

A Back-end System for an Autonomous Parking and Charging System for Electric Vehicles

Julian Timpner, Lars Wolf IEVC 2012

V-Charge Project

Goals

- A system combining autonomous valet parking with e-mobility
- Increasing customer acceptance of electric vehicles
- By compensating for longer charging cycles

Challenges

- Efficiently using scarce charging resources
- Multiple communication channels (V2I, Web, mobile)
- Autonomous driving and parking (not in this talk)

V-Charge Partners

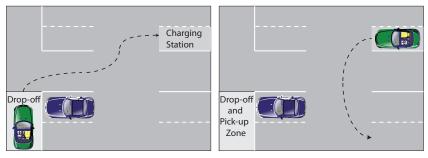
Motivation

Scenario: EV driver at airport

- Roam for a free spot
- Use shuttle services
- Transport luggage
- What about charging?

Disadvantages

- Cumbersome
- Only few charging stations
- Makes it even harder to find parking



Solution: V-Charge

Autonomous Parking and Charging

(a) Drop-off

(b) Reparking

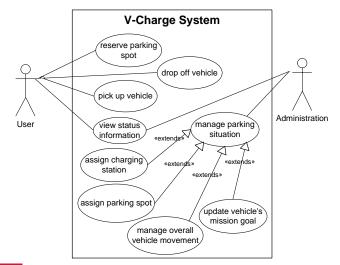
IEVC 2012 |Julian Timpner | Page 5 A Back-end System for an Autonomous Parking and Charging System for Electric Vehicles

Required Back-end Functionality

- Communication with vehicles and mobile user devices
- Management of the overall system
- Scheduling concepts and assignment of free parking spots and charging stations to connected vehicles
- Distribution of mission information to connected vehicles

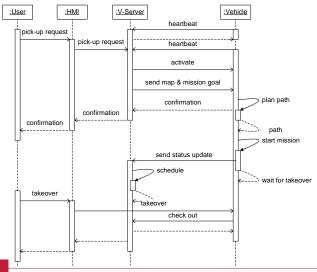
Supporting Back-end Functionality

- Storage and online distribution of a parking lot map to connected vehicles
- Sensor data aggregation (e.g., parking spot occupation) and fusion with central map
- System monitoring, with status information being available via a user interface
- Security and trust concepts

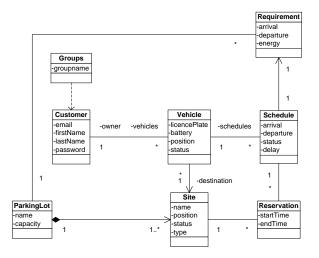


Outline

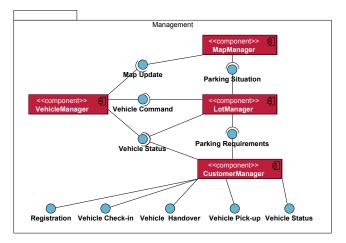
- Motivation
- Software Architecture
- Conclusion


Use Cases

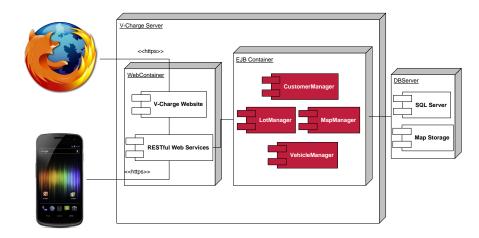
IEVC 2012 | Julian Timpner | Page 9 A Back-end System for an Autonomous Parking and Charging System for Electric Vehicles


Use Case: Pick-up

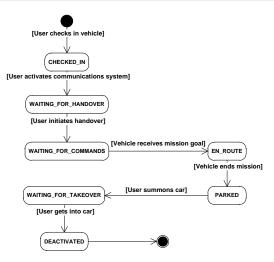
IEVC 2012 | Julian Timpner | Page 10 A Back-end System for an Autonomous Parking and Charging System for Electric Vehicles


Domain Model

IEVC 2012 | Julian Timpner | Page 11 A Back-end System for an Autonomous Parking and Charging System for Electric Vehicles


Component Specification

IEVC 2012 | Julian Timpner | Page 12 A Back-end System for an Autonomous Parking and Charging System for Electric Vehicles


Software Technology and Deployment

IEVC 2012 | Julian Timpner | Page 13 A Back-end System for an Autonomous Parking and Charging System for Electric Vehicles

Vehicle Interaction Concept

IEVC 2012 | Julian Timpner | Page 14 A Back-end System for an Autonomous Parking and Charging System for Electric Vehicles

Outline

- Motivation
- Software Architecture
- Conclusion

On-going Work

- Concepts for efficient charging station management (scheduling)
- Evaluating suitability of different scheduling strategies
- Real test cases with actual vehicles (April 2012)

IEVC 2012 |Julian Timpner | Page 16 A Back-end System for an Autonomous Parking and Charging System for Electric Vehicles

Summary

- Back-end architecture for
 - autonomous valet parking
 - automatic recharging capabilities
- Standards-based, e.g., Java EE, RESTful Web services, SSL
 - Portable
 - Scalable
 - Secure
- Supporting multiple communications channels (V2I, Web, mobile)

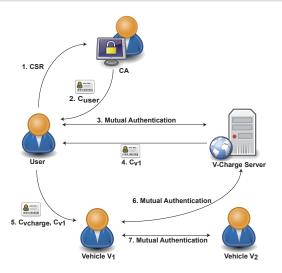
Summary

- Back-end architecture for
 - autonomous valet parking
 - automatic recharging capabilities
- Standards-based, e.g., Java EE, RESTful Web services, SSL
 - Portable
 - Scalable
 - Secure
- Supporting multiple communications channels (V2I, Web, mobile)

Thank you! timpner@ibr.cs.tu-bs.de

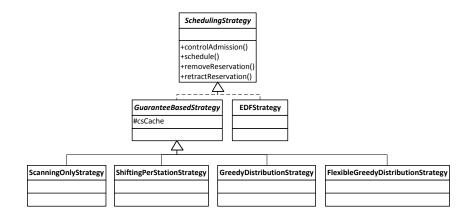
Section 4

Appendix


Communications

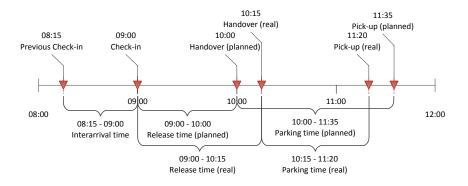
- Support of several data channels
 - Wi-Fi (802.11a) as standard
 - 3G, C2X to be considered
- Mobile users will use a smartphone to interact with the system
- Server will distribute maps and updates via Wi-Fi to the vehicles
- Administration via Web interface

Appendix


Security Concept

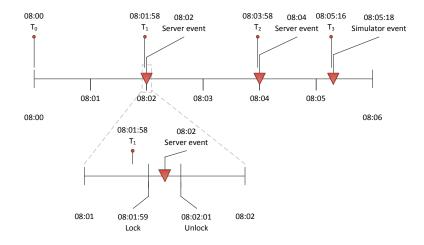
IEVC 2012 | Julian Timpner | Page 20 A Back-end System for an Autonomous Parking and Charging System for Electric Vehicles

Charging Station Scheduling



IEVC 2012 | Julian Timpner | Page 21 A Back-end System for an Autonomous Parking and Charging System for Electric Vehicles

Appendix


Simulation Setup

IEVC 2012 | Julian Timpner | Page 22 A Back-end System for an Autonomous Parking and Charging System for Electric Vehicles

Simulation Speed-up

IEVC 2012 | Julian Timpner | Page 23 A Back-end System for an Autonomous Parking and Charging System for Electric Vehicles

Metrics

- Facility use, such as
 - Overall peak-period utilization (e.g. daily spaces occupied)
 - Charging station utilization
 - Number of charging station switches per vehicle
- Customer satisfaction, such as
 - Percent satisfied customer parking requirements
 - Energy demand vs. provided energy

