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Abstract

Many security protocols still rely on manual fingerprint
comparisons for authentication. The most well-known
and widely used key-fingerprint representation are hexa-
decimal strings as used in various security tools. With
the introduction of end-to-end security in WhatsApp and
other messengers, the discussion on how to best repre-
sent key-fingerprints for users is receiving a lot of inter-
est.

We conduct a 1047 participant study evaluating six
different textual key-fingerprint representations with re-
gards to their performance and usability. We focus on
textual fingerprints as the most robust and deployable
representation.

Our findings show that the currently used hexadeci-
mal representation is more prone to partial preimage at-
tacks in comparison to others. Based on our findings,
we make the recommendation that two alternative repre-
sentations should be adopted. The highest attack detec-
tion rate and best usability perception is achieved with a
sentence-based encoding. If language-based representa-
tions are not acceptable, a simple numeric approach still
outperforms the hexadecimal representation.

1 Introduction

Public key cryptography is a common method for au-
thentication in secure end-to-end communication and
has been a part of the Internet throughout the last two
decades [7, 11]. While security breaches have shown
that systems based on centralized trusted third parties
such as Certificate Authorities and Identity Based Private
Key Generators are prone to targeted attacks [42], decen-
tralized approaches such as Web of Trust and Namecoin
struggle with beeing adopted in practice due to usability
issues [7, 13, 30]. Certificate transparency systems, such
as CONIKS and others [24, 39, 27], aim to solve a subset
of these issues by providing an auditable directory of all

user keys. Still, manual key verification, i. e., the link be-
tween public keys and the entities, such as hostnames or
people, remains a challenging subject, especially in de-
centralized systems without pre-defined authorities, such
as SSH, OpenPGP, and secure messaging [12, 41].

Many traditional authentication systems still rely on
manual key-fingerprint comparisons [17]. Here, key-
fingerprints are generated by encoding the (hashed) pub-
lic key material into a human readable format, usually
encoded in hexadecimal representation. A variety of al-
ternatives such as QR Codes, visual fingerprints, Near
Field Communication (NFC), and Short Authentication
Strings (SAS) have been proposed. Most of these sys-
tems offer specific benefits, e. g., QR codes and NFC do
not require users to compare strings, but they also come
with specific disadvantages, e. g., they require hardware
and software support on all devices. While advances are
being made in these areas, the text-based representation
is still the dominant form in most applications.

However, due to the recent boom of secure messag-
ing tools, the debate of how to best represent and eval-
uate textual fingerprints has opened up again and there
are many very active discussions among security ex-
perts [28, 33]. In April 2016, WhatsApp serving over
one billion users enabled end-to-end encryption as de-
fault by implementing the Signal protocol. Key verifi-
cation is optional and can be done by using QR codes
or comparing numeric representations, in their case 60-
digit numbers [43]. However, it is not clear whether their
solution is more usable than traditional representations.

In this paper, we present an evaluation of different tex-
tual key-fingerprint representation schemes to aid in the
secure messenger discussion. The requirements posed to
the developers are as follows:

• The fingerprint representation scheme should pro-
vide offline support and work asynchronously. One
reason for this is that fingerprints are often printed
on business cards or exchanged by third parties.



• The fingerprint should be transferable via audio
channels, e. g., it should be possible to compare fin-
gerprint over the phone.

• The representation scheme should be as technically
inclusive as possible. No special hardware or soft-
ware should be required to verify the fingerprints:
both require a concerted and coordinated effort be-
tween many actors to get enough coverage for a
comparison mechanism to be worthwhile for users
to adopt.

• The representation should be as inclusive as possi-
ble, i. e., excluding as few people with sensory im-
pairments (visual, color, audio, etc.) as possible.

The above requirements exclude many proposed rep-
resentation schemes and offer an explanation why they
have not seen any adoption outside of academia. For this
reason, we focus exclusively on textual fingerprint rep-
resentations in our study. Textual key-fingerprints do not
require hardware support and work in synchronous and
asynchronous scenarios, i. e., they can be compared via
voice or printed on business cards. Depending on the
scheme, they even could be recalled from memory and
exchanged over a voice channel.

This paper presents our study testing the usability of
various textual key-fingerprint representation schemes.
Our study consists of two parts: (1) an experiment where
we measured how fast and accurate participants perform
for different schemes, and (2) a survey about their per-
ception and sentiment. These also contained a direct
comparison between the representations.

Our findings suggest that the most adopted alphanu-
meric approaches such as the Hexadecimal and Base32
scheme perform worse than other alternatives: under a
realistic threat model, more than 10% of the users failed
to detect attacks targeting Hexadecimal representations,
whereas our best system had failure rates of less than 3%.
While the best system for accuracy is not the fastest, it
is the system which received the highest usability rating
and is preferred by users.

In the following sections, we discuss related work fol-
lowed by an analysis of current implementations deploy-
ing in-persona key-fingerprint representation techniques
and discuss our evaluated representation schemes. Then,
we describe our experiment evaluating text-based key-
fingerprint verification techniques with regards to their
attack-detection accuracy and speed. Our experiment
was conducted as an online study with 1047 participants
recruited via the Amazon Mechanical Turk (MTurk) plat-
form. We consider the scenario outlined above, where
a user compares two key-fingerprint strings encoded by
the different representation schemes. In addition to the
implicit measurements of accuracy and speed, we also

alice@localhost :~$ ssh alice@example.com

The authenticity of host ’example.com (93.184.216.34) ’

can ’t be established.

RSA key fingerprint is

6f:85:66: da:e3:7a:02:c6:5e:62:3f:36:b7:d9:b4:2c.

Are you sure you want to continue connecting (yes/no)?

(a) OpenSSH: Lowercase Hexadecimal with Colons

alice@localhost :~$ gpg --fingerprint Bob

pub 2048R/00012282 2015 -01 -01 [expires: 2020 -01 -01]

Key fingerprint =

73EE 2314 F65F A92E C239 0D3A 718C 0701 0001 2282

uid Bob <bob@example.com >

(b) GnuPG: Uppercase Hexadecimal with Spaces

Figure 1: Alphanumeric Fingerprints Used in Practice

evaluate the self-reported user perception to get feed-
back about which systems are preferred by end users.
Finally, we present our results, discuss their implications
and takeaways, and conclude our work.

2 Related Work

Various key-fingerprint representations have been pro-
posed in academia and industry. Various cryptographic
protocol implementations still rely on manual fingerprint
comparisons, while the hexadecimal representation is
used in most of them. However, previous work suggests
that fingerprint verifications are seldom done in prac-
tice [17, 37].

2.1 Key-Fingerprint Representations
Previous work has shown that users struggle with com-
paring long and seemingly “meaningless” fingerprints
and it is suspected that they even might perform poorly
in this task [19]. While most previous work has focused
on the family of visual fingerprints [35, 32, 19, 10], to
our knowledge, none of those focused on the differences
between various different textual fingerprint representa-
tions.

Hsiao et al. have conducted a study with some tex-
tual and visual representation methods for hash verifi-
cation [19]. They compared Base32 and simple word
list representations with various algorithms for visual
fingerprints and hash representation with Asian charac-
ter sets (a subset of Chinese, Japanese Hiragana, and
Korean Hangul, respectively). A within-subjects online
study with 436 participants revealed that visual finger-
prints score very well in both accuracy and speed, to-
gether with the Base32 text representation. Hsiao et al.
conclude that depending on the available computation
power and display size, either Base32 or one of the vi-
sual fingerprinting schemes should be used. They explic-
itly did not evaluate hexadecimal representation or digits
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“because that scheme is similar to Base32 and known to
be error-prone” [19]. However, our work shows that nu-
meric representations actually perform significantly bet-
ter than Base32 and is less error prone. In addition, our
results suggest that language-based schemes, e. g., gen-
erated sentences achieve excellent results comparable to
visual schemes. At the same time, textual approaches are
more flexible (can be read out loud) and do not exclude
people with sensory impairments.

Another study by Olembo et al. also focused mainly
on the topic of visual fingerprints [32]. They devel-
oped a new family of visual fingerprints and compared
them against a Base32 representation. The Base32
strings were twelve characters long and displayed with-
out chunking. The participants performed better with
the visual fingerprints than with Base32, regarding both
accuracy and speed. Olembo et al. conclude that the
Base32 representation is far away from optimal when
it comes to manual key-fingerprint verification. We
test this claim by comparing Base32 representation with
other textual key-fingerprint representation and eventu-
ally prove it wrong.

Regarding chunking, Miller et al. have published The
magical number seven and succeeding work that shows
that most people can recall 7±2 items from their mem-
ory span [29]. It has been shown that although there
are slight differences between numbers, letters and words
(numbers perform slightly better than letters, and letters
slightly better than words), they perform similar in stud-
ies. More recent studies have shown that human working
memory easily remembers up to 6 digits, 5.6 letters and
5.2 words [1, 6, 8]. Adjusting chunk sizes to these num-
bers can help users when comparing hashes.

While all of the above studies offer interesting insights
into different (mainly visual) fingerprint representations,
to the best of our knowledge there is not work focusing
on which textual representation performs the best. How-
ever, this knowledge would be extremely important to
help in the current debate in the secure messaging com-
munity. The representations currently being put forward
and implemented are far from optimal and the results of
our study can help improve the accuracy and usability of
fingerprint representations. Unlike the above studies we
conduct our study with a more realistic attacker strenth,
as presented in subsection 4.1).

2.2 Passwords and Passphrases

A passphrase is basically a password consisting of a se-
ries of words rather than characters. In academic lit-
erature, passphrases are often considered as a poten-
tially more memorable and more secure alternative to
passwords and are often recommended by system ad-
ministrators [23, 40]. In contrast to most passphrase-

Scheme Example

Hexadecimal 18e2 55fd b51b c808

601b ee5c 2d69

Base32 ddrf l7nv dpea

qya3 5zoc 22i

Numeric 2016 507 6420 1070 394

1136 2973 991 70

PGP

locale voyager waffle disable
Belfast performance slingshot Ohio
spearhead coherence hamlet liberty
reform hamburger

Peerio bates talking duke rummy slurps
iced farce pound day

Sentences Your line works for this kind power cruelly.
That lazy snow agrees upon our tall offer.

Table 1: Examples for different textual key-fingerprint repre-
sentations for the same hash value

based systems, key-fingerprints cannot be chosen by
the end-user and thus are more related to the system-
assigned passphrases field: Bonneau et al. have shown
that users are able to memorize 56-bit passwords [4].
miniLock1 and its commercial successor Peerio2 use
system-assigned passphrases to generate cryptographic
key pairs easing key backup and synchronization among
multiple devices.

Contrary to widespread expectations, Shay et al. were
not able to find any significant recall differences between
system-assigned passphrases and system-assigned pass-
words [40]. However, they reported reduced usability
due to longer submission times due to typing.

Similar to passphrases, the usage of language-based
key-fingerprint representations is claimed to provide bet-
ter memorability than just an arbitrary series of charac-
ter strings despite the lack of empirical evidence. In our
study, we measure the performance of the different ap-
proaches and also collect perception and feedback from
end users.

3 Background

In the past years, various textual key-fingerprint repre-
sentations have been proposed. In this section, we ana-
lyze currently practised in-persona key verification tech-
niques in well-known applications. For comparison, Ta-
ble 1 lists the approaches we used in our evaluation gen-
erated from the same hash value.

Only applications requiring manual key-fingerprint

1https://minilock.io
2https://peerio.com
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verification are considered. In mechanisms like S/MIME
or X.509, fingerprints play only a secondary role because
certificates are verified via certificate chains.

In the following, SHA-1(x)16 defines the execution of
16 rounds of nested SHA-1 on x, a truncation to the left-
most 16 bits is defined by x[0, . . . ,16], and pk is used as
an abbreviation for the values of a public key (differs for
RSA, DSA, or ECC).

3.1 Numeric
Numeric representation describes the notation of data us-
ing only numeric digits (0-9). The primary advantage of
a such system is that Arabic numerals are universally un-
derstood, and in addition, numeric key-fingerprints show
a similarity to phone numbers. The encoding is achieved
by splitting a binary hash into chunks of equal length
and expressing each chunk as a decimal number, e. g., by
simply switching the representation base from 2 to 10.

The messaging and data exchange application SafeS-
linger3 implements this as a fallback scheme for unsup-
ported languages [14]. A 24 bit SAS in SafeSlinger (cf.
Figure 2a) can be expressed by three decimal encoded
8-bit numbers.

In the messaging platform WhatsApp, a fingerprint
is calculated by SHA-256(pk)5200[0, . . . ,240]. This fin-
gerprint is split up into six chunks, where each chunk
is represented by a five digits long number modulo
100,000 [43]. Concatenating this fingerprint with the fin-
gerprint of the communication partner results in the dis-
played representation, e. g.,

77658 87428 72099 51303

34908 23247 95615 27317

09725 59699 62543 54320

3.2 Alphanumeric
Alphanumeric approaches use numbers and letters to
represent data. Depending on the representation type
and its parameters, the letters can be presented either
in lower-case or in upper-case. The string can be chun-
ked into groups of characters, which are usually of equal
length. Chunking does not alter the information con-
tained, while changing lower-case letters to upper-case
letters (and vice versa) may does, depending on the cod-
ing scheme. Commonly used representations are Hex-
adecimal, Base32, and Base64.

3.2.1 Hexadecimal

Hexadecimal digits use the letters A-F in addition to nu-
merical digits and are a common representation for key-
fingerprints and primarily used in SSH and OpenPGP.

3https://www.cylab.cmu.edu/safeslinger

Note that the case of the letters do not make any differ-
ence. Regarding chunking, both spaces (cf. Figure 1b)
and colons (cf. Figure 1a) are commonly used as separa-
tion characters.

Key fingerprints in OpenPGP version 4 are defined in
RFC 4880 [7] by

Hex(SHA-1(0x99‖ len‖4‖ creation time‖algo‖pk))

where len is the length of the packet, creation time is the
time the key has been created and algo is unique iden-
tifier for the public-key algorithm. While the inclusion
of creation time makes sure that even two keys with the
same key material have different fingerprints, it allows an
attacker to iterate through possible past times to generate
similar fingerprints skipping the key generation step [5].
The actual representation of OpenPGP fingerprints is not
defined in RFC 4880, but most implementations chose to
encode them in hexadecimal form, e. g., GnuPG displays
them uppercase in 16 bit blocks separated by whitespaces
with an additional whitespace after 5 blocks (cf. Fig-
ure 1b), e. g.,

73EE 2314 F65F A92E C239 0D3A 718C 0701 0001 2282

Other implementations, such as OpenKeychain, deviate
only slightly, for example by displaying them lowercase
or with colored letters to ease comparison but still pro-
vide compatibility with GnuPG.

SSH fingerprint strings, as defined in RFC 4716 and
RFC 4253 [15, 44], are calculated by

Hex(MD5(Base64(algo‖pk)))

where algo is a string indicating the algorithm, for ex-
ample “ssh-rsa”. Fingerprints are displayed as “hexadec-
imal with lowercase letters and separated by colons” [15]
(cf. Figure 1a), e. g.,

6f:85:66:da:e3:7a:02:c6:5e:62:3f:36:b7:d9:b4:2c

3.2.2 Base32

Base32 uses the Latin alphabet (A-Z) without the let-
ters O and I (due to the confusion with numbers 1 and
0). There is no difference between lower-case letters and
upper-case letters. In addition, a special padding char-
acter “=” is used, since the conversion algorithm pro-
cesses blocks of 40 bit (5 Byte) in size. The source string
is padded with zeroes to achieve a compatible length
and sections containing only zeroes are represented by
“=” [20, 21].

The ZRTP key exchange scheme for real-time ap-
plications is based on a Diffie-Hellman key exchange
extended by a preceding hash commitment that allows
for very short fingerprints, called Short Authentication

4

https://www.cylab.cmu.edu/safeslinger


Strings (SAS) without compromising security [45]. The
Base32 encoding used in ZRTP uses a special alphabet
to produce strings that are easier to read out loud. VoIP
applications such as CSipSimple4 use this Base32 op-
tion, usually named “B32” inside the protocol. Here, the
leftmost 20 bits of the 32 bit SAS value are encoded as
Base32. , e. g.,

5 e m g

3.2.3 Base64

There exist a number of specifications for encoding data
into the Base64 format, which uses the Latin alphabet in
both lower-case and upper-case (a-z, A-Z) as well as the
digits 0-9 and the characters “+”, “/”, and “=” to repre-
sent text data. Again, the character “=” is used to encode
padded input [20]. Starting with OpenSSH 6.8 a new
fingerprint format has been introduced that uses SHA-
256 instead of MD5 and Base64 instead of hexadecimal
representation. In addition the utilized hash algorithm is
prepended, e. g.,

SHA256:mVPwvezndPv/ARoIadVY98vAC0g+P/5633yTC4d/wXE

3.3 Unrelated Words
Instead of (alpha)numeric representation, fingerprints
can be mapped to lists of words. Here, the binary rep-
resentation is split into chunks, where each possible
value of a chunk is assigned to a word in a dictionary.
To increase readability, such a dictionary usually con-
tains no pronouns, articles, prepositions and such. Word
lists, such as the PGP Word List [22] and the Basic En-
glish word list compiled by K.C. Ogden [31], are pri-
marily used for verification mechanisms based on SAS.
Key-Fingerprints represented by words have been imple-
mented for VoIP applications based on the ZRTP key
exchange and other real-time communication protocols.
Examples are Signal5, and the messaging and contact
sharing application SafeSlinger [14] (cf. Figure 2). Be-
sides their use in SAS based mechanisms, miniLock and
Peerio utilize unrelated words for passphrase generation.

An example for a modern VoIP implementation that
utilizes ZRTP for key exchange over Secure Real-Time
Transport Protocol (SRTP) is Signal’s private calling fea-
ture, previously distributed as Redphone. The devel-
opers chose to implement only a specific subset of the
ZRTP specification [45], namely Diffie-Hellmann key
exchange via P-256 elliptic curves using “B256” SASs,
i. e., Base256 encoding that maps to the leftmost 16 bits
of the 32 bit SAS values to the previously introduced
PGP Word List [22], e. g.,

4https://github.com/r3gis3r/CSipSimple
5https://github.com/WhisperSystems/Signal-Android

(a) SafeSlinger: List of words (b) OpenKeychain: Sentences

Figure 2: Language-based fingerprint representations

quota holiness

The messaging application SafeSlinger is based on
a Group Diffie-Hellman protocol [14] implementing a
key verification with SASs for up to 10 participants. In
SafeSlinger the leftmost 24 bits of a SHA-1 hash is used
to select 3 words from the PGP Word List, e. g.,

suspense unify talon.

Besides this, two other 3 word triples are selected to force
users to make a selection before proceeding (cf. Fig-
ure 2a).

In contrast to Signal and SafeSlinger, Peerio (based
on miniLock) does not use any SAS based verification
mechanism. It uses pictures for verification and word
lists for code generation. The word list is generated from
most occurring words in movie subtitles. Besides key
verification, these are also used to generate so called
passphrases, which are used to derive their ECC private
keys.

3.4 Generated Sentences
The words from the previous dictionaries can also be
used to generate syntactically correct sentences as pro-
posed by previous research: Goodrich et al. proposed
to use a “syntactically-correct English-like sentence”
representation for exchanging hash-derived fingerprints
over audio by using text-to-speech (TTS) [16]. Michael
Rogers et al. implemented a simple deterministic sen-
tence generator [16, 38]6 Though the sentences from
both approaches rarely make sense in a semantic fash-
ion, they are syntactically correct and are claimed to pro-

6https://github.com/akwizgran/basic-english
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vide good memorability. In our study, we used Michael
Roger’s approach for our sentence generator.

We implemented this method for PGP fingerprints
in OpenKeychain 3.67 (cf. Figure 2b). To the best of
the authors’ knowledge, to this date, it is the first inte-
gration of key verification via sentences although other
projects are considering to change their fingerprint en-
coding scheme [38, 36].

4 Methodology

In order to evaluate the effect and perception of the dif-
ferent textual key-fingerprint representations, we con-
ducted an online study on Amazon’s Mechanical Turk
(MTurk) crowdsourcing service. Our Universities do not
have an IRB, but the study conformed to the strict data
protection law of Germany and informed consent was
gathered from all participants. Our online study is di-
vided into two parts: The experiment for performance
evaluation followed by a survey extracting self-reported
data from users. The survey ended with demographic
questions.

4.1 Security Assumptions
In this section, we define the underlying security assump-
tions of our study, such as fingerprint method, length, and
strength against an adversary. The fingerprint method
and parameters are utilized consistently for all experi-
ments in our study to offer comparability between all
possible fingerprint representations. This attack model is
important for the usability since an unrealistically strong
or weak attacker could skew the results. Obviously, if the
fingerprint strength is not kept equal between the systems
this would also skew the results.

4.1.1 Fingerprint Method

To decide upon a fingerprint method for humanly verifi-
able fingerprints in our study, we first have to differen-
tiate between human and machine verification to illus-
trate their differences. While a full fingerprint compar-
ison can be implemented for machine verification, hu-
mans can fall for fingerprints that match only partially.
Additionally, machine comparison can work with long
values, whereas for human verification the length must
be kept short enough to fit on business cards and to keep
the time needed for comparison low.

For machine comparison, full SHA-256 hashes should
be calculated binding a unique ID to the public key mate-
rial. The probability of finding a preimage or collision at-
tack is obviously negligible, but the fingerprints can still
be computed fast in an ad-hoc manner when needed.

7https://www.openkeychain.org

It is important to note that collision resistance is not re-
quired for our scenarios. It is required for infrastructure-
based trust models such as X.509, where certificates are
verified by machines and trust is established by authority.
In these schemes, a signature generated by a trusted au-
thority can be requested for a certificate by proving the
control over a domain, but then reused maliciously for
a different certificate/domain. This is already possible
with a collision attack, without targeting a full preimage.
In contrast, the direct human-based trust schemes con-
sidered in this study only need to be protected against
preimage attacks, because no inherently trusted author-
ity is involved here.

While machine comparison needs to be done fast, e. g.,
on key import, manual fingerprint verification by humans
is done asynchronously in person or via voice. Thus, we
can use a key derivation function to provide a proof-of-
work, effectively trading calculation time for a shorter
fingerprint length. Secure messaging applications such
as Signal or OpenPGP-based ones could pre-calculate
the fingerprints after import and cache these before dis-
playing them for verification later.

Thus, modern memory-hard key derivation functions
such as scrypt [34] or Argon2 [3] can be utilized to
shorten the fingerprint length. These key derivation func-
tions are parametrized to allow for different work factors.
Suitable parameters need to be chosen by implementa-
tions based on their targeted devices and protocol.

As discussed in Section 3.2.1, while the generation of
new fingerprints consists of the creation of a new key pair
and the key derivation step, an attacker can potentially
skip the key creation. Thus, in the following we only
consider the key derivation performance as the limiting
factor for brute force attacks.

When utilizing a properly parametrized key derivation
function for bit stretching, the security of a 112 bit long
fingerprint can be increased to require a brute force at-
tack comparable to a classical 2128 brute force attacker.
Consequently, a fingerprint length of 112 bit is assumed
throughout our study.

4.1.2 Attacker Strength for Partial Preimages

In our user study, we assume an average attacker try-
ing to impersonate an existing ID using our fingerprint
method. Thus, an attacker would need to find a 112 bit
preimage for this existing fingerprint using a brute force
search executing the deployed key derivation function in
each step. Due to the work factor, we consider this to be
infeasible and instead concentrate on partial preimages.
For comparability and to narrow the scope of our study,
an attacker is assumed that can control up to 80 bits of
the full 112 bit fingerprint.

Attackers might aim to find partial preimages where

6
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the uncontrolled bits occur at positions that are more eas-
ily missed by inattentive users. First, the bits at the be-
ginning and the end should be fixed as users often begin
their comparison with these bits. Thus, we assume that,
for any representation method, the first 24 and last 24
bits are controlled by the attacker and thus the same as in
the existing fingerprint. Based on the feedback from our
pre-study participants and reports from related work, this
can be considered best-practice [17, 37]. Second, of the
remaining 64 bits in the middle of our 112 bit fingerprint,
we assume that 32 bits are controlled by the attacker in
addition to the first 24 and last 24 bits. In total, we as-
sume that 80 bits are controlled by the attacker, i. e., are
the same as in the existing fingerprint, and 32 bit are un-
controlled.

The probability of finding such a partial preimage for
a fingerprint when executing 249 brute force steps is cal-
culated approximately by

1−

(
2112−∑

32
k=1
(64

k

)
2112

)249

≈ 0.66.

The inner parentheses of this equation define the prob-
ability that no partial preimage exists for one specific
bit permutation. Instead of using

(64
32

)
, a sum over 32

variations has been inserted to include permutations with
more than the uncontrolled 32 bit that are also valid par-
tial preimages. Finally, the probability to find a par-
tial preimage is defined by the inverse of the exponen-
tiation. Assuming the scrypt key derivation function
parametrized with (N,r, p) = (220,8,1), Percival calcu-
lates the computational costs of a brute force attack
against 238 (≈ 268) hashed passwords with $610k and
253 (≈ 958) with $16B [34]. These costs can be consid-
ered a lower and upper bound for our attacker, which we
assume to have average capabilities and resources. While
238 has a probability of finding a partial preimage of only
0.05%, with 242 the probability reaches nearly 1%, and
with 249, as in our example, a partial preimage is found
with over 50%.

In our study, we simulate attacks by inverting the bits
from the existing fingerprint which are uncontrolled by
the attacker, while the controlled bits are unchanged.
For our theoretical approximation, we assume that the
first 24 and last 24 bits should be controlled as well as
32 bits from the middle. In our study, we simulate an
even more careful selection of appropriate fingerprints
from the ones that an attacker would brute force. A gen-
eral criteria here is to minimize the influence of uncon-
trolled bits on the entire fingerprint: For numeric and al-
phanumeric representations all bits affecting a character
or digit are inverted together. For unrelated words, all
bits affecting a word are changed. Sentences are never
changed in a way that would alter the sentence structure.

Figure 3: A screenshot of the actual task a user had to per-
form in the experiment. A user rates whether the security codes
match, in this case with the Peerio word list approach, by click-
ing on the corresponding buttons shown on the phone.

4.2 Pre-Study

To get additional feedback from participants and eval-
uate our study design for flaws and misunderstandings,
we conducted two small pre-studies: A lab study with 15
participants and an MTurk experiment with 200 partic-
ipants, all required to perform 10 comparisons for each
representation scheme (totally 60 comparisons in a ran-
domized order). In our lab-study, we mainly focused
on qualitative feedback, whereas the main goal of the
MTurk pre-study was to find flaws in the presentation
and task descriptions, as well as to check whether our
proposed methodology is received as expected.

The biggest problem we found regarding the study de-
sign was that participants were uncertain if they should
check for spelling mistakes in the words and sentence-
based representation or if the all attacks would change
entire words. To clarify this, a speech bubble was in-
cluded in the task description that the participants do not
have to look for spelling mistakes for language-based ap-
proaches.

We tested different rates of attack during the pre-study.
The results showed that participants who were exposed
to frequently occurring attacks were more aware and had
a much higher attack detection rate. For our main study,
we reduced the number of attacks to 40 comparisons with
4 attacks to have a good balance between true positives
and false negatives. We received feedback that attacks
on anchor parts of the strings, i. e., in the beginning,
end, and at line breaks could be easily detected. Many
users had problems with distinguishing the hexadecimal
from the Base32 representation as well as distinguish-
ing different word list approaches (Peerio vs. OpenPGP
word list). Thus, we opted for a mixed factorial study
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design where users test only one scheme of each type.
We grouped the hexadecimal and Base32 scheme for the
alphanumeric type and the PGP and Peerio for the word-
list type together. These two groups were tested between-
subjects in a split-plot design, i. e., the participants test
either hexadecimal or Base32 for the alphanumeric type.
See Table 2 for a graphical representation of our condi-
tion assignment design.

4.3 Experiment Design
The main part of our online study is the experiment
part where users perform actual fingerprint comparisons.
Here, we conducted two separate experiments with a dis-
tinct set of participants: (1) our main experiment test-
ing different textual high-level representation schemes
against each other and (2) a secondary experiment testing
different chunk sizes for the hexadecimal representation.
We opted for two distinct experiments due to the expo-
nential growth of experiment conditions, as described in
Section 4.3.1.

Before letting the participants start our experiment, we
explained the scenario:

“With this HIT, we are conducting an aca-
demic usability study followed by a short sur-
vey about different types of security codes
used in the IT world. Security codes are of-
ten used in encrypted communications to iden-
tify the participants in a communication. If the
security codes match, you are communicating
securely. If they don’t match, an eavesdropper
may be intercepting your communication”.

On MTurk, the term Human Intelligence Task, or HIT
stands for a self-contained task that a worker can work
on, submit answers, and get a reward for completing.
Since our participants might not be familiar with the key-
fingerprint representation term, we replaced it with se-
curity codes for the sake of the study.

We opted not to obfuscate the goal of the study since
our research aims at finding the best possible representa-
tion for the comparison of key-fingerprints in a security
context. This is closest to how users interact with finger-
prints in the real world — their secure messaging appli-
cations also ask them to compare the strings for security
purposes. The question how to motivate users to compare
fingerprints is an entirely different research question. So
in our case, we believe it was not necessary or desirable
to use deception and since deception should be used as
sparingly as possible we opted for the “honest” approach.

After agreeing the terms, participants are shown a fic-
titious business card next to a mobile phone, both dis-
playing a security code (as shown in Figure 3). To
become more familiar with the task, the experiment is

Type (Within-Group) Scheme (Between-Group)

Alphanumeric Hexadecimal XOR Base32
Numeric Numeric
Unrelated Words PGP XOR Peerio
Generated Sentences Generated Sentences

Table 2: To avoid confusion between too similar approaches
(cf. Section 4.2), in our condition assignment, scheme types
(left column) can consist of multiple representation schemes
(right column). Each participant tests only one randomly as-
signed scheme of each type in a randomized order. .

started with 4 training tasks (each method once) not con-
sidered in the evaluation. The user’s only task is to
rate whether the shown fingerprints match by clicking on
Match or Doesn’t Match on the phone. Based on the con-
dition assignment, participants see different approaches
in a randomized order. We measure whether their an-
swer was correct and their speed, i. e., the amount of time
spent on the comparison. The experiment is concluded
with a survey collecting feedback on the used approaches
and the tasks and demographic information discussed in
the “Results” section.

4.3.1 Variables and Conditions

In the main experiment, the used representation scheme
is our controlled independent variable whereas its val-
ues define our experiment conditions. In our additional
chunking experiment, the chunking size is our controlled
independent variable instead of the representation algo-
rithm. During all tasks, we measure how fast participants
perform with their given conditions and whether they are
able to detect attacks by rating “incorrect” (speed and
accuracy as our measured dependent variables).

In both experiments, each user had to perform 46 com-
parisons in total. To detect users clicking randomly, 2
obviously distinct comparisons were added to test a par-
ticipant’s attention. Training comparisons and attention
tests are not included in the evaluation. Based on the
feedback in our pre-study, we added tooltips during the
training comparisons giving hints for language-based ap-
proaches telling the user that spelling attacks would not
occur. We set the number of attacks to six: two obvious
attacks where all bits are altered serving as control ques-
tions and 4 actual attacks with partial 80-bit preimages
(one for each representation scheme). Participants failing
at the control attacks are not considered in the evaluation
but still received a payment if finishing all tasks. The
major challenge in the study design is a high attack de-
tection rate in general: most users perform comparisons
correctly for the given attacker strength.

To avoid side effects, we chose fixed font size, color
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Figure 4: A screenshot showing a statement rating in the post-experiment survey. Since the participants might
not distinguish the different types, we have provided an example from their previous task.

and style, i. e., the same typeface for all fingerprint rep-
resentations. In addition, we set fixed line breaks for sen-
tences and word lists. In the main experiment, the same
chunking style was used for all representations: For (al-
pha)numeric approaches a chunk consists of four charac-
ters separated by spaces. For word lists, we opted for a
line break every four words. In the generated sentences
representation, one sentence per line is displayed. We are
aware that all these design decisions can have an effect
on the comparison of the representations. However, our
pre-study results show a significantly lower effect size.
More importantly, we are mainly interested in compar-
ing the concepts, therefore we did not vary any of the
visual attributes like font size or style. In particular, dif-
ferences resulting from the font’s typeface have not been
evaluated. Lund showed in his meta-analysis that there
are no significant legibility differences between serif and
sans serif typefaces [25].

Chunk-Size Testing A question was raised whether
the chunking of a hexadecimal string plays a greater role
in comparison to the different approaches. Thus, in addi-
tion to the main experiment testing different representa-
tion types, we conducted a second experiment with new
participants testing different chunk sizes for the hexadec-
imal representation. Here, we used chunk-sizes ranging
from 2 to 8 in addition to “zero-chunk size” (8 cases).
The zero-chunk size means that no spaces have been in-
cluded. To make the results more comparable, we opted
for a similar design as done in the major experiment, i. e.,
we required the same amount of comparisons, used the
same font settings, and had the same amount of attacks.
For each participant, we assigned 4 out of 8 different
chunk-sized randomly. Same as in the major experiment,
all participants had to compare 46 fingerprints whereas
the first 4 are considered as training comparisons, 4 at-
tacks (one for each chunk size), and 2 control attacks
with obviously distinct fingerprints.

The major experiment is followed by a survey fo-

cusing on self-reported user perception and opinions
about the different approaches. This is the main reason
we opted to compare as much as possible in a within-
groups fashion and only selected a small number of con-
ditions in total. Since users might not notice the dif-
ference between the various dictionary or alphabet ap-
proaches, we designed a mixed factorial design where
the users would only get one of the alphabets/dictionar-
ies (between-subjects) but they would test all different
high-level systems (within-group) as depicted in Table 2.
The between-group conditions have been assigned ran-
domly with a uniform distribution. Since participants
from our pre-study had difficulties to distinguish the dif-
ferent chunking approaches, we skipped the survey part
in the chunk-size experiment.

4.3.2 Online Survey

The experiment was followed by an online survey gath-
ering self-reported data and demographics from partic-
ipants. To measure perception, we asked the partici-
pants whether they agreed with statements discussed in
subsection 5.2 on a 5 point Likert scale: from strongly
disagree to neural strongly agree as shown in Figure 4.
Participants had to rate each representation type for all
statements. Since users might not distinguish the differ-
ent representation schemes, we provide an example from
their previously finished task.

4.3.3 Statistical Testing

We opted for the common significance level of α = 0.05.
To counteract the multiple comparisons problem, we use
the Holm-Bonferronicorrection for our statistical signif-
icance tests [18]. Consequently, all our p-values are re-
ported in the corrected version.

We test the comparison duration with the Mann-
Whitney-Wilcoxon (MWW) test (two-tailed). We opt for
this significance test due to a few outliers, consequently a
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Scheme Speed Accuracy Total
mean [s] med [s] stdev p-val fail-rate p-val f-pos fails attacks tests

Hexadecimal 11.2 10.0 6.4 10.44 0.49 50 479 4765
Hexadecimal – Base32 1.0 1.1 0.0 <0.001 −1.94 0.690 −2.09 12 32 269
Hexadecimal – Numeric 0.6 0.5 0.6 <0.001 −4.10 0.048 0.21 −9 −452 −4527
Hexadecimal – PGP −1.8 −1.2 −1.0 <0.001 −1.65 0.690 −0.01 11 35 340
Hexadecimal – Peerio 2.5 2.7 0.8 <0.001 −4.69 0.048 0.08 22 −8 −91
Hexadecimal – Sentences −1.1 −0.7 −0.6 <0.001 −7.45 <0.001 −0.99 22 −457 −4518

Base32 10.2 8.9 6.4 8.50 2.58 38 447 4496
Base32 – Hexadecimal −1.0 −1.1 −0.0 <0.001 1.94 0.690 2.09 −12 −32 −269
Base32 – Numeric −0.4 −0.6 0.6 <0.001 −2.16 0.404 2.30 −21 −484 −4796
Base32 – PGP −2.8 −2.3 −1.0 <0.001 0.28 0.714 2.08 −1 3 71
Base32 – Peerio 1.5 1.6 0.8 <0.001 −2.75 0.404 2.17 10 −40 −360
Base32 – Sentences −2.1 −1.8 −0.6 <0.001 −5.51 <0.001 1.10 10 −489 −4787

Numeric 10.6 9.5 5.8 6.34 0.28 59 931 9292
Numeric – Hexadecimal −0.6 −0.5 −0.6 <0.001 4.10 0.048 −0.21 9 452 4527
Numeric – Base32 0.4 0.6 −0.6 <0.001 2.16 0.404 −2.30 21 484 4796
Numeric – PGP −2.4 −1.7 −1.6 <0.001 2.45 0.404 −0.22 20 487 4867
Numeric – Peerio 1.9 2.2 0.2 <0.001 −0.59 0.714 −0.13 31 444 4436
Numeric – Sentences −1.7 −1.2 −1.2 <0.001 −3.35 0.004 −1.20 31 −5 9

PGP 13.0 11.2 7.4 8.78 0.50 39 444 4425
PGP – Hexadecimal 1.8 1.2 1.0 <0.001 1.65 0.690 0.01 −11 −35 −340
PGP – Base32 2.8 2.3 1.0 <0.001 −0.28 0.714 −2.08 1 −3 −71
PGP – Numeric 2.4 1.7 1.6 <0.001 −2.45 0.404 0.22 −20 −487 −4867
PGP – Peerio 4.3 3.9 1.8 <0.001 −3.03 0.337 0.09 11 −43 −431
PGP – Sentences 0.7 0.5 0.4 <0.001 −5.79 <0.001 −0.98 11 −492 −4858

Peerio 8.7 7.3 5.6 5.75 0.41 28 487 4856
Peerio – Hexadecimal −2.5 −2.7 −0.8 <0.001 4.69 0.048 −0.08 −22 8 91
Peerio – Base32 −1.5 −1.6 −0.8 <0.001 2.75 0.404 −2.17 −10 40 360
Peerio – Numeric −1.9 −2.2 −0.2 <0.001 0.59 0.714 0.13 −31 −444 −4436
Peerio – PGP −4.3 −3.9 −1.8 <0.001 3.03 0.337 −0.09 −11 43 431
Peerio – Sentences −3.6 −3.4 −1.4 <0.001 −2.76 0.075 −1.07 0 −449 −4427

Sentences 12.3 10.7 7.0 2.99 1.48 28 936 9283
Sentences – Hexadecimal 1.1 0.7 0.6 <0.001 7.45 <0.001 0.99 −22 457 4518
Sentences – Base32 2.1 1.8 0.6 <0.001 5.51 <0.001 −1.10 −10 489 4787
Sentences – Numeric 1.7 1.2 1.2 <0.001 3.35 0.004 1.20 −31 5 −9
Sentences – PGP −0.7 −0.5 −0.4 <0.001 5.79 <0.001 0.98 −11 492 4858
Sentences – Peerio 3.6 3.4 1.4 <0.001 2.76 0.075 1.07 0 449 4427

Table 3: Our experiment results showing the differences between the representation schemes. The top rows of each row group
separated by a rule, show the raw performance of a baseline scheme, followed by italic rows showing a direct comparison delta.
Greyed-out values are not backed by statistical significance. The columns fail-rate (undetected attacks) and false-pos (same string
rated as an attack) display percentage values.

slightly skewed normal distribution, and a large amount
of collected data. The common language effect size is
shown by mean and median comparisons [26].

The attack detection rate is tested with a pairwise
Holm-Bonferroni-corrected Barnard’s exact test (Exakt
package in R) achieving one of highest statistical power
for 2x2 contingency tables [2].

Survey ratings are, again, tested by using the MWW
significance test (two-tailed test). As has been shown in
previous research [9], it is most suitable for 5-point Lik-
ert scales, especially if not multimodal distributed as in
our survey results. In case two fingerprint representation
schemes are statistically tested against each other, only
participants encountering both schemes were considered.

5 Results

In this section, we present our results: our online study
with 1047 participants has been conducted in August and
September 2015. The study for testing the chunk size has
been conducted in February 2016 with 400 participants.
Starting with our online experiment evaluation showing
the raw performance of users, we then present user per-
ception results from the follow-up survey. Finally, we
discuss the demographics of our participants.

5.1 Online Experiment
Participants who have not finished all comparisons or
failed the attention tests were excluded from our eval-
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Scheme Speed Accuracy Total
mean [s] med [s] p-val fail-rate p-val false-pos fails attacks tests

Hexadecimal (4) 12.3 10.4 6.78 0.38 16 236 2360
hex (4) – hex (0) −2.4 −2.6 <0.001 0.33 1.000 −0.28 −2 −17 −170
hex (4) – hex (2) −0.3 −0.9 <0.001 1.37 1.000 0.00 −3 3 30
hex (4) – hex (3) −0.3 0.1 0.362 −0.64 1.000 0.09 2 8 80
hex (4) – hex (5) −1.4 −1.2 <0.001 1.01 1.000 −0.40 −2 5 50
hex (4) – hex (6) −1.9 −1.8 <0.001 2.43 1.000 0.09 −5 8 80
hex (4) – hex (7) −1.7 −1.8 <0.001 3.35 1.000 0.19 −8 −1 −10
hex (4) – hex (8) −2.8 −3.2 <0.001 1.35 1.000 −0.12 −4 −10 −100

Table 4: Comparison of the chunking experiment results showing the differences between the representation schemes. The top row
shows the raw performance of the hexadecimal scheme with a four-character chunking, followed by italic rows showing a direct
comparison delta. Greyed-out values are not backed by statistical significance. The columns fail-rate (undetected attacks) and
false-pos (same string rated as an attack) display percentage values.

uation: all participant compared 46 security codes in a
randomized order, whereas 40 (10 of each scheme) were
considered in the evaluation. The four training samples
and the control questions are excluded. Few comparisons
done in less than 2 seconds and more than one minute
have been excluded. The reason for such can either be
multiple clicks during the page load, or external inter-
ruptions of the participants. None of the attack could be
successfully detected in under 4 seconds.

Our experiment results, summarized in Table 3, show
the raw performance of all schemes regarding their
speed, accuracy and false-positive rate. The top rows of
each row group, separated by a rule, show the raw perfor-
mance of a representation scheme as baseline (negative
values indicate lower values than the baseline). The fol-
lowing rows show a direct comparison delta between be-
tween two schemes. The speed column group consists of
the mean and median (in seconds), the standard deviation
and the according p-values for a direct comparison. The
fail-rate column shows the rate of the undetected attacks
with the according p-values for a direct comparison. The
total column group simply shows the total numbers of
tests, attacks and undetected attacks.

The results show that the average time spent on com-
parisons plays only a minor role among the schemes:
4.3s difference between the best and the worst scheme.
Note that the Peerio word-list scheme performed best
with 8.7s mean whereas the PGP word list performed
worst with 13s mean (p < 0.001).

However, there is a clear effect regarding the attack de-
tection rate (see Table 3). All alternative key-fingerprint
representations performed better than the state-of-the-
art hexadecimal representation, where 10.1% of attacks
have not been detected by the users. Previous work
shows similar numbers for Base32 [19]. To our surprise,
the numeric approach performs better in both categories:
it features an attack detection rate of 93.57% (p < 0.01)
and an average speed of 10.6s (p < 0.001). Generated
sentences achieved the highest attack detection rate of

97.97% with a similar average speed as the hexadecimal
scheme. On the downside, this scheme has produced a
slightly higher false-positive rate. We found that the false
positives occurred mostly with longer sentences where
there has been a line break on the phone mock-up due
to portrait orientation. This is a realistic problem of this
system if used with portrait orientation and not a problem
with our mock-up in itself. Improvements on making the
sentences shorter could mitigate this situation.

Chunk-Size Experiment

Table 4 summarizes the results of our secondary chunk-
size experiment. As can be seen, no statistically signif-
icant results have been achieved for the attack detection
fail-rate (undetected attacks by end users). However, we
observed that the chunk sizes with 3 and 4 characters per-
formed best in speed, even though the effect sizes were
minor: only 3.3 seconds difference with similar standard
deviations between the best and worst chunk size setting.

Firstly, we notice that despite the same attack strength
as in our major experiment, participants were able to de-
tect more attacks. We suspect that the higher attack de-
tection rate is based on (1) a higher learning effect due
to the same scheme for all comparisons and (2) in con-
trast to our major study, participants had a slightly higher
drop-out rate and thus only more motivated participants
were considered. This is supported by the numbers in the
total tests column of Table 4: here, we can see that for
the zero-chunking and chunking with 8 characters less
tests have been performed. This is based on the fact that
although the chunk sizes have been assigned almost uni-
formly, participants assigned with harder chunk settings
often dropped out before even finishing their entire task.

More importantly, our results also support the claim
from our pre-study: The chunking parameter in hexadec-
imal strings plays only a minor role in the attack detec-
tion fail-rate.
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Figure 5: Aggregated survey results for statement rating regarding the usability and trustworthiness.

5.2 Online Survey
To measure the usability and trustworthiness of all rep-
resentation schemes, we asked our participants whether
they agreed with the following statements:

S1 The comparisons were easy for me with this method

S2 I am confident that I can make comparisons using this
method without making mistakes

S3 I think making comparisons using this method would
help me keep my communications secure

S4 I was able to do the comparisons very quickly with
this method

S5 I found this method difficult to use

S6 Overall, I liked this method

We mixed positive and negative statements, e. g., S1
and S5, to create a more robust measure. S6 is used to
calculate the overall ranking of the different representa-
tion schemes.

Figure 5 shows the aggregated results where the us-
ability statements are grouped to one usability feature
and the trustworthiness derived from the rating on the
statement S3. Negative statement ratings have been in-
verted for a better comparison. Figure 6 shows the rating
results for each specific statement in the survey. The or-
der of the tested schemes has been chosen randomly, but
was kept consistent across all statements. Same as in
our online experiment evaluation, the pairwise statistical

tests are Holm-Bonferroni corrected. In case of a direct
statistical test between two schemes, only users encoun-
tering both schemes have been considered. All in all, the
usability perception of the participants is almost consis-
tent with the performance results from the experiment.

To measure the perception of the task difficulty, we
asked the participants whether they agreed with the state-
ments S1, S2 and S3 respectively. As illustrated in Fig-
ure 6 in the Appendix A, the effect size between the dif-
ferent approaches is low. However, the participants were
more likely to agree that language-based representation
schemes are easier to use. For instance, we see that in
comparison to the alphanumeric schemes (average rat-
ing of 3.4), word list (average rating of 3.9, p < 0.001)
and generated sentence schemes (average rating of 4.2,
p < 0.001 ) are rated to be easier by our participants (S1,
S5). While the experiment results of the sentence genera-
tors clearly outperformed all other approaches, they also
were rated better by the participants. Same applies for
the low-performing hexadecimal and Base32 schemes
which clearly received lower ratings. Consistently with
the surprising performance results in the experiment, the
numeric scheme is also considered to be easier by many
participants: average rating of 3.9 and p < 0.001.

The sentence generator scheme achieved the highest
user confidence rating “making comparisons without any
mistakes” (S2, p < 0.001 for all pairwise comparisons).
The participants’ perception is consistent with the ex-
periment results where the word-list-based and sentence
generator schemes lead to higher attack detection rates.
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The ratings for S4 illustrate that more complex repre-
sentation schemes from the user’s point of view, such as
hexadecimal and Base32, are considered to be more se-
cure by participants, even though all approaches provide
the same level of security.

5.3 Demographics
A total of 1047 users participated in the online study
while only 1001 have been considered in the evaluation
due to our two control questions. Out of the evaluated
participants, 534 participants were male, 453 were fe-
male, 4 chose other while the rest opted to not give any
information. No significant difference between genders
could be found, with a subtle trend of a higher accuracy
for women and higher speed among men. The median
age was 34 (34.4 average) years, while 34 participants
chose not to answer (no statistically significant differ-
ences between ages).

A total of 39 people reported to have “medical con-
ditions that complicated the security code comparisons
(e. g., reading disorders, ADHD, visual impairments,
etc.)” with a slightly higher undetected attack rate (sta-
tistically insignificant due to small sample size and thus
low statistical power).

The majority of the participants stated to have a Bach-
elor’s degree (399 of 1047) as their highest education
whereas 34% chose not to answer. 931 participants have
started our HIT but stopped early during the experiment
(mostly after the first few comparisons). 160 users re-
ported the general task to be annoying.

6 Discussion

The results of our study show that while there are subtle
speed variations among all approaches, the attack detec-
tion rate and user perception for the current state-of-the-
art hexadecimal key-fingerprint representation is signif-
icantly lower than those of most alternative representa-
tion schemes. Language-based representations (with the
exception of the PGP word list) show improved user be-
haviour leading to a higher detection rate of attacks. To
improve the usability of key-fingerprints, we propose the
following takeaways based on our study results.

6.1 Takeaways
Our results show that all representation schemes achieve
a high accuracy (high attack detection rate) and can be
performed quickly by users. As expected, language-
based fingerprint representations are more resilient
against attacks (higher attack detection rate) and achieve
better usability scores. Among all conditions, alphanu-
meric approaches performed worse and have been out-

performed. For instance, the numeric representation was
more suitable than hexadecimal and Base32. The raw
performance results suggest a similar speed for the nu-
meric representation with a higher attack detection rate,
and it also has received better usability ratings from end-
users.

Our chunking experiment has shown that chunk-sizes
play only a minor role in improving attack detection rates
(we could not find statistically significant differences).
However, if a hexadecimal representation is used chunks
of 3 and 4 characters perform best.

As shown by the word list representations, the compar-
ison speed can be increased by larger dictionaries leav-
ing room for improvement in this area. Even though all
representation schemes provide the same level of secu-
rity, exotic looking solutions are considered to be more
secure by end users.

6.2 Limitations

Most importantly, our study design does not test whether
end users are actually willing to compare any finger-
prints in practice. We only aim to study how easy differ-
ent representations are to compare from the users’ point
of view.

As with any user study conducted with MTurk, there
is concern about the external validity of the results: users
in the real world might show different behaviour. This
is mainly because of two reasons: (1) in practice finger-
print comparisons will seldom occur in a such frequency,
and (2) when performed in practice play a more impor-
tant role than just participating in an anonymous online
study. Additionally, MTurkers have been shown to be
more tech-savvy and are better in solving textual and vi-
sual tasks in comparison to the average population. Thus,
they could have performed better in most of the compar-
ison conditions than the average population. It is also
known that some MTurkers just “click through” studies
to get the fee and thus distort study results. Our coun-
terbalanced study design with included control questions
and statistical significance tests mitigate this effect. For
instance, we excluded 46 out of 1047 participants from
our main study part based on these questions being an-
swered incorrectly.

Due to the within-group part of our factorial design,
many parameter choices such as different fonts, font
sizes, attack rates, etc. could not be considered. These
are, however, interesting avenues for future work. As
shown in our additional chunking experiment, another
challenge in testing different parameters is the high at-
tack detection rate, where subtle changes would require
a high amount of users to produce statistically significant
results.

Due to the anonymous nature of online studies, it is
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also impossible to reliably tell which languages a partic-
ipant is fluent in. We specified that we only wanted par-
ticipants from English-speaking countries, however we
had no way of checking compliance except by relying
on self-reported data. Language-based representation ap-
proaches might induce additional barriers for non-native
speakers, e. g., due to unknown or unfamiliar words.

7 Conclusion and Future Work

We evaluated six different key-fingerprint representation
types with regards to their comparison speed, attack de-
tection accuracy and usability, which encompasses at-
tack detection but also resilience against human errors
in short-term memory. An online study with 1047 partic-
ipants was conducted to compare numeric, alphanumeric
(Hexadecimal and Base32), word lists (PGP and Peerio),
as well as generated sentences representation schemes
for key-fingerprint verification. All fingerprint represen-
tations were configured to offer the same level of security
with the same attacker strength.

Our results show that usage of the large word lists (as
used in Peerio) lead to the fastest comparison perfor-
mance, while generated sentences achieved highest at-
tack detection rates. In addition, we found that additional
parameters such as chunking of characters plays only a
minor role in the overall performance. The widely-used
hexadecimal representation scheme performed worst in
all tested categories which indicates that it should be re-
placed by more usable schemes. Unlike proposals which
call for radically new fingerprint representations, we
studied only textual fingerprint representations, which
means that the results of our work can be directly applied
to various encryption applications with minimal changes
needed. Specifically, no new hardware or complex soft-
ware is required: applications merely need to replace the
strings they output to achieve a significant improvement
in both attack-detection accuracy and usability.

There are various interesting areas of future work.
Firstly, we chose to study only a selected sample from the
design space of fingerprint representations in a within-
subjects design, so we could facilitate a direct compar-
ison between the different classes of fingerprints. Fur-
ther work exploring line breaks, font settings, dictionar-
ies, different attacker strengths, etc. will likely lead to
further improvement possibilities.

While this work shows that there are better ways to
represent key-fingerprints than currently being used, it
does not explore what can be done to motivate more users
to actually compare the fingerprints in the first place.
Follow-up studies to research this important question are
naturally an interesting and vital area of research.
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Figure 6: Survey results for all statement ratings
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