA is denoted as v =
SA[dn−t2 e − 1]. Then v is valid.

Proof. According to the definition of median, there are at
least (dn−t2 e − 1) nodes whose value is no greater than v.
Among them there are at least (dn−t2 e−1−f) good nodes.
And because f 6 t < n/3, we have dn−t2 e − 1 − f >
dn−f2 e−1−t > 0. So v > SG[dn−t2 e−1−f] > SG[dn−f2 e−
1− t]. Similarly, we can prove that v 6 SG[dn−f2 e−1+ t].
Because of the Definition 1, v is valid.

Thus, the validity of the proposal can be confirmed by
comparing with the certificate of (n− t) values in step 4.

We use the trusted counter to generate a sequence number
for every START message from the leader. The sequence
number is monotonically increasing by one at a time, so
there is exactly one sequence number assigned to every
consensus period. In this way, faulty nodes cannot provide
an outdated value (replay attack). If a node detects that
the sequence number does not belong to this period, it
will discard the message. A synchronized clock is not
required here, but the interval of the period is known to
everyone. From the first time a node receives the sequence
number from the leader, it can determine the correspondence
between the sequence number and period.

B. Suspect leader protocol

When the leader is faulty or disconnected from the group,
leading to a fail of consensus within a predefined timeout,
the other nodes will initiate a suspect leader protocol,
basically similar to the PBFT view change protocol (without
considering the history). When a node pj suspects the leader
pcur, it broadcasts a 〈SUSPECT, pj , pcur, pnew〉σj , where
pnew is the next leader according to a deterministic rule,
e. g., based on the position of the platoon’s vehicles such
as choosing the one behind the current leader, possibly
wrapping to the front vehicle.

When pnew receives (d(n + t + 1)/2e − 1) messages
suspecting current leader, it takes over the leader role and
broadcasts 〈NEWLEADER, pnew, seqnew〉σnew

with its own
sequence number, and operates as in the normal case.

V. EVALUATION

To evaluate BFT-ARM in platooning environments, we
intend to use an extended version of the ArteryLTE3 simu-
lation framework, which is detailed in [14].

A. Simulation Framework

ArteryLTE is based on the renowned open-source Vehicles
in Network Simulation (Veins) framework [15]. The Veins
projectcombines the dedicated network simulator OMNeT++
with the microscopic traffic simulator Simulation of Urban

3https://github.com/ibr-cm/artery-lte

Figure 2. Architecture of the ArteryLTE simulation framework.

Mobility (SUMO). In addition, Veins provides an implemen-
tation of the US Wireless Access in Vehicular Environments
(WAVE) Dedicated Short Range Communication (DSRC)
stack based on IEEE 802.11p.

ArteryLTE integrates several extensions to Veins: First,
a modular middleware for Veins called Artery4 [16] is
used to implement heterogeneous vehicle capabilities. Mul-
tiple applications (so-called Artery services) can be imple-
mented and dynamically configured for vehicles per market
penetration rates. Furthermore via Vanetza5, the European
equivalent to the WAVE stack, the European Telecommu-
nications Standards Institute (ETSI) Intelligent Transport
System (ITS) G5 protocol stack, is brought in and used to
disseminate Cooperative Awareness (CA) messages [17].

Secondly, ArteryLTE integrates Long Term Evolution
(LTE) support for vehicles as introduced to Veins by the
VeinsLTE [18] project, thus enabling heterogeneous com-
munication technologies on the network nodes. VeinsLTE’s
decision maker is replaced by an option in Artery’s middle-
ware that allows Artery services to choose between either
the ETSI ITS G5 or the LTE stack for communication.

Thirdly, ArteryLTE includes support for backend-based
applications. A backend is represented by a static network
node in the network which is connected to the eNodeBs of
the LTE network.

The architecture of the ArteryLTE framework is depicted
in Figure 2. In the presented cell of the eNodeB two vehicles
are shown, both equipped with an LTE and an ETSI ITS G5
stack. Different Artery services—A, B or C—are deployed
on the vehicles. Data transmitted via LTE by the vehicles is
forwarded between the eNodeB and the backend.

Furthermore, local perception sensors for advanced
ADASs are the latest addition to ArteryLTE [14].

4https://github.com/riebl/artery
5https://github.com/riebl/vanetza

3

https://github.com/ibr-cm/artery-lte
https://github.com/riebl/artery
https://github.com/riebl/vanetza

B. Extension of the Framework

As part of this work, we are bringing yet another extension
into the ArteryLTE framework: The Plexe extension [19]
to Veins enables the simulation of vehicle platoons with
corresponding control algorithms, such as for cruise control,
and the implementation of cooperative driving applications.
We are in the process of porting the changes made by Plexe
to Veins to ArteryLTE’s codebase so that it is able to interact
with Plexe’s SUMO version via SUMO’s TraCI protocol.
We will use the platooning examples and the included
control algorithms of Plexe as the basic scenario for our
application. Vehicles of the platoon will—in a first step—be
equipped with IEEE 802.11p for local communication to run
the presented consensus protocol.

VI. CONCLUSION AND FUTURE WORK

As soon as the basic setup of BFT-ARM is implemented,
in a first step we evaluate the characteristics of the consensus
protocol among vehicles via IVC. We then intend to use
the whole potential of our communication environment to
improve the consensus process. For example, to take advan-
tage of the available heterogeneous networks, we envisage
the ability to fall back to cellular communication in cases
where local communication of a group is disrupted. Further-
more, in the case of ADASs that are tightly coupled to an
Original Equipment Manufacturer (OEM) backend, running
an agreement might be assisted by this backend as, e. g., the
backend may initiate a consensus, or a leader change based
on data available to the backend such as network metrics or
local traffic data [14].

REFERENCES

[1] Theodore Willke, Patcharinee Tientrakool, and
Nicholas Maxemchuk. “A survey of inter-vehicle
communication protocols and their applications”. In:
IEEE Communications Surveys & Tutorials 11.2
(2009), pp. 3–20.

[2] Pedro Fernandes and Urbano Nunes. “Platooning
with IVC-enabled autonomous vehicles: Strategies to
mitigate communication delays, improve safety and
traffic flow”. In: IEEE Transactions on Intelligent
Transportation Systems 13.1 (Mar. 2012), pp. 91–106.

[3] Michele Segata et al. “Supporting platooning maneu-
vers through IVC: An initial protocol analysis for
the JOIN maneuver”. In: 11th Annual Conference on
Wireless On-Demand Network Systems and Services,
IEEE/IFIP WONS 2014 - Proceedings. IEEE, Dec.
2014, pp. 53–60.

[4] Leslie Lamport, Robert Shostak, and Marshall Pease.
“The Byzantine Generals Problem”. In: ACM Trans.
Program. Lang. Syst. 4.3 (July 1982), pp. 382–401.

[5] Gabriel Bracha. “Asynchronous Byzantine agreement
protocols”. In: Information and Computation 75.2
(1987), pp. 130–143.

[6] Miguel Castro and Barbara Liskov. “Practical Byzan-
tine Fault Tolerance”. In: Proceedings of the Third
Symposium on Operating Systems Design and Imple-
mentation. New Orleans, Louisiana, USA: USENIX
Association, 1999, pp. 173–186.

[7] Kim Potter Kihlstrom, Louise E Moser, and P
Michael Melliar-Smith. “Byzantine fault detectors for
solving consensus”. In: The Computer Journal 46.1
(2003), pp. 16–35.

[8] Gil Neiger. “Distributed consensus revisited”. In: In-
formation Processing Letters 49.4 (1994), pp. 195–
201.

[9] David Stolz and Roger Wattenhofer. “Byzantine
Agreement with Median Validity”. In: 19th Inter-
national Conference on Priniciples of Distributed
Systems (OPODIS), Rennes, France. 2015.

[10] S Santini et al. “A consensus-based approach for
platooning with inter-vehicular communications”. In:
Computer Communications (INFOCOM), 2015 IEEE
Conference on. IEEE. 2015, pp. 1158–1166.

[11] Michael J Fischer, Nancy A Lynch, and Michael S
Paterson. “Impossibility of distributed consensus with
one faulty process”. In: Journal of the ACM (JACM)
32.2 (1985), pp. 374–382.

[12] Giuliana Santos Veronese et al. “Efficient byzantine
fault-tolerance”. In: Computers, IEEE Transactions
on 62.1 (2013), pp. 16–30.

[13] Rüdiger Kapitza et al. “CheapBFT: Resource-efficient
Byzantine Fault Tolerance”. In: Proceedings of the
EuroSys 2012 Conference. Ed. by European Chapter
of ACM SIGOPS. Switzerland, 2012, pp. 295–308.

[14] Julian Timpner et al. “Towards a Multi-Protocol Mi-
croscopic IVC Simulation Environment for ADASs”.
In: 4th GI/ITG KuVS Fachgespräch Inter-Vehicle
Communication. Berlin, 2016.

[15] C. Sommer, R. German, and F. Dressler. “Bidirection-
ally Coupled Network and Road Traffic Simulation
for Improved IVC Analysis”. In: IEEE Trans. Mobile
Comput. 10.1 (Jan. 2011), pp. 3–15.

[16] R. Riebl et al. “Artery - Extendig Veins for VANET
applications”. In: Models and Technologies for Intel-
ligent Transportation Systems (MT-ITS). 2015.

[17] ETSI EN 302 637-2 V1.3.1 - Intelligent Transport
Systems (ITS); Vehicular Communications; Basic Set
of Applications; Part 2: Specification of Cooperative
Awareness Basic Service. ETSI, Sept. 2014.

[18] F. Hagenauer, F. Dressler, and C. Sommer. “Poster: A
simulator for heterogeneous vehicular networks”. In:
Proc. Vehicular Networking Conference (VNC). IEEE,
Dec. 2014, pp. 185–186.

[19] Michele Segata et al. “Plexe: A platooning extension
for Veins”. In: IEEE Vehicular Networking Confer-
ence, VNC. IEEE, Dec. 2014, pp. 53–60.

4

	Introduction
	Related Work
	System Model and Problem Statement
	BFT-ARM Design
	Normal case operation
	Suspect leader protocol

	Evaluation
	Simulation Framework
	Extension of the Framework

	Conclusion and Future Work

