
Secure Smartphone-based Registration and Key
Deployment for Vehicle-to-Cloud Communications

Julian Timpner
timpner@ibr.cs.tu-bs.de

Dominik Schürmann
schuerm@ibr.cs.tu-bs.de

Lars Wolf
wolf@ibr.cs.tu-bs.de

Institute of Operating Systems and Computer Networks
TU Braunschweig

Braunschweig, Germany

ABSTRACT
Intelligent Transportation Systems that rely on Vehicle-to-
Cloud communications are emerging. Of particular inter-
est to us is the question how drivers can securely register
their vehicle with cloud services and deploy keys for secur-
ing vehicular communications. We therefore present a secure
smartphone-based registration and key deployment process
for these applications. We combine an adapted OAuth flow
for Smartphone-to-Cloud communications with a novel key
deployment mechanism for Public Key Infrastructures in ve-
hicular networks. The primary contributions of the proposed
key deployment process are a high degree of independence
from central authorities and feasible security audits due to
an open protocol design. As an instance of future Intelligent
Transportation System applications that facilitate Vehicle-
to-Cloud communications, we utilize the V-Charge project
as a running example to discuss potential attack scenarios
and their mitigations.

Categories and Subject Descriptors
C.2.0 [General]: Security and protection; K.6.5 [Security
and Protection]: Authentication

Keywords
Key Deployment; V2C Security; Trust; Bundle Protocol;
ITS; Smartphone

1. INTRODUCTION
Today, automobiles are becoming increasingly “smart”,

that is, equipped with advanced sensor systems and con-
nected with their environment and thus able to participate in
Intelligent Transportation System (ITS) applications. The
European V-Charge Project1 seeks to make a contribution
to this challenging field by developing autonomous driving
capabilities for electric cars including a parking and charging

1http://www.v-charge.eu

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
c©ACM, 2013. This is the author’s version of the work. It is posted here by permission

of ACM for your personal use. Not for redistribution. The definitive version was
published in CyCAR’13. http://dx.doi.org/10.1145/2517968.2517970.

management system that provides automated valet parking
and coordinated recharging strategies for integration into a
future transportation system.

A V-Charge service, called ParkingManager (PM) [1], is
deployed to each parking lot or garage that is using the V-
Charge system. The PM is responsible for managing park-
ing resources by allowing users to make parking reservations
and to provide their vehicles with mission control informa-
tion, starting with their arrival at the parking lot. Since
each parking garage has its own PM, there is a central back-
end service that connects all PMs (via Internet) and allows
users to register with the V-Charge system which takes care
of authentication. In order to cope with the challenging net-
work conditions of the vehicular domain (e.g., intermittent
connectivity) and the V-Charge scenario [1] (e.g., no vehic-
ular Internet access), we facilitate a Disruption- or Delay-
Tolerant Networking (DTN) architecture [2] to establish ro-
bust and secure Vehicle-to-Cloud (V2C) communications be-
tween the vehicles and the PM. For this purpose, we utilize
IBR-DTN2 [3], a lightweight and modular Bundle Proto-
col [4] implementation. Although we use DTN in our run-
ning example, the principles of our work can be applied to
IP-based communications with only minor modifications.

Because of the current rise of smartphones and their rapid
integration into our daily life, the V-Charge Android app is
the primary tool for users to interact with the system. Its
features include reservation making, status checking, and
issuing drop-off and pick-up commands which trigger the
local PM to take control of the vehicle or to send it to the
pick-up zone, respectively. It does not serve as a remote
control or access token and is not part of the DTN.

In this paper, we focus on the security challenges of such
an ITS. Of particular interest to us is the question how
drivers can securely register their vehicle with the V-Charge
service and deploy keys for securing V2C communications.
By means of a smartphone-based registration and key de-
ployment process for V2C communications, we are able to
achieve a high degree of user independence from third par-
ties, since nobody but the owner (not even the OEM) ever
possesses the vehicle’s private key. Further, our open and
easily auditable protocol warrants user trust in the underly-
ing cryptographic principles. Although we propose a solu-
tion aiming at the V-Charge project, our concepts are more
generally applicable. For instance, any vehicular cloud ser-
vice relying on a Public Key Infrastructure (PKI) could use
the same process, since we provide an application-indepen-

2http://www.ibr.cs.tu-bs.de/projects/ibr-dtn/



dent means for secure key deployment without entrusting
the service provider or a third party with the private key.
Moreover, the proposed solution is applicable to vehicles
that come pre-deployed with the required communication
technologies as well as refitted ones.

The remainder of this paper is structured as follows. We
discuss the current state-of-the-art of the field in Section 2.
We present our security architecture in Section 3. The is-
sues of secure Smartphone-to-Cloud communications are ad-
dressed in Section 4. We then propose the registration pro-
cess and smartphone-based key deployment in Section 5. A
discussion of the proposed system under security considera-
tions is given in Section 6. Finally, we conclude in Section 7.

2. RELATED WORK
To the best of our knowledge, most vehicular key man-

agement research that facilitates some kind of PKI assumes
that the keys have somehow been securely deployed to the
vehicle, for instance by the OEM [5, 6] or a vehicle service
station [7]. Others do not consider this point at all [8]. In
contrast to the C2C-CC3 PKI, for instance, our approach
focuses on minimizing the trust required in central author-
ities for key generation/deployment on a per-service base.
It consists of a process to generate/deploy keys to a vehi-
cle’s Hardware Security Module (HSM) using a smartphone,
under full user control.

Our idea, however, shares some commonalities with car
immobilizer systems. While most car immobilizer systems
are based on proprietary protocols [9], Busold et al. [10]
present an open security framework. Vehicle owners are
equipped with NFC-enabled smartphones to authenticate
against compatible HSMs employed in cars. Replacing ded-
icated transponders, smartphones can be used for a more
flexible authentication system that allows enhanced features,
such as delegation of access to guest drivers for a specific
time. Besides the default host on the mobile device, a
Trusted Execution Environment (TrEE) is required. Access
tokens to unlock the car are generated by the manufacturer
with an Authenticate-then-Encrypt scheme using an authen-
tication secret and encryption key pre-deployed on the car.

Similar to Busold et al. [10], we utilize an NFC-enabled
HSM to store the keys securely. In contrast to the above-
mentioned immobilizer system, though, we utilize the smart-
phone as a trusted interim device to perform registration
and key generation/deployment, instead of serving as a key
replacement. As mentioned above, we neither rely on pre-
deployed keys, nor a specialized TrEE. Since exact hardware
requirements are beyond the scope of this paper, we refer to
existing comparisons of available HSMs for vehicles [11].

3. SECURITY ARCHITECTURE
Besides local PMs communicating securely with vehicles

via DTN, the V-Charge service consists of several central
components: (a) the CustomerManager, (b) the Authoriza-
tion Server, and (c) the DTN Certificate Authority (CA).

(a) The CustomerManager [1] provides registration func-
tionality and all necessary service methods (pick-up, drop-
off, status checking) via RESTful Web services that are be-
ing interfaced by the V-Charge smartphone application. All
methods of the interface are protected by the OAuth 2.0
standard [12]. (b) A central OAuth Authorization Server

3http://www.car-2-car.org

generate 〈pkp, skp〉,CSRp

requestCertificate(CSRp)

deploy(certp, certca )

p:ParkingManager ca:DTN CA

Figure 1: Deployment of certificates issued for local
Parking Managers

handles all OAuth sessions and provides verification meth-
ods. The connection between smartphone and the RESTful
Web services itself is secured by SSL. (c) The DTN CA man-
ages certificates deployed to all participants in the DTN, i.e.,
PMs and vehicles.

As depicted exemplarily in Figure 1, a public/private key
pair 〈pkp, skp〉 is generated by each PM p. The DTN CA
processes p’s Certificate Signing Request (CSR) after it phys-
ically received it from p and sends back an certificate certp
signed with the CA’s secret key skca . After certp has been
deployed on p, vehicles equipped with the DTN CA’s root
certificate certca can verify if Bundles are affiliated to a PM
(i.e., signed with skp) and are thus allowed to issue con-
trol commands (i.e., drop-off, pick-up). Contrary to vehicle
certificates, PM certificates installed during their physical
deployment contain a “ParkingManager” flag issued by our
CA to allow differentiation between inter-vehicle Bundles
and Bundles coming from servers acting as PMs. The con-
nection between PM servers and central V-Charge services,
such as DTN CA, is secured by a VPN.

3.1 Security in DTN
The experimental RFC 6257 [13] describes ciphersuites,

Security Blocks, security policies, and how to deal with frag-
mented Bundles. Bundle Authentication Blocks (BABs) are
defined to provide hop-by-hop integrity, which can be ver-
ified by every relaying node along the (multi-hop) path to
the destination. End-to-end security is achieved by using
the Payload Integrity Block (PIB) for authenticity and the
Payload Confidentiality Block (PCB) for confidentiality.

In our scenario every participating node needs to be able
to verify if an incoming Bundle is affiliated with V-Charge.
Our goal is to restrict DTN communication to nodes partic-
ipating in V-Charge. Thus, Bundles are always encrypted
first using the PCB, and then signed using PIB to achieve
end-to-end security. We configure IBR-DTN to accept/send
PIB-signed and PCB-encrypted Bundles only. In order to
thwart black/gray hole attacks, we facilitate hop-by-hop ver-
ification. To this end, BABs only support authentication,
while PIBs allow signatures for verification using public keys.
However, instead of using BABs or PIBs to verify relayed
Bundles, we utilize IBR-DTN’s support for SSL on the TCP
convergence layer. A major advantage of SSL over BABs is
that, if a node gets compromised, only its certificate needs
to be revoked, instead of having to replace the symmetric
BAB key across all nodes. Moreover, when Bundles are re-
layed between nodes, SSL allows to receive authenticated
acknowledgments when peers accept Bundles sent by neigh-
boring nodes in contrast to the sole use of PIBs.



3.2 Certificate Revocation
Certificate Revocation in DTNs is one of the interesting

problems of DTN security. Näıve implementations require
an additional check whether the certificate is currently valid
when relaying/receiving a bundle. This can be done by
querying a central database or by distributing Revocation
Lists, whereas both solutions are problematic in networks
with high delays and disruptions.

However, in the V-Charge scenario, vehicles periodically
are in physical proximity to PMs or other vehicles, from
which they are able to receive Revocation Lists via DTN.
We propose to provide Revocation Lists as Bundles sent by
the local PMs and signed by the central DTN CA to allow
verification using certca . These Revocation List Bundles
are sent and updated with period δ and have a lifetime of
δ + x, where x defines a transition time that allows new
revocation lists to invalidate old ones. Because all vehicles
participating in V-Charge are relaying and storing currently
valid Bundle Revocation Lists while parking, these lists can
be kept as “Floating Content” [14]. Thus, arriving vehicles
immediately receive currently valid lists either from the PM
or from other parked vehicles. By verifying the signature,
the lists’ validity can be checked.

4. SMARTPHONE-TO-CLOUD SECURITY
As well as in DTN, security techniques for Smartphone-

to-Cloud communication should be based on established and
well-studied standards. Yet, client applications, such as the
V-Charge Android app, impose different requirements re-
garding authentication compared to V2C communications.
Most importantly, usability is a key requirement in mobile
applications and heavily depends on the underlying security
implementation. Like in most modern mobile applications,
the hassle of requiring the user to repeatedly login before
usage should be prevented, resulting in unlimited user ses-
sions on mobile devices. Thus, similar to certificate revo-
cation in V2C communications, revocation of user sessions
is a crucial requirement. Considering a stolen smartphone,
the user should be able to revoke access from this device
in a convenient manner, before a thief can unwarrantably
use V-Charge. Conclusively, the actual V-Charge password
should never be stored on the mobile device, while providing
revocable user sessions per device.

4.1 OAuth
We chose to incorporate the OAuth 2.0 standard [12].

Although its name is derived from Authentication [15], it
provides Authorization for client applications. In our spe-
cific scenario it authorizes our smartphone application to ac-
cess the central V-Charge service by issuing an access token.
This access token is sent instead of an email/password com-
bination on every request. Hence, no password needs to be
stored on mobile devices. Due to V-Charge’s centralized in-
frastructure and our specific attack scenarios, which are fur-
ther described in Section 6.1, we implemented a well-defined
subset of the OAuth 2.0 standard. Along with our use case,
this adapted OAuth flow is applicable in a wide range of
centralized scenarios, as described in the following.

A typical OAuth flow is based on redirecting users be-
tween an OAuth Provider and other HTTP services [12].
Authorization codes are issued by the resource owner, before
redirecting the user back to the client. These authorization
codes can then be used as a grant type to get authorization

with access tokens via the Authorization Server. This grant
type is designed to shift the user’s trust regarding the login
away from third-party services to the OAuth Provider.

In contrast to a typical social HTTP service (e.g., Twit-
ter), V-Charge is a self-contained system with no public API
for third-party clients. This means that all client applica-
tions are developed by the project itself, maintaining control
and trust regarding the implementation of the actual login
process (Authentication). Thus, instead of using an autho-
rization code based grant type, we allow direct authentica-
tion with user credentials. Conclusively, V-Charge’s OAuth
implementation is based on a Token Endpoint only and al-
lows the grant type password to retrieve a refresh token and
an access token on first login. The grant type refresh token
serves to query a new access token, which is valid for 1 hour,
using the long-living refresh token.

Revocation of a device’s access to the V-Charge service
is possible by logging into V-Charge’s Web interface and
deleting the refresh token of the lost/stolen devices. Keep
in mind that revocation is only possible using the secret
password of a user, which is not stored on the device itself.
Further, changing a user password is only possible by enter-
ing the old password, not by using a refresh token, making
it impossible for a thief of a device to overtake a V-Charge
account as a whole.

4.2 SSL Considerations
The connection between smartphone and the V-Charge

Web service interface is secured using SSL. Due to recent
security breaches in CAs [16], we implemented certificate
checking without using a list of trusted CAs, provided by
the mobile operating system. Instead, we rely on Certificate
Pinning, meaning that all interfaces are secured using a cer-
tificate signed by a single private key, which is kept offline
at a secure location. It allows us to shift the trust from
outsourced CA management to our smartphone application
by including the public key in the binary. Conclusively, all
secure connections are verified with this key only.

In contrast to the interface used by the smartphone ap-
plication, the V-Charge Web site will be secured by a cer-
tificate issued by a traditional CA to allow verification by
general purpose browsers, until better standards [17, 18] are
adopted.

5. REGISTRATION AND KEY
DEPLOYMENT

Our proposal has two main objectives. First, private keys
should always be generated and managed by the user itself,
so there is no need to trust a service to handle key generation
correctly, e.g., without storing or even worse leaking them.
Second, all cryptographic operations should be auditable by
sophisticated users, i.e., they are part of an open protocol.

Our process to register a new vehicle for usage with the
V-Charge system is designed to be executed on off-the-shelf
mobile devices which already provide a platform sufficiently
trusted by its owner. Because the vehicle’s DTN stack is
configured to only send/receive signed and encrypted Bun-
dles, it denies all incoming connections in its delivery condi-
tion, as neither keys nor certificates are pre-deployed. After
successfully finishing the registration using our smartphone
application by entering user credentials and additional infor-



requestToken(email , password)

〈refresh token, access token〉

generate 〈pkv , skv〉,CSRv

verify(access token)

validity status

Process CSR
and generate signed certv

requestCertificates(access token,CSRv)

〈certv , certca 〉

deploy(skv , certv , certca )

acknowledge deployment

delete securely
〈skv , certv , certca 〉

secure DTN

d:Mobile Device v:Vehicle p:ParkingManager ca:DTN CA auth:Authorization Server

Figure 2: Key Deployment in V-Charge with the aid of smartphones to allow key generation on mobile
devices, which are owned and inherently trusted by customers themselves.

mation, potentially a manual identification step, e.g., using
Postident4, finalizes the registration process.

5.1 Key Deployment
Following Figure 2, the user is now able to log into the V-

Charge system using the chosen 〈email , password〉 combina-
tion. This is done by requesting a long-living refresh token
from our OAuth Authorization Server and sending the cre-
dentials over an SSL connection (cf. Section 4). Besides this,
the device d also obtains an access token, valid for 1 hour.
As described in RFC 6749 [12], the refresh token can be
used to retrieve a new access token.

Vehicles are uniquely identified by their Vehicle Identi-
fication Number VIN . The VIN of newly assembled vehi-
cles, which come equipped with the required communication
technology, can be directly added to the V-Charge database
alongside the owner on purchase. To register refitted or
resold vehicles for an account, customers are required to
drive to a V-Charge accredited service station. Employees
manually check the VIN v and store it as a new database
entry belonging to the customer. Alternatively, other proofs
of possessing a specific vehicle with corresponding VIN , like
digital possession certificates, could be accepted to overcome
the manual verification step. The (optional) manual verifi-
cation of VIN v is the only step executed by employees of
the service. The remaining key generation and deployment
is solely done by the owner of the vehicle.

She starts the key generation process by using the Vehicle
Registration Wizard, implemented in the smartphone appli-
cation. After entering the vehicle to register, identified by
the VIN v, a key pair 〈pkv, skv〉 is generated offline on the
mobile device d. A corresponding CSRv, including pkv and

4http://www.deutschepost.de/dpag?xmlFile=1015469

VIN v, is built, signed by skv and sent to V-Charge’s DTN
CA. While the connection is secured by SSL, the authoriza-
tion and user affiliation is checked by validating the enclosed
access token against the Authorization Server.

The DTN CA queries the vehicle database V of an autho-
rized user, containing VINs and issued certificates:

V = {〈VIN 1, cert1〉, . . . , 〈VIN n, certn〉}.

CSRv is processed if 〈VIN v, ε〉 ∈ V, i.e., the VIN exists
in V-Charge’s database and no currently valid certificate
is available. Our DTN CA generates certv by signing the
public key pkv contained in CSRv. Besides certv, the root
certificate certca of our CA is returned.

Finally, 〈skv, certv, certca〉, which are stored on the mo-
bile device, must be deployed on the vehicle. This is done
by utilizing NFC: An HSM is installed inside the vehicle
along with the DTN stack that allows to deploy new root
certificates or 〈skv, certv〉-pairs. The HSM is designed to
only accept certificates that are issued for the VIN of the
corresponding vehicle. Only providing a deploy and reset
functionality, it does not allow to retrieve private keys and
is sufficiently secure against attacks trying to extract keys.
A PIN, which is stored offline by the vehicle owner, is needed
to access the API of the HSM. After successful deployment,
〈skv, certv, certca〉 is deleted from the mobile device in a se-
cure way. For a short discussion of hardware requirements
and assumptions see Section 6.2.

The DTN stack in the vehicle is now able to communicate
securely with PM servers and to verify if incoming Bun-
dles belong to the V-Charge DTN by checking if certificates
corresponding to attached signatures are signed by certca .
Every outgoing Bundle is signed using skv, so that other
nodes will accept the Bundle because of its signature which
is only valid for V-Charge participants.



6. DISCUSSION
Our proposed process provides a means to physically de-

ploy cryptographic keys to a vehicle for use in a vehicular
PKI. In the used example, we facilitate DTN as the under-
lying technology. Yet, the same principles can be applied
to IP-based communications, for example by replacing the
Bundle Security Protocol with IPSec. We achieve a high
degree of independence from central authorities and third
parties, since only the vehicle owner ever possesses its pri-
vate key. Hence, we provide a solution to a trust issue in
vehicular PKIs that was previously left open.

Our system can be put into practice without dependen-
cies on specialized mobile devices and with few requirements
regarding HSMs for vehicles (cf. Section 6.2). This makes
it usable for real world use cases. If DTN hardware is avail-
able, our registration and key deployment is solely based on
in-app wizards to register accounts and vehicles to lower the
acceptance threshold for new users. Car manufacturers can
decide to sell vehicles with pre-configured DTN stacks (with-
out pre-deployed keys or certificates), while it is also feasible
to upgrade existing vehicles with HSMs and communications
hardware.

While we use the V-Charge system as a running example,
other services can easily adopt our key deployment process
to install their certificates. To extend the system for multi-
service use, we suggest to provide a user interface to switch
between different service providers and their certificates to
restrict the DTN stack to one provider at a time and prevent
conflicting communications.

6.1 Attack scenarios
We discuss possible attack scenarios from the point of view

of an attacker T , while t denotes the vehicle of attacker T .
Steal skv before deployment: An attacker deploys a

Trojan on the user’s device by tricking her into installing
software or by exploiting a vulnerability. To extract skv

from the storage of the V-Charge application, the attacker
probably needs to exploit the operating system for privilege
escalation.

We argue that it is difficult to execute such attacks as skv

is stored only for a short duration on the mobile device, e.g.,
for a couple of hours, until the user deploys the key to the
vehicle. Thus, an attacker needs to know in advance that
a user will register for the V-Charge system. On Android,
these type of attacks are directed towards the well-studied
Unix filesystem permissions, as each application storage is
separated using unique Unix users [19, 20]. To strengthen
smartphone security, a TrEE can be utilized, like it is re-
quired for solutions designed as key replacements [10].

Intercept 〈email , password〉: To intercept passwords,
a keylogger needs to be installed before using the V-Charge
app for the first time, as passwords are never stored, because
our implementation is based on OAuth refresh tokens. This
attack is almost as difficult to execute as the previous one,
because it needs to exploit vulnerabilities to gain system
permissions and interfere with other applications by logging
their keystrokes.

Another possibility is to intercept the connection between
smartphone and server. By using Certificate Pinning for
the SSL connection, the possibility to execute Man-in-the-
Middle (MitM) attacks with forged certificates using an over-
taken CA can be excluded. Thus, the SSL standard itself

needs to be attacked, which we consider beyond the scope
of typical attackers.

Intercept access token: As described before, this would
require attacking the SSL standard itself.

Extract refresh token: A Trojan is required to extract
tokens from Android’s AccountManager5. Because the Ac-
countManager is specifically designed to store passwords and
access tokens, this attack also requires significant privilege
escalation exploits.

Another attack vector is the theft of the mobile device to
gain physical access. This also includes unnoticed physical
access, while the user is distracted. While this allows an at-
tacker to read the whole flash storage, the refresh token can
be extracted. As this is actually the most realistic and com-
mon attack scenario to access user data, we implemented a
revocation mechanism by logging into the V-Charge service
and revoking the device’s access.

Reset credentials in the HSM: As our HSM allows re-
setting and deployment of key pairs/ certificates, an attacker
could prevent the vehicle from operating with the V-Charge
system by resetting the storage of the HSM. This attack
requires physical access to the HSM and previous theft of
the PIN needed to access it. Thus, we argue that this at-
tack is difficult to execute, while easier forms of attacks on
availability exists, e.g., stabbing the tires.

Eavesdropping on NFC: We assume a Diffie-Hellman
key exchange, followed by an AES encrypted transmission.
Hence, by using the NFC-SEC standard [21] or an accord-
ing implementation on the application layer, skv cannot be
intercepted.

Relay attacks on NFC: Since the transmission of skv

from the smartphone to the vehicle only happens once, as
opposed to vehicular access control systems, the risk of a
relay attack is low. Additionally, a manual confirmation
step on the smartphone makes this attack even harder.

Register vehicle with made up VIN : As we require
a manual verification step of the VIN by driving to a V-
Charge service station or by providing alternative forms of
owner verification, the attacker needs to fake the VIN or
collude with V-Charge employees. Registering vehicles using
a VIN previously not verified, is not possible as the CSR will
be rejected by our CA.

Deploy attacker’s 〈sk t, certt〉 to a victim’s vehicle:
When the attacker has legitimately registered a vehicle, the
retrieved pair 〈sk t, certt〉 could be deployed to a victim’s
vehicle using physical access to the HSM. This attack is
prevented as our HSM only accepts certt if it is issued for
the corresponding VIN v of the vehicle.

Extract 〈skv, certv〉 from a victim’s vehicle: This
requires hacking the HSM, which we assume to be not fea-
sible by average attackers due to discussed assumptions on
hardware. However, if sophisticated attacks are observed
that successfully extract these, a revocation of certv has to
be initiated and the owner of v is forced to re-generate skv

and request a new certv.

6.2 In-Vehicle Key Storage
To securely store private keys on the vehicle, an HSM is

required. While specific hardware implementation details
are beyond the scope of this paper, some design specifica-
tions are assumed. In the automotive domain, HSMs should

5http://developer.android.com/reference/android/
accounts/AccountManager.html



be especially durable and long-living. Our DTN stack del-
egates the decrypt/sign operations to the HSM, while en-
crypt/verify can still be executed by the stack itself. This
way, skv is never exposed. To protect skv even further, a
viable option for future implementations might be to let the
keys directly be generated by the HSM. In comparison to
smartphone-based key generation though, this would require
an additional step to extract the generated pkv prior to re-
questing certv, as well as a more complex user interaction.
The API should only consist of a mode to reset its mem-
ory and a deployment mode to store new 〈skv, certv〉-pairs
besides root certificates. On vehicle sale, the new owner is
able to put it back into delivery condition using the reset
mode. As vehicles are equipped with HSMs by service sta-
tions or car manufacturers, they need to be configured to
only accept 〈skv, certv〉-pairs issued for the vehicle’s VIN.
We assume that a PIN is required to access the API, while
NFC is proposed to serve as the communication protocol.
As shown by previous research, MitM attacks on NFC are
unfeasible [22].

7. CONCLUSIONS
We presented a novel approach for securely deploying cryp-

tographic keys to vehicles in order to establish secure Vehicle-
to-Cloud communications. By combining an adapted OAuth
flow with a smartphone-based key deployment mechanism
we achieve a high degree of independence from central au-
thorities and third parties. In particular, only the vehicle
owner ever possesses its private key. Hence, we provide a
solution to a trust issue in vehicular PKIs that was previ-
ously left open. Moreover, our registration and key deploy-
ment process makes conducting security audits feasible due
to an open protocol design. With the exception of storing
the deployed keys in an actual HSM, the proposed system
has been implemented and is currently under evaluation. We
outlined how to deploy our system for general V2C services
besides the used running example. Further, we discussed
attack scenarios and how they can be mitigated.

8. ACKNOWLEDGMENTS
The project has received funding from the European Com-

munity’s Seventh Framework Programme (FP7/2007-2013)
under Grant Agreement Number 269916.

References
[1] J. Timpner and L. Wolf. “A Back-end System for an

Autonomous Parking and Charging System for Electric
Vehicles”. In: IEEE International Electric Vehicle
Conference. Greenville, SC, Mar. 2012, pp. 693–700.

[2] Delay-Tolerant Networking Architecture. RFC 4838
(Informational). Internet Engineering Task Force, Apr.
2007.

[3] S. Schildt, J. Morgenroth, W.-B. Pöttner, and L. Wolf.
“IBR-DTN: A lightweight, modular and highly portable
Bundle Protocol implementation”. In: Electronic
Communications of the EASST 37 (Jan. 2011).

[4] Bundle Protocol Specification. RFC 5050 (Experimental).
Internet Engineering Task Force, Nov. 2007.

[5] P. Papadimitratos, L. Buttyan, T. Holczer, E. Schoch,
J. Freudiger, M. Raya, Z. Ma, F. Kargl, A. Kung, and
J.-P. Hubaux. “Secure Vehicular Communication Systems:
Design and Architecture”. In: Communications Magazine,
IEEE 46.11 (2008), pp. 100–109.

[6] S. Busanelli, G. Ferrari, and L. Veltri. “Short-lived key
management for secure communications in VANETs”. In:
11th International Conference on ITS
Telecommunications. ITST. 2011, pp. 613–618.

[7] A. Studer, E. Shi, F. Bai, and A. Perrig. “TACKing
Together Efficient Authentication, Revocation, and
Privacy in VANETs”. In: 6th Annual IEEE
Communications Society Conf. on Sensor, Mesh and Ad
Hoc Communications and Networks. SECON ’09. 2009.

[8] A. Wasef, R. Lu, X. Lin, and X. Shen. “Complementing
Public Key Infrastructure to Secure Vehicular Ad Hoc
Networks [Security and Privacy in Emerging Wireless
Networks]”. In: Wireless Communications, IEEE 17.5
(2010), pp. 22–28.

[9] S. Tillich and M. Wójcik. “Security Analysis of an Open
Car Immobilizer Protocol Stack”. In: Trusted Systems.
Ed. by C. Mitchell and A. Tomlinson. Vol. 7711. Lecture
Notes in Computer Science. Springer Berlin Heidelberg,
2012, pp. 83–94.

[10] C. Busold, A. Taha, C. Wachsmann, A. Dmitrienko,
H. Seudié, M. Sobhani, and A.-R. Sadeghi. “Smart Keys
for Cyber-Cars: Secure Smartphone-based NFC-enabled
Car Immobilizer”. In: Proc. of the Third ACM Conference
on Data and Application Security and Privacy.
CODASPY ’13. ACM, 2013, pp. 233–242.

[11] M. Wolf and T. Gendrullis. “Design, Implementation, and
Evaluation of a Vehicular Hardware Security Module”. In:
Information Security and Cryptology - ICISC 2011.
Ed. by H. Kim. Vol. 7259. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2012, pp. 302–318.

[12] D. Hardt. The OAuth 2.0 Authorization Framework. RFC
6749 (Proposed Standard). Internet Engineering Task
Force, Oct. 2012.

[13] S. Symington, S. Farrell, H. Weiss, and P. Lovell. Bundle
Security Protocol Specification. RFC 6257 (Experimental).
Internet Engineering Task Force, May 2011.

[14] J. Ott, E. Hyytiä, P. Lassila, T. Vaegs, and
J. Kangasharju. “Floating Content: Information Sharing
in Urban Areas”. In: IEEE International Conference on
Pervasive Computing and Communications. PerCom.
Seattle, USA, Mar. 2011.

[15] E. Hammer-Lahav. The OAuth 1.0 Guide - History.
[Online; accessed 30-June-2013]. July 2011. url:
http://hueniverse.com/oauth/guide/history.

[16] CAcert Wiki - CA Risk History. [Online; accessed
30-June-2013]. 2013. url:
http://wiki.cacert.org/Risk/History.

[17] D. Wendlandt, D. Andersen, and A. Perrig. “Perspectives:
Improving SSH-style Host Authentication with
Multi-Path Probing”. In: Proc. USENIX Annual
Technical Conference. Boston, MA, June 2008.

[18] M. Marlinspike. Trust Assertions for Certificate Keys.
Ed. by T. Perrin. Internet-Draft. Internet Engineering
Task Force, Jan. 2013.

[19] Android Open Source Project. Android Security
Overview. [Online; accessed 30-June-2013]. 2013. url:
https://source.android.com/tech/security.

[20] T. Vidas, D. Votipka, and N. Christin. “All Your Droid
Are Belong to Us: A Survey of Current Android Attacks”.
In: Proc. of the 5th USENIX Conference on Offensive
Technologies. USENIX Association. 2011.

[21] ISO. Information technology – Telecommunications and
information exchange between systems – NFC Security –
Part 2: NFC-SEC cryptography standard using ECDH
and AES. ISO/IEC 13157-2 and ECMA-386. 2010.

[22] E. Haselsteiner and K. Breitfuß. “Security in Near Field
Communication (NFC)”. In: Workshop on RFID Security.
RFIDSec. 2006.


