

Authenticated Resource Management in Delay-Tolerant Networks using Proxy Signatures

Dominik Schürmann, Jörg Ott, Lars Wolf

March 18, 2013

Motivation

Buffer Management

Our Approach

Evaluation

Conclusion

Mobile Communication in Rural Areas of Africa

- Unreliable cell infrastructure (power outages)
- Relative high monthly costs: Nigerians living on \$2 a day or less
- \Rightarrow Delay-Tolerant Networks (DTN) (RFC 5050)

Mit Mobile Money gegen "finanzielle Apartheid". 2009. URL: http://www.zeit.de/digital/mobil/2009-11/m-money-africa; Nigeria. 2012. URL: http://topics.nytimes.com/top/news/international/countriesandterritories/nigeria/index.html

Motivation

Buffer Management

Our Approach

Evaluation

Conclusion

Hop-by-hop Communication in DTNs

- Unknown meeting times
- Limited buffer space

Example Attacks on Storage Buffers

Denial-of-Service

Flooding with big messages, differing in content, and forge source IDs. Set lifetime of bundle very high.

Multicast Amplification

Address bundle to multicast EID, set Report-to-EID to multicast EID

More DTN-Specific Attacks...

"Amplification by Fragmentation", "Amplification by Custody Transfers",...

Example Attacks on Storage Buffers

Denial-of-Service

Flooding with big messages, differing in content, and forge source IDs. Set lifetime of bundle very high.

Multicast Amplification

Address bundle to multicast EID, set Report-to-EID to multicast EID

More DTN-Specific Attacks...

"Amplification by Fragmentation", "Amplification by Custody Transfers",...

Properties of DTNs make attacks worse! What to do against malicious nodes flooding the network?

Preemptive Buffer Management¹

Basic Idea

- Sign messages to authenticate their source ID
- Partition storage equally between IDs of incoming messages

Example: Eve's Buffer (Max: 6 Messages)

Stores messages coming from Alice, Victor, and Bob

$M^1_{Alice} M^2_{Alice}$	M^1_{Victor}	$M^1_{Bob} \ M^2_{Bob}$
---------------------------	----------------	-------------------------

¹ John Solis et al. "Controlling resource hogs in mobile delay-tolerant networks". In: *Computer Communications* 33.1 (May 14, 2010), pp. 2–10.

Our Approach

Evaluation

Conclusion

Request-Response Scenario

Our Approach

Evaluation

Conclusion

Request-Response Scenario

Motivation

Conclusion

Improving Fairness?

Eve's Buffer: Original Scheme

2. Response:
$$M_{Alice}^1 M_{Alice}^2 M_{Victor}^1 M_{Bob}^2 R_{Bob}^1 M_{Bob}^{drop}$$

Changed Affiliation of Response

2. Response:
$$M_{Alice}^2 R_{A(B)}^1 M_{Victor}^1 M_{Bob}^1 M_{Bob}^2$$

Our Approach

Evaluation

Conclusion

Scenario with Often Requested Server Node

Conclusion

Scenario with Often Requested Server Node

Eve's Buffer: Original Scheme

2. Response: $M_{A_1}^1$ $M_{A_2}^1$ $M_{A_3}^1$ R_B^2 R_B^3 R_B^{1} R_B^1 R_B^1

Changed Affiliation of Responses

2. Response:
$$M_{A_1}^1 R_{A_1(B)}^1 M_{A_2}^1 R_{A_2(B)}^2 M_{A_3}^1 R_{A_3(B)}^3 M_B^1$$

Cryptographic Background

Signing

- Every node *i* has a public/private key pair $\langle pk_i, sk_i \rangle$ and an ID_i
- Every node on the path should be able to verify the signature $\rightarrow \textbf{Encrypt-then-Sign}$
- Encryption when sending message to Bob: $c = Enc_{pk_B}(m)$
- Sign ciphertext by Alice: $\sigma = Sign_{sk_A}(c)$

Message to be send: $M = \langle c, \sigma \rangle$

Verification

- Buffering incoming messages based on source ID
- Verify source ID by verifying signature: $Verify_{pk_A}(c,\sigma)$

Motivation

Proxy Signature: "Delegation-by-Certificate"²

²Alexandra Boldyreva et al. "Secure Proxy Signature Schemes for Delegation of Signing Rights". In: *Journal of Cryptology* 25 (1 2012), pp. 57–115.

Verification of Proxy Signatures

Verification by Nodes Forwarding the Response

- Verify traditional signature
- Verify proxy signature by $PVerify_{pk_A,pk_B}(c_2, \Sigma)$

 $\begin{aligned} & \mathsf{PVerify}_{\mathsf{pk}_A,\mathsf{pk}_B}(c_2,\Sigma) = \\ & \mathsf{Verify}_{\mathsf{pk}_A}(00 \parallel \mathsf{ID}_B \parallel \mathsf{pk}_B \parallel \omega, \mathsf{pcert}) \\ & \land \mathsf{Verify}_{\mathsf{pk}_B}(01 \parallel \mathsf{pk}_A \parallel c_2, \sigma_2) \land (c_2 \in \omega). \end{aligned}$

Application of Proxy Signatures

pcert Restrictions

 $\begin{array}{c} \mbox{Validity Restriction} \\ \mbox{Certificate is only valid for a specific time frame} \\ \mbox{Limited Response} \\ \mbox{Responses are restricted to specific IDs by warrant } \omega \end{array}$

Message Pattern

- One-time request-response
- Publish-subscribe
- Two-way communication

Simulation with "The ONE" Simulator

Does our approach improve request/response success probability?

Simulation with "The ONE" Simulator

Does our approach improve request/response success probability? What happens in presence of malicious nodes?

Simulation with "The ONE" Simulator

Does our approach improve request/response success probability? What happens in presence of malicious nodes?

Scenario with Server Nodes (With and Without Proxy Signatures)

- 95% nodes with 5 MB storage
- 5 % are "server" nodes with 50 MB storage
- 3 message types: Request, response, unidirectional

Parameter	Choice
Movement Model	Shortest Path
Connectivity	Bluetooth-like
Routing Model	Spray-and-Wait
Map	Helsinki city's central area

Only Benign Nodes

- Struggle for buffer space between message types
- Request/response success probability as a metric

Dominik Schürmann | Resource Management in DTNs using Proxy Signatures | 13

Our Approach

Evaluation

Conclusion

95 % Benign and 5 % Malicious Nodes

Conclusion

In proper scenarios, our approach improves...

- fairness by affiliating responses to initiating peer
- request/response success probability
- performance of mutual communications even in presence of attackers

Properties

- Cryptographically secured extension to buffer management
- Delegation is done without central authority
- Delegation is delay-tolerant
- No further storage is needed for time based certificate restriction

Conclusion

In proper scenarios, our approach improves...

- fairness by affiliating responses to initiating peer
- request/response success probability
- performance of mutual communications even in presence of attackers

Properties

- Cryptographically secured extension to buffer management
- Delegation is done without central authority
- Delegation is delay-tolerant
- No further storage is needed for time based certificate restriction

Questions?

Only Benign Nodes, 40 % Prob. to Generate Requests

