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Security Properties of Gait for
Mobile Device Pairing
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Abstract—Gait has been proposed as a feature for mobile device pairing across arbitrary positions on the human body. Results
indicate that the correlation in gait-based features across different body locations is sufficient to establish secure device pairing.
However, the population size of the studies is limited and powerful attackers with e.g. capability of video recording are not considered.
We present a concise discussion of security properties of gait-based pairing schemes including quantization, classification and
analysis of attack surfaces, of statistical properties of generated sequences, an entropy analysis, as well as possible threats and
security weaknesses. For one of the schemes considered, we present modifications to fix an identified security flaw. As a general
limitation of gait-based authentication or pairing systems, we further demonstrate that an adversary with video support can create key
sequences that are sufficiently close to on-body generated acceleration sequences to breach gait-based security mechanisms.

F

1 INTRODUCTION

W ITH the proliferation of mobile devices and the up-
coming Internet of Things, interaction between these

devices will drastically increase [1]. In particular, smart
textile and digital assistants are to generate dense body area
networks [2]. This is extended by spontaneous pairings to
other devices in the context of use [3]. In such environment
where device pairings raise by nwith each n+1st additional
device, and device count and type changes on a sub-day
schedule, manual pairing is impractical. Implicit pairing
has been proposed e.g. based on acceleration [4], audio [5],
magnetometer [6] and RF features [7]. Especially gait [8] is
well suited in wearable settings as it is confined to a single
person and can be read out at arbitrary body location [9].

Gait-based pairing schemes [10] (extended in [11]), [12],
[13], [14] (extended in [15] ), [16] share the common goal to
protect against Man-in-the-Middle (MitM) attacks, where an
attacker actively places herself between devices to modify
intercepted communication. In contrast to other schemes
such as Bluetooth Secure Simple Pairing (SSP) that typi-
cally requires the comparison of PINs, gait is leveraged for
automatic MitM protection. However, no concise study of
the security properties of quantization approaches for gait-
based pairing has been presented to-date.

We close this gap by providing a comprehensive clas-
sification of attack surfaces for gait-based pairing and au-
thentication. We analyse four recent quantization schemes
covering protocol-specific attacks and potential security
weaknesses, as well as distribution, statistical and entropy
analysis of key sequences. Finally, we show that a sophisti-
cated adversary using video can break gait-based pairing if
executed in real-time. Our contributions are
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• a concise investigation and comparison of popular
quantization schemes for gait-based device-pairing,

• a comprehensive discussion of attack surfaces,
• an entropy, pattern and statistical analysis,
• an improved quantization for one of the approaches

to mitigate an identified security weakness,
• the first ever empirical demonstration that video

poses a significant threat to gait-based security.

We first introduce technical details of the four quantiza-
tion schemes and their performance on a common dataset
(Section 3). Then, to spot conceptual flaws, we analyse prop-
erties of generated keys in terms of bit distribution and sta-
tistical tests in Section 4, before identifying scheme-specific
security weaknesses (Section 5). In particular, we consider
the one-shot success probability, quantization-specific at-
tacks, effects of error correction on security properties, gait
mimicry, as well as, impersonation via video recording. In
Section 6, we suggest improvements for specific schemes.
Our work concludes in Section 7 with the main quantization
differences and discusses the most promising scheme.

2 RELATED WORK

We first discuss gait recognition approaches, before summa-
rizing recent progress in gait-based authentication and gait-
based pairing. In the remainder of the discussion, we then
focus on using acceleration sequences from natural gait for
device pairing.

2.1 Gait Recognition
Traditionally, gait recognition has been applied exploiting
machine vision [17], [18], [19], [20]. Systems then comprise
one or multiple cameras to capture natural gait and contain
image recognition steps including background subtraction,
feature extraction and recognition [21]. First work goes back
to perception experiments on light point displays conducted
in [22]. This work was further developed in [23] with
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computer vision approaches to recognize people from gait.
In preceding years drastic improvements have been made
in gait recognition algorithms [24], [25]. Gait recognition
approaches can be grouped into (1) temporal alignment-
based, (2) static parameter-based and (3) silhouette shape-
based approaches [19]. From these, [26] found that shape is
more significant for person identification than kinematics.

Temporal alignment-based approaches emphasize both
shape and dynamics and first extract silhouette features
before aligning sequences of these e.g. with temporal cor-
relation, dynamic time warping or hidden Markov models.

Static parameter-based approaches exploit gait dynamics
such as stride length, cadence and stride speed [27]. How-
ever, they are least successful for gait-based identification
due to their need for 3D calibration information.

Finally, silhouette shape-based approaches use silhou-
ette shape similarity and disregard temporal information,
often considering averaged silhouettes or treating silhouette
shapes as collection without specific order [19]. For all above
methods, gait recognition can be improved by combining
statistical gait features from real and synthetic templates [18]

Due to the increasing availability of wearable sensors
such as gyroscopes (rotation), accelerometers (acceleration)
or force sensors (force during walking), gait recognition via
such wearable sensors is increasingly investigated [28], [29],
[30], [31], [32], [33], [34]. In these approaches, acceleration
sequences are recorded from various body locations, most
prominently at the waist. The acceleration signal is then
denoised e.g. by applying wavelet transformation [33] and
changes in walking speed are mitigated utilizing dynamic
time warping [35] or similar approaches. Individual steps
are identified from the resulting signal by searching for
minima and by applying pattern or template matching [33].
Similarity can be estimated by the computation of cross-
correlation [31]. Alternatively, machine learning classifiers
are trained and applied [30].

Finally, a recent technique employed to acquire human
gait is to monitor phase changes of an electromagnetic signal
reflected from a subject walking towards a transceiver [36],
[37]. The authors exploit changes in channel state informa-
tion (CSI) from WiFi devices for the detection of gait. After
generating spectograms from CSI measurements, similar to
Doppler radars, and applying autocorrelation on the torso
reflection to remove imperfection in these spectrograms, gait
patterns are extracted.

Note that frequently, sensors installed in the floor such as
pressure sensing mats are also mentioned as modalities for
gait recognition [38], [39]. However, in these cases, not gait
itself is extracted but other features such as footprints [39],
ground reaction force [40] or heel-to-toe ratio [41].

2.2 Gait as a Biometric Pattern for Authentication
Biometric authentication systems comprise sensors convert-
ing analog stimuli to digital input that can then be quantized
and compared to a database of previously stored biometric
features. Gait as a discriminating feature was first studied
in [22], [42]. It has been realized that characteristic features
in gait enable identification of subjects also in larger gait
databases [43], [44], [45], [46]. In addition, multiple studies
have demonstrated that the success probability of an im-
poster trying to mimic a subjects gait are low [47] even when

TABLE 1: Attacks on gait-based wearable authentication systems

Paper Applications Attacking

Muaaz et al. [8] Gait recognition Active imposter (imitation),
20% EER

Xu et al. [14] Device pairing Active imposter (imitation),
passive imposter, MitM

Kumar et al. [53] Gait recognition Treadmill attack
Trippel et al. [54] Injection of false

acceleration
Poisoning acoustic injection at-
tack

Derawi et al. [49] Active imposter, 20% EER, signif-
icant random success probability

Mjaland et al. [55] Gait biometrics Active long-term trained impos-
tors

Stang [56] Gait biometrics Training impostors with continu-
ous visual feedback

trained professionals with similar physical characteristics
are employed [8]. For instance, Hoang et al. [48] generated a
key fingerprint from the difference of a mean gait spanning
the complete population to the individual’s mean gait. In
this way, the authors assured that the resulting sequence is
well balanced and uniformly distributed. A good overview
on gait-based user authentication is provided in [49], [50].

However, despite studies asserting that gait can be used
as biometric feature [32], [51], [52], we remark that there
is a lack of studies investigating the security features and
entropy of gait as an authentication mechanism.

Several attacks though have been considered (cf. Ta-
ble 1). For instance, Mjaaland et al [55] trained seven in-
dividuals to imitate one specific victim. Even after intensive
training over two weeks (5 hours every day), it was not
possible for the subjects to accurately imitate the walking
pattern of the victim. Also, the provision of continuous
visual feedback did not suffice to assist imitators in [56].
Furthermore, the authors of [47] investigated the success
probability of an attacker towards a particular subject on a
database of 100 subjects and concluded that it is unlikely
for an adversary to mimic the subjects gait with sufficient
accuracy. This result has been confirmed by [8] who em-
ployed professional actors to mimic the gait of 15 subjects
with close physical properties. Indeed, the attempt to mimic
gait incorporates the risk of asymmetric gait cycles and thus
even lowers the chance of success. However, as indicated
in [47], the probability of random matches significantly
exceeds the expected probability in the birthday paradox.

This means that an attacker with knowledge of the
template database can select persons that are close to him
in terms of similarity as suitable victims. This poses a
serious threat to gait-based authentication in general. This is
confirmed in [49], [57] who report an equal error rate (EER)1

of 20% for gait authentication. In addition, given the gait
features of the victim and exploiting a treadmill to control
speed, length of steps, thigh lift, hip movement and width
of steps, the authors in [53] could reach a false acceptance
rate (FAR) of 46.66%.

In addition, the high accuracy of video-based gait recog-
nition systems also empowers an adversary to generate a
database of gait information on multiple subjects unno-
ticed. Video-based attacks on gait-authentication systems
are insufficiently investigated in the literature. In Section 5.5,

1. Equal rates for false acceptance and false rejection
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ShakeUnlock protocol
1) Record acceleration sequences
2) Remove gravity per axis, calculate magnitude

and normalize to [−1, 1]
3) Share magnitude via secure channel

4) Slice magnitude segments; transform to frequency domain
5) Compute pairwise coherence via cross spectral- & power spectral density
6) Calculate the mean over all coherence values
7) Unlock IFF mean coherence exceeds threshold

Candidate Key protocol (SAPHE)
1) Extract features on devices
2) Hash feature values
3) Exchange hashes to iden-

tify matching values
4) When sufficient entropy

collected (matching val-
ues), concatenate matching
values to give secure key.

Walkie-Talkie protocol
1) Agree on heel-strike count. Then, record acceleration.
2) Use ICA for source separation; apply FFT on independent components
3) Low-pass filter (3Hz) in gravity direction (reduce noise and detect local maxima (heel-strikes))
4) Rotate acceleration data using gyroscope to same body coordinate system
5) Low pass filter (10Hz); normalize 3D acceleration to zero mean, unit length
6) Samples ≥≤µ+ ασ are interpreted as 1/0 where µ and σ are computed per window
7) Matching samples chosen define key. IFF ≤ 0.5 + ε overlap, abort (counter impersonation)
8) XOR sequences between consecutive windows to obtain keys, axes are interleaved.

BANDANA protocol
1) Collect acceleration readings from the z-axis
2) Correct rotation wrt gravity (gyroscope)
3) Bandpass between 0.5Hz and 12Hz
4) Resampling (40 samples/gait) and gait detection
5) Compute mean gait

6) Difference between mean and instantaneous gait translates
to binary sequence

7) Calculate reliability of bits, disregard least reliable
8) Share reliability ordering & create fingerprint
9) Fuzzy cryptography: Get key from fingerprint

Inter-Pulse-Interval (IPI) protocol
(1-4) Analog to the BANDANA Protocol

5) Detect left/right-foot-flat peaks from acceleration
6) IPIgray = Graycode

(⌊
IPI

m·1000/fs
mod 2q

⌋)
7) Obtain key as first k bits in IPIgray

Fig. 1: Description of acceleration-based device-pairing protocols

we demonstrate that a sophisticated adversary with video
support can estimate gait sufficiently accurate in order to
break gait-based authentication and pairing schemes.

We conclude that gait-based authentication faces serious
security threats and gait appears not feasible as sole basis for
authentication, especially in systems where the adversary
is targeting not a specific but any subject in the system.
Furthermore, gait changes over time [21] and is affected by
clothing, footwear, walking surface [17], walking speed [21]
and emotion [58]. These effects are insufficiently studied and
render gait-based authentication a challenging undertaking.

2.3 Acceleration-Based Pairing of Devices

Device pairing protocols execute quantization on one or
more devices at the same time to generate similar bit se-
quences. In contrast to user authentication, these sequences
are not matched against a template database. Instead they
are used to authenticate a key agreement between all partic-
ipanting parties. Recently, several authors have considered
acceleration or gait for the pairing of devices co-present on
the same body [57], [59], [60]. In particular, these approaches
exploit correlation in acceleration signals when devices are
worn on the same body [61], [62] or shaken together [4], [63].
Note that, in contrast to exploiting gait for authentication,
the existence of a unique and reproducible biometric gait
sequence is not required for these approaches. Instead,
the protocols exploit instantaneous, correlated acceleration
sequences that can not be re-used at different time as the
system can be restricted to single attempts [10]. The above
described weaknesses for gait as biometric pattern therefore
do not apply. Instead, the strength of the pairing approach
is conditioned on the quantization used, what entropy that
approach can guarantee and whether or not it leaks infor-
mation to a powerful (realistic) attacker.

In [4], [63] the ShakeUnlock protocol is presented to
unlock a mobile device when it is shaken simultaneously

with a smartwatch. The individual steps of this protocol
are briefly described in Figure 1. This approach requires
the direct comparison of acceleration sequences in order
to compute correlation and therefore needs an established
secure channel to exchange this information.

However, other approaches that do not require an al-
ready established secure connection have been proposed
recently. For authentication based on arbitrary co-aligned
sensor data, Mayrhofer [64] proposes the candidate key
protocol. An advanced variant that solves the known issue
of low-entropy input data is implemented in SAPHE [13].
It interactively exchanges hashes from feature sequences as
short secrets and concatenates the key from the secrets with
matching hashes (cf. Figure 1).

Walkie-Talkie, an alternative approach conditioned on
correlated acceleration sequences from a person’s gait, is
presented in [14]. The authors achieve a high bitrate by
using individual samples for key bits if they deviate by at
least α standard deviations from the mean (cf. Figure 1).

An extended version has been published as Gait-Key [15]
providing a higher bitrate by applying multiple thresh-
olds. Walkie-Talkie and Gait-Key use the acceleration values
along gravity, walking and sideways direction. In another
scheme by the same authors, movement on all three axis is
used as a random source to generate a group key [16]. This
group key is locked in a fuzzy vault using a secret set based
on the acceleration along gravity only (cf. Walkie-Talkie).
Other wearables can unlock the vault using a secret set,
sufficiently similar to the original one, to retrieve the group
key. When an attacker intercepts the locked fuzzy vault the
security of this scheme solely depends on the secret set.

The BANDANA protocol [10] exploits acceleration along
the z-axis only and conditions the gait fingerprint on the
difference between instantaneous gait and mean gait at
that body location. It thereby achieves normalization among
acceleration sequences across body locations. Remaining
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Fig. 2: Descriptive examples for the evaluated quantization schemes

dissimilarities in fingerprints are corrected with fuzzy cryp-
tography exploiting BCH codes (cf. Figure 1).

In an extended version [11], the required key length has
been reduced to 16 bit by using a Password Authenticated
Key Exchange (PAKE).

Recently, the Inter-Pulse-Interval (IPI) between consec-
utive steps has been exploited for secure key generation
from gait [12]. The protocol exploits the acceleration along
the z-axis and concatenates the key sequence as gray-coded,
scaled and rounded IPIs. As reported in [12] (cf. Table 2 in
Section 5.1) the security and inter-class similarity depends
on the speed of consecutive steps and steplength. The pro-
tocol was verified on gait captured from devices on the torso
of subjects (lower back, upper right arm and right ear).

The quantization methods in these approaches diverge
and result in different properties of the generated binary
fingerprints, as described in Section 3.

An attack on acceleration-based pairing is described
in [54]. An active adversary emitting modulated acoustic
interference at the resonant frequency of materials in MEMS
sensors can control or modify measured acceleration, and
thus inject changes to acceleration sequences.

3 COMPARISON OF QUANTIZATION SCHEMES

A crucial part in gait-based pairing is the quantization used.
It has to preserve a high similarity between generated keys on
different body parts, and generate sufficiently unpredictable
bit sequences for the use as cryptographic keys that with-
stand a computationally unconstrained adversary.

In this section, we analyze the quantization of SAPHE,
Walkie-Talkie, BANDANA and IPI and describe their work-
ing principles along Figure 2. In particular, we study the

similarity of keys generated for pairs of devices on different
body locations. Additionally, we evaluate how they fulfill
the first requirement, i.e. to generate keys with high similarity
between different locations on the same body (intra-body)
and no similarity between different bodies (inter-body).

All quantization schemes have been analyzed using
walking data recorded in [65]2, pre-processed by Madg-
wick’s algorithm to correct accelerometer orientation. Each
quantization scheme generated keys from same length
walking data. Due to the protocols’ different efficiency, key
length may vary across schemes. The performance of the
schemes to withstand adversaries is discussed in Section 4.

3.1 SAPHE

In the SAPHE [13] protocol, after generating and exchanging
the hash H(rA) (H(rB)) of the random seed rA (rB) to com-
pute threshold values tA (tB), as points in an Acceleration-
time coordinate system K, devices derive acceleration se-
quences vA (vB) in K. Challenges cA (cB) that describe
whether tA ( tB) exceed vA (vB) are exchanged together
with rA (rB). The protocol does not disclose information on
the acceleration during this communication.

We remark though, that the authors propose a second
version which leaks information on the acceleration since, in
addition, a distance ordering oA (oB) between tA (tB) and
vA (vB) is exchanged. The purpose of this distance ordering
is to guard against a specific attack on the hash function
(described in [13]). However, an adversary could exploit that

2. The dataset includes 15 subjects, 10 minutes walking each, accel-
eration sensors at 7 different body locations (50Hz) and is available at
http://sensor.informatik.uni-mannheim.de
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(a) SAPHE (b) Walkie-Talkie

Inter-body ~50%

(c) BANDANA (d) IPI

Fig. 3: Comparison of intra-body against inter-body similarity for the evaluated quantization schemes. Each value in the intra-body boxplot is
defined by the similarity of two different sensor locations on the same subject (all possible combinations within each subject). For inter-body, each
boxplot defines a different sensor location. Only different subjects are tested against each other with the same sensor location.

the threshold points tA (tB) with small distance to vA (vB)
are good estimates of actual acceleration samples from vA
(vB). In addition, those threshold points tA (tB) with large
distance to vA (vB) leak information on the probability of
the resulting bit (0 or 1 for larger or smaller threshold).

As depicted in Figure 3a, although affected by outliers,
SAPHE’s generated key pairs match with high probability
of 85% (lower body) to 86,87% (upper body) on average on
devices worn on the same body (intra-body). The inter-body
case matches on average with 55% i.e. is 10% higher than
a random guess. Conclusively, SAPHE is able to generate
keys that fulfill the requirement of a clear boundary between
intra- and inter-body similarity.

3.2 Walkie-Talkie

The Walkie-Talkie protocol [14] is able to extract up to 1 key
bit per acceleration sample.

Acceleration samples are interpreted as 0 or 1 condi-
tioned on whether their acceleration is below or above a
guard band, while samples that fall inside are ignored (cf.
Figure 2b). Walkie-Talkie has also been utilized in [16] to
lock a fuzzy vault containing a random key. The quantiza-
tion is able to achieve higher bit rates by exploiting multiple
thresholds [15]. We further discuss the impact of multiple
thresholds in Section 6.2.

To mitigate hardware originated differences in acceler-
ation strength, devices exchange and agree on samples in
the acceleration sequence that shall constitute the key (rec-
onciliation). The resulting sequence is thought to be biased
towards alternating groups of 1-bits and 0-bits, which is
addressed by applying an XOR between consecutive 30 bit
long windows. We comment on this concern in 2.2.

The protocol achieves 60-70% upper body bit-similarities
and 55-65% for the lower body (cf. Figure 3b). This perfor-

mance suggests further processing to provide reliable pair-
ing among devices at different body location. Walkie-Talkie
uses Independent Component Analysis as a preprocessing
step in order to remove the arm swing (Figure 1).

In our implementation, the transformation to the body
coordinate system was applied following Mohssen et
al. [66]. Walkie-Talkie was then executed using the best
performing parameters as mentioned in [14], such as an
α of 0.8 and non-overlapping windows of size 10. We
did not resample the input data as Walkie-Talkie applies
a low pass filter with a cutoff frequency of 10Hz during
the preprocessing. Independent Component Analysis was
applied on the complete recording beforehand. We decided
to only exclude arm swing components where they were
clearly distinguishable.

3.3 BANDANA

In BANDANA, key sequences are generated as a function
of the difference between mean and instantaneous accelera-
tion [11]. The approach of comparing to the mean at a par-
ticular body location serves as a normalisation procedure.
The offset to the mean has a better correlation across various
body locations than comparing absolute acceleration values.
Furthermore, [67] argues that this approach might positively
impact the distribution of bits in the key sequences towards
uniformity as gait patterns are compared to their mean.
To further amplify similarity of sequences generated at
different body locations, bits with low difference between
mean and instantaneous gait are disregarded.

The similarity between keys generated at different po-
sitions on the body is depicted in Figure 3c for the BAN-
DANA protocol. The protocol achieves similarity results
above 75% for all location-pairs and is able to render the
chances of the adversary (inter-body) to random guess. The
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(a) SAPHE (b) Walkie-Talkie

(c) BANDANA (d) IPI

Fig. 4: Heatmaps of random walks for 128 bit keys generated by the
evaluated quantization schemes (0 → left; 1 → right). The red lines
depict the boundaries for any possible random walk.

protocol employs fuzzy cryptography in order to mitigate
the remaining 25% of difference in the key sequences. We
observe, however, a high variance for the inter-body case,
which is due to a non-uniform distribution of the key
sequences in the key space (cf. Section 4 and Section 5). In
Section 6, we discuss how this problem can be addressed
with a revised quantization approach.

3.4 IPI
The Inter-Pulse-Interval (IPI) protocol [12] exploits the ran-
dom offset by which individual steps deviate from the mean
gait cycle in time domain (cf. Figure 2d). The number of
secret bits that can be extracted from the gait signal then
depends on the sampling frequency as gait cycle estimation
is more accurate with higher sampling rate. The authors
report a standard deviation of 40.8 milliseconds for the IPI.

Figure 3d shows the similarity achieved for IPI between
keys generated from devices located at different positions
on the body. The similarity in the intra-body case is good.
IPI also employs fuzzy cryptography to correct remaining
bit-errors in the keys generated for devices across the same
body. However, the figure also shows that the protocol does
not prevent a remote adversary from paring with on-body
devices, since inter-body similarities are as high as in the
intra-body case. This is due to limited variation in the gen-
erated bit sequences. Inter-pulse intervals resemble a nor-
mal distribution centered around its mean. This variation
around the mean is similar across subjects and the resolution
employed is 4 bits only so that naturally similarity across
generated bit sequences is high (cf. Section 5).

4 RANDOMNESS OF KEYS

In this section we investigate whether these keys are suffi-
ciently unpredictable to withstand a computationally uncon-
strained adversary. For this, we analyze the randomness of
keys and the results from the DieHarder and ENT Pseudo-
random Number Sequence Tests.

4.1 Bit Distribution
To describe the randomness of keys, we compare their struc-
ture with random walks on a Galton board [68]. Plotting a

(a) SAPHE (b) Walkie-Talkie

(c) BANDANA (d) IPI

Fig. 5: Cumulative plot of random walks for 128 bit keys generated by
the evaluated quantization schemes (0→ bottom; 1→ top)

(a) SAPHE (b) Walkie-Talkie

(c) BANDANA (d) IPI

Fig. 6: Cumulative sums distribution for 128 bit keys (distribution in
the last rows in Figure 4). Expected biomial distribution in red.

sufficient amount of these sequences will eventually show a
binomial distribution. Figure 4 shows heatmaps of random
walks corresponding to the sequences generated by differ-
ent quantization approaches. In addition, Figure 5 depicts
each individual random walk such that specific patterns are
observable. Based on the last row of each heatmap, Figure 6
depicts the cumulative sums distribution.

Key lengths of 128 bits are chosen for this study, which
means that the acceleration sequence to generate a key
varies between the different approaches.

SAPHE shows a close-to symmetric distribution centered
around the mean.

The cumulative sums distribution is properly centered
but shows deviations to include more ‘0’s for a specific
set of keys (cf. Figure6a). We explain this with the charac-
teristic of acceleration readings in our data, which do not
necessarily have zero-mean. With regard to the binomial
distribution (depicted in red), SAPHE’s key distribution
is slightly stretched. Thus, while SAPHE shows good be-
haviour regarding similarity and usage of space in the
Galton board, it carries some characteristics of the input
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Fig. 7: Markov property: Probability of assigning 1 for the nth position
in 128 bit keys

into the output data. Still, this does not pave the way for
a successful attack. Assuming each bit position to be a state
in a Markov chain, Figure 7 shows the resulting transition
probabilities, aggregated over all sequences. SAPHE shows
a good Markov property (cf. Figure 7).

The heatmap and distribution of Walkie-Talkie are de-
picted in Figure 4b and Figure 6b. The individual sequences
do not show a bias (cf. Figure 5b). Walkie-Talkie, however,
shows periodicity in the Markov property (cf. Figure 7).
The BANDANA approach features symmetric behaviour
but with low variance (cf. Figure 4c, 6c). We can observe
from Figure 5c, that this weakness occurs since bit sequences
consist of repetitive ‘zig-zag’ patterns. We discuss this prob-
lem in Section 5 and propose an improved quantization
to mitigate it in Section 6. BANDANA shows a similar
Markov property as SAPHE (cf. Figure 7). Finally, IPI shows
good variance but a bias towards including more ones than
zeros due to low variation in the quadruples generated as
discussed above. IPI clearly deviates from a binomial dis-
tribution (cf. Figure 6d). We observed that consecutive 4-bit
chunks repeat with a probability of 60%. This clearly shows
in IPI’s Markov property in Figure 7. Summarizing, while
SAPHE and Walkie-Talkie exhibit reasonable randomness,
BANDANA and IPI show biases in the generated keys.

4.2 Statistical Tests

To test the evaluated quantization schemes against bias in
the produced random sequences, we ran the DieHarder
statistical tests for each scheme. Figure 8 depicts the p-
values computed from 20 runs of the DieHarder tests.

In SAPHE, the dna and sts monobit tests appear to be out-
liers. The dna test considers biases in the occurence of 10 let-
ter words from an alphabet of 4 letters, determined by two
designated bits in the sequence of random integers being
tested. The sts monobit test counts the 1 bits in a long string of
random entries and compares this to the expected number.
Similar to SAPHE, Walkie-Talkie also shows a weakness in
the dna test. In addition, the rgb Kolmogorov-Smirnov test falls
out slightly and the 2D sphere test features some outliers.
The kolmogorov-Smirnov test applies a Kuiper KS test [69] and
the 2D circle test finds the minimum distance between pairs
of randomly selected points to evaluate their randomness.
BANDANA shows the most stable distribution of p-values.
A slight bias might be associated with the squeeze test, which
employs a chi-square test for cell frequencies on the number
of multiplication with random integers that are required to
reduce 231 to 1. IPI shows potential weaknesses towards the
birthdays test, the Overlapping Quadruples Sparce Occupancy

TABLE 2: Results for keys generated by the evaluated protocols after
running the ENT Pseudorandom Number Sequence Test Program.

SAPHE Walkie-Talkie BANDANA IPI

Sequence size (bit) 1444864 3040848 113792 456104
Entropy (bits per bit) 0.9999 0.9855 0.9999 0.8929
Optimum compression rate 0% 1 % 0% 10%
Chi square distribution 6.91 61013.17 0.3586 65969.75
Arithmetic mean (random=.5) 0.501094 0.429175 0.5 0.690156
Monte Carlo Pi value (error) 3.122155 3.331471 3.642194 2.056830
Serial correlation coefficient 0.008204 0.055243 -0.644796 -0.002701
(uncorrelated=0.0)

(oqso) test, the 3D sphere test as well as the rgb permutation
and rgb Kolmogorov Smirnov test. The rgb permutation test
counts the order of permutations of random numbers. Birth-
days test determines the number of matching intervals from
512 ‘birthdays’ drawn from a 24-bit ‘year’ while the oqso
test, similar to the dna test, considers 4-letter words from an
alphabet of 32 letters.

Additionally, we ran the Ent Pseudorandom Number Se-
quence Test3. The information density of bit sequences is
computed together with reduction through optimal com-
pression, chi square distribution, arithmetic mean of data
bytes as well as serial correlation coefficient (cf. Table 2). We
caution that these results are only showing the interdepen-
dence of single bits. Evaluating chunk instead of single bit
interdependence, such as 4-bit chunks for BANDANA due
to its 4 bit per gait cycle or 30-bit chunks for Walkie-Talkie’s
privacy amplification, heavily influences the test results.

5 SECURITY ANALYSIS

As shown in the conceptional view in Figure 9, the pairing
schemes follow a general design. Devices measure data,
quantize it to bit strings after pre-processing, apply poten-
tially error correction, and agree on a key.

Protection against MitM attacks is achieved only if all
parts of a system are resilient. Our analysis follows the con-
ceptual aproach proposed in [57], [70]. The discussed attacks
are assigned to attack vectors A-G labeled in Figure 9.

An attack surface is exposed by the sensors (A). A device
owner could be forced to behave in a certain way, e.g.,
by an adversary controlling stride speed with a treadmill.
It could further be possible to bypass data acquisition (B)
and reuse data from the past. With a biased quantization, a
naïve brute force attack would become feasible (C). Some
protocols employ communication before the actual key
agreement (SAPHE: random seed and distance ordering,
Walkie-Talkie: reconciliation, BANDANA: exchange reliabil-
ity indices) which might potentially leak information (D).
After error correction (e.g. in BANDANA and IPI), the key
agreement is executed between both participants. Here, the
risk of a Man-in-the-Middle (MitM) (E) or impersonation
attack (G) must be considered. Finally, the key agreement
could be weak or based on false assumptions, especially if it
is not based on established standards (F). We do not discuss
attack vector B as it assumes a compromised device, which
falls outside the focus of this work.

3. http://www.fourmilab.ch/random/
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5.1 One-Shot Success Probability (E, G)

Without requiring additional knowledge about the victim’s
gait, an attacker may want to exhaust the keyspace C of all
keys k to execute a MitM (E) or impersonation attack (G).
However, in all discussed protocols, after each single try, a
completely new authentication process (new k independent
from the previous one) is started. Thus, it is impossible to
exhaust C, making this a one-shot attack. For comparison
between protocols, we assume the same length of 16 bit for
k. The length of sequences sampled for a target key k of 16
bit may vary depending on the quantization scheme.

Note that 16 bit provide sufficient entropy since we
suggest to implement a PAKE protocol as in [11], which
prevents offline attacks and can thus provide a sufficiently
large security margin even with short key lengths K.

5.1.1 Candidate Key Protocol Variants

The candidate key protocol is, for instance, realized in
SAPHE [13], which resolves its original vunlnerability
against MitM attacks. In particular, first, random challenges
are chosen, as depicted in Figure 2a and committed by
sharing their hashes. Afterwards, the acceleration sequence
is challenged with respect to these random thresholds where
an acceleration point with value lower (higher) than a

threshold is interpreted as 0 (1). The success probability for
a single randomly drawn key k in SAPHE is

1

216
≈ 1.52588 · 10−5 (1)

5.1.2 Walkie-Talkie Protocol

The bits generated in the Walkie-Talkie protocol feature a
high bit rate of 15–55 bits per second as reported in [14]
(Figure 12(e)). However, high agreement rates are reached
only for α > 0.8 (Figure 12(d) and 12(f) in [14]), which
corresponds to 15–25 bits per second. A 16 bit binary key can
therefore be generated in approximately 1 second and the
success probability of an adversary for a single randomly
drawn k is then again 1

216 ≈ 1.52588 · 10−5.

5.1.3 BANDANA Protocol

In the BANDANA protocol, M = 48 bit sequences are
generated in about 12 s. From each sequence, 16 bit are
disregarded for reliability amplification. From the remaining
32 bit fingerprints, up to 8 bit are corrected by BCH codes,
resulting in |k| = 16 bit keys. The success probability of a
single randomly drawn fingerprint is then (cf. Section 5.3)

8∑
k=0

(
32
k

)
/232 =

∑8
k=0

(
32!

(32−k)!·k!

)
232

≈ 0.0035 (2)

5.1.4 IPI Protocol

In the IPI protocol, dependent on the sampling frequency, 2
to 20 secure bits are extracted from each gait cycle (cf. Table I
in [12]). Depending on the sample rate of the accelerometer,
the generation of 32 bits in the IPI protocol might therefore
require from 2 to 16 seconds. Since the protocol also employs
fuzzy cryptography for error correction, the same success
probability as in the BANDANA protocol of 0.0035 applies
for a single randomly drawn fingerprint.
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(a) Walkie-Talkie: Overheared bit positions
during reconciliation are used to generate bit
sequences with similarities higher than 50%

(b) BANDANA: Non-uniform
distribution of 4-bit chunks per
gait cycles

Fig. 10: Increasing one-shot success probability due to bias in sequences

5.2 Quantization-Specific Attacks (C, D)
An attacker with insight to a quantization scheme might be
able to exploit this knowledge in order to boost her one-
shot success probability. We discuss our observations in the
Walkie-Talkie, BANDANA and IPI protocols. For SAPHE,
we did not identify any quantization-specific weakness.

5.2.1 Walkie-Talkie Protocol
As discussed in 3.2, Walkie-Talkie is thought to be biased
towards generating alternating sequences of 1-bits and 0-
bits, which should be mitigated by applying a privacy ampli-
fication. We note that if an adversary were able to reconstruct
the pattern-prone sequence before the amplification step,
she would also be able to compute the amplification-step.

Figure 10a shows key similarities achieved by this
attack when guessed sequences are compared to actual
acceleration-based sequences. However, this only works for
large window sizes. For small window sizes such as 10,
the consecutive runs of indices become very short. Even
worse, they might change signs when running over window
borders, due to the newly computed guard band. Thus, the
concerns about obvious patterns in the generated sequence
are effectively mitigated by a small window size.

5.2.2 BANDANA Protocol
As indicated in Section 3.3, we found that the random suc-
cess probability for the BANDANA protocol exceeds ran-
dom guess. Indeed, as observed in Section 4 (Figure 4c), the
variance in generated sequences is low and, in particular, se-
quences follow specific patterns (cf. Figure 5c). As depicted
in Figure 10b, we found as the reason for this weakness
that in the 4-bit chunks, which are generated per gait cycle
(and before throwing away bits for reliability amplification),
sequences of alternating binary value are significantly more
frequent than others. In particular, sequences 1111 or 0000,
where the instantaneous acceleration constantly exceeds or
deceeds the mean acceleration, are seldom. Consequently,
the distribution of key sequences in the key space is not
uniform, and an adversary could utlilize this knowledge to
launch an attack (C). We propose an approach to mitigate
this problem in Section 6.

5.2.3 IPI Protocol
As discussed in Section 3.4, the IPI protocol suffers from
measurement noise in accurately capturing the inter pulse
interval due to the limited sampling rate of accelerometers.
Especially for lower sampling rates, this significantly re-
stricts the size of the key space. For instance, with 50 Hz

(500Hz) sampling rate, one sample is taken every 20 mil-
liseconds (every 2 ms). Since devices are not synchronized,
this translates to an unavoidable inaccuracy of up to 10ms
(1ms) for the sampled gait on devices (cf. Figure 2d). This
measurement noise, compared with only 40.8ms standard
deviation for the IPI results in a small keyspace and, since
gray codes are employed (modulo 16; q = 4), not all
bits in the generated quadruples change. In particular, we
investigated the variation in 4 bit chunks generated by
the IPI protocol on the walking data from [65]. In about
63% of the consecutive 4 bit chunks, all bits are identical.
Furthermore, in 24% of all cases, just one bit changed,
with 11% 2 bits changed and with only 0.02%, 3 bits were
different. An adversary with approximate information on
the IPI can therefore boost her guessing success probability
significantly beyond chance.

5.3 Benefits and Pitfalls in using Error Correction
In biometric authentication systems, noise of the biometric
information is an intrinsic property (here: measurement
noise in acceleration sensors). Fuzzy cryptography has been
proposed in order to employ error correcting codes to mit-
igate such noise. Error correcting codes encode messages
from a messagespace m ∈M into codewords of the (larger)
codespace c ∈ C introducing redundancies. This process
allows to correct errors introduced to c by decoding it back
to m. In fuzzy cryptography, the biometric information or
fingerprints contain noise or errors that can be corrected
after mapping into C. The redundancy introduced in the
encoding process, however, dictates that an adversary also
does not have to guess all bits in the fingerprint correctly,
but can be sloppy. For instance, assume a key length of K
and an error correcting code able to correct a fraction of u
bits from the total fingerprint length N . This means that the
success probability of a single randomly drawn fingerprint
is not 2N , but instead only

u∑
k=0

(
N
k

)
/2N =

∑u
k=0

(
N !

(N−k)!·k!

)
2N

(3)

since up to u errors are allowed at arbitrary position in
the fingerprint sequence. Careful choice of the parameters
is therefore demanded to limit the advantage gained by an
adversary through the use of fuzzy cryptography.

From the protocols we investigated, BANDANA [11]
and the IPI-protocol [12] employ BCH codes for error correc-
tion. [16] integrates the fuzzy vault design that operates on
order-invariant tuples generated by Walkie-Talkie. The Gait-
Key [15] variant, which is further discussed in Section 6.2,
implements a scheme by Yan et al. [71].

5.4 Gait Mimicry (A)
As recently discussed in [72], it is unlikely that an attacker
would be able to mimic natural gait of a victim to a degree
where gait sequences are sufficiently similar to break gait-
based authentication or pairing schemes. In particular, the
authors employed professional actors to mimic the gait of
victims with similar physical properties (age, weight, height,
shoe size, upper leg length) and showed that after guided
training and instructions, all actors failed to mimic the
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Fig. 11: Experimental setup for video-based attack on gait-based pairing

observed gait of victims. In a second test, by walking next to
a victim one out of five attackers was able though to achieve
sufficient similarity in the gait acceleration sequence. In
particular, the authors assumed that the victim instinctively
adapted her walking speed to the common step pattern with
the adversary. This was, however, not further investigated.

5.5 Impersonation via Video Recording (G)

Cameras are omnipresent in these days, for instance as
CCTV systems, personal camcorders, or mobile phones. The
quality of captured videos is sufficient to discriminate sub-
tle movements. An adversary with camera-support might
therefore be able to extract pairing keys from recorded video
(G). In this section, we investigate the threat of video-based
side-channel attacks. In particular, we consider how accu-
rate acceleration sequences describing gait can be estimated
by tracking movement of body parts from video.

For our experiment, we captured movement of a subject
both by a wearable inertial measurement unit (smartphone)
and with a high-speed camera. The smartphone was at-
tached to one leg. Five subjects (4 male; height: 1.63-1.95m;
µ = 1.76m) walked in a straight line in approximately 8m
distance to the camera (1080p resolution; 90fps) mounted
on a tripod (cf. Figure 11). Acceleration data was sampled
at 50Hz. For synchronization between video and inertial
sensor, a single jump both at the beginning and at the
end framed the walking segment. Each subject conducted
the experiment twice. We utilized Tracker4 to manually
track the location of the smartphone on the recorded video.
Although human pose estimation [73] is able to estimate
leg movements, we achieved higher accuracy by manually
marking the location of the smartphone on the video frames.

For gait-based on-body pairing, the attacker is free to
estimate gait according to the most easy to attack body
location, since the protocols are inherently designed to
pair acceleration sequences from arbitrary body location
pairs. The Spearman’s coefficient (1: perfect monotonically
increasing relationship; 0: non monotonic relationship; -1:
perfect monotonically decreasing relationship) [74] for gait
sequences extracted at waist and shin in the dataset [65]
is 0.44, which reflects their moderate increasing monotonic
association. For instance, correlation between gaits extracted
from these locations can be observed in Figure 12.

From the tracked trajectory we estimated the acceler-
ation of the smartphone. We calculated the velocity in
horizontal and vertical direction before computing the ac-
celeration. The obtained result is smoothed by a Gaussian

4. http://physlets.org/tracker/

Fig. 12: Gait cycles extracted from shin and waist.

(a) Alignment of acceleration se-
quences from smartphone and video

(b) Acceleration sequence augmented

with low noise level (N (µv2 ,
σ2v
4 ))

(c) Acceleration sequence augmented
with video noise level (N (µv, σ

2
v))

(d) Acceleration sequence augmented
with high noise level (N (2·µv, 4·σ2

v))

Fig. 13: Acceleration signals featuring different noise levels

filter to reduce annotation noise. This estimated acceleration
sequence is then re-sampled to match the 50Hz sampling
rate of the inertial sensor. Note that we estimated move-
ment orthogonal to ground since any rotation is implicitly
corrected by the pairing scheme (Figure 13a).

To estimate the pairing performance and noise from
video-extracted acceleration, in the dataset [65], we esti-
mated the mean µv = 2.09215 and standard deviation
σv = 6.0210 of disparity values between optimally synchro-
nized6 gait acceleration sequences (estimated and recorded)
in our experiment. These values were then used as parame-
ters for noise distributions, which we added to the walking
data recorded by the dataset in [65]. We generated Gaussian,
Laplacian, and uniformly distributed noise7.

We then generated noisy acceleration signals with
N (µv, σ

2
v) (noise observed from video-based acceleration

estimation), N (µv2 ,
σ2
v

4 ) (low noise) and N (2 · µv, 4 · σ2
v)

(high noise) as illustrated in Figure 13 for Gaussian additive
noise. Other noise models are treated similar.

Figure 14 details the similarity for intra-body, inter-body,
and video-based acceleration sequences with three noise
levels. We assessed the effectiveness of video-based attacks
on the four quantization schemes. Video-based acceleration
is able to generate fingerprints which are sufficiently close
to the actually recorded acceleration sequence, so that this

5. From the amplitude estimation error due to inaccurate distance
measurement between camera and walking subject.

6. We refined the synchronization between the estimated and
recorded acceleration sequences by shifting both sequences until a
minimum root mean squared error is achieved

7. pn(n) = 1√
πσ2

e
(n−µ)2

−σ2 ; pn(n) = 1√
2σ

e
√

2|n−µ|
−σ ; pn(n) = 1

2
√
3σ
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(a) SAPHE (b) Walkie-Talkie

(c) BANDANA (d) IPI

Fig. 14: Attacks using Video-based impersonation: Similarity of gait-
fingerprints with different noise levels over four pairing schemes

attack can break the gait-based pairing protocol for all three
noise distributions considered. Walkie-Talkie [14] is the most
vulnerable protocol under the video-based attacks. On the
other hand, SAPHE [13] is the most secure protocol against
video-based attacks (cf. Figure 14) .

6 PROTOCOL VARIANTS

In this section, we discuss improvements to SAPHE and
BANDANA as well as a variant of Walkie-Talkie, exploiting
n-ary quantization for higher bit-rate.

6.1 SAPHE
From the pairing schemes considered, SAPHE is the most
promising as it introduces randomness instead of relying
solely on gait-implicit randomness. As a potential improve-
ment to our current implementation with a range of 1g, we
propose to implement a dynamic range. This would prevent
outlier threshold values independent of the acceleration.
Due to SAPHE’s quantization, an attack, where a simple
sinusoidal acceleration signal is artificially generated in
alignment with the heel-strike, might then lead to a good
estimate of the key. We propose to choose the threshold
values as close to the acceleration reading as possible while
still not revealing the actual unique gait features. This could
be achieved by filtering out the dominant gait frequencies.
Finally, instead of using hashed heuristic trees [13], we pro-
pose the usage of extensively studied cryptographic build-
ing blocks, such as fuzzy cryptography and a Password
Authenticated Key Exchange.

6.2 Walkie-Talkie
In [15] Xu et al. present an evolved version of Walkie-Talkie,
called Gait-Key. In contrast to Walkie-Talkie, multiple guard
bands lead to several quantization levels and multiple bits.

We implemented this protocol and used four-ary quanti-
zation with α = 0.9 as recommended in [15]. As a window
size for quantization we chose 50 samples. We applied
reconciliation and privacy amplification as in Walkie-Talkie.
Figure 15 shows the randomness evaluation for Gait-Key.
Similar to Walkie-Talkie, the key distribution is slightly

Fig. 15: Evaluations for Gait Key show an offset towards more zeros.

shifted towards including more zeros. Remarkably, the
Markov property shows periodic behaviour. The reasons
for this are twofold: First, the quantization scheme calls for
normal or equal distribution of acceleration samples. Biased
distributions along a certain axis lead to unequal occurences
of 1’s and 0’s. Due to the privacy amplification, exploiting
XOR, this results in a larger amount of 0’s in the final key
(equal bits are mapped to 0). Second, slicing the acceleration
space into several areas and assigning these with multiple
bits per sample implies that consecutive samples generate
bit sequences from identical or neighbouring areas. Hence,
n-ary quantization achieves an improved, higher bit-rate
but also introduces interdependence between bits while one
guard band delivers the best performance.

6.3 BANDANA

The quantization approach of BANDANA is biased towards
specific patterns which are generated significantly more
often than others (cf. Section 3). A straightforward solution
is to disregard these 4-bit patterns with probability inverse
to their occurrence frequency. However, due to the signif-
icant distortion of the histogram (cf. Figure 10b), this is
not feasible. Since some patterns occur with a frequency of
1% or less, close to all frequent patterns would have to be
discarded to arrive at a balanced random distribution.

Instead, we map each pair of consecutive bits in the gen-
erated key sequence to a single bit (01, 11→ 1, 10, 00→ 0)8.
Figure 17a and 18a show the distribution of bit sequences
after the mapping as well as the heatmap for fingerprints
generated with the modified protocol.

The weakness described in Section 3 could be mitigated,
however, due to the strong unbalancedness, some bias still
remains even after the mapping as depicted in the histogram
in Figure 17b. A further mapping can reduce this bias,
however, this process also increases the time required to
generate a particular key sequences as well as the similarity
for intra-body pairings (cf Figure 16a).

Another solution is to modify the comparison of gait
sequences. The mean gait features an average amplitude
with respect to the instantaneous gait sequences. Also, the
acceleration peaks of the instantaneous gait fall with about

8. This does not leak information since 01 and 10 (11 and 00) are
equally probable due to symmetry in the histogram in Figure 10b
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(a) Mapping approach (b) Normalization approach

Fig. 16: BANDANA improvements: Comparison of intra-body against inter-body similarity for our proposed improvements
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(b) Mapping approach – 4 bits/bin

00
00

10
01

00
01
00
10
00
11
01
00
01
01
01
10
01
11
10
00

10
10
10
11
11
00
11
01
11
10
11
11

0.02

0.06

0.1

P
ro
b
a
b
ili
ty

(c) Normalization approach – normal-
izing acceleration amplitudes
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(d) Normalization approach – addi-
tional disregarding of patterns accord-
ing to inverse occurrence probabilities

Fig. 17: BANDANA improvements: Histograms generated from differ-
ent improved versions of BANDANA

equal probability to the left or right of the mean gait
sequence. Consequently, the quantization, exploiting the
difference between mean and instantaneous gait generates
0101 and 1010 patterns more often than other patterns. We
suggest to normalize both mean and instantaneous gait
prior to comparing them for gait generation. The heatmap
and histogram for bit sequences generated with this modi-
fied versions are depicted in figures 17c and 18b.

The distribution is improved. Unfortunately, a bias to-
wards including more ‘1’-s is introduced. However, since
this bias is less severe than in the original BANDANA proto-
col, the effect can be damped by disregarding patterns with
probability inverse to their observed occurrence frequency
(cf. Figure 17d). We observe in Figure 16b that the similarity
for intra-body pairing is slightly reduced.

7 CONCLUSION

We analyzed four acceleration-based pairing schemes.
We have compared their quantization and discussed
quantization-specific attacks. Their on-body pairing perfor-
mance, statistical properties and entropy of generated key
sequences were investigated based on walking data from 15
subjects and devices at 7 on-body locations.

(a) Mapping approach (b) Normalization approach

Fig. 18: BANDANA improvements: Heatmaps of random walks for 128
bit keys generated by improved versions

Although not originally designed for the purpose of gait-
based pairings, the SAPHE protocol achieved best results.
We modified it towards gait-pairingby executing filtering
and re-orientation before the pairing process. Still, room for
improvement remains as shown in the randomness analysis.

The Walkie-Talkie protocol, which is able to generate the
highest number of key bits achieves exact matching keys
only across upper body locations and with low confidence.
Together with SAPHE, it has the lowest one-shot success
probability. This is, however, put into different perspective
by a design flaw in the protocol. Even a naive adversary is
able to boost her success probability to 0.125 by analysing
the communication during the pairing process.

A similar quantization mechanism is utilized in the Gait-
Key implementation, which suffers from lack of random-
ness introduced by an n-ary quantization. The BANDANA
protocol produces high similarity for different and also
remote locations on the same body. However, the keys show
a bias towards specific patterns. This problem originates
from the quantization utilized and we proposed alternative
mechanisms that address these issues.

Finally, the IPI protocol is also able to achieve high
similarity across keys generated at different location on the
same body. Our investigation revealed that the protocol
suffers from a low variance in the generated binary patterns,
so that similarity is also high for random gait sequences.

We further analyzed the threat of a video attack on gait
authentication and pairing and found that a sophisticated
attacker with video support and real-time gait estimation is
able to break the studied gait-based pairing approaches.
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