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Abstract—Secure spontaneous authentication between devices
worn at arbitrary locations on the same body is a challenging, yet
unsolved problem. We propose BANDANA, the first-ever implicit
secure device-to-device authentication scheme for devices worn on
the same body. Our approach leverages instantaneous variations
in acceleration patterns from the user’s gait to extract always-
fresh secure secrets. It enables secure spontaneous pairing of
devices worn on the same body or interacted with. The method
is robust against noise in sensor readings and active attackers.

I. INTRODUCTION

Device pairing mostly comprises one-time manual pairing
of a limited number of devices. However, the personal device-
network in the Internet of Things (IoT) is expected to expe-
rience frequent fluctuation in device count and identity as de-
vices are added and discarded in the context of use [1]. While
seamless device pairing without user interaction promises new
personalized services, the user’s privacy must be protected.
This requires novel secure pairing schemes that scale.

We propose BANDANA, enabling convenient interaction-
free secure pairing of devices conditioned to the context of use.
As depicted in Figure 1, potential devices are any wearables,
for instance, glasses, watches, smartphones, tablet computers
or notebooks, smart textile, shoes or devices worn in bags
or backpacks. In professional environments, further devices
include helmets, Virtual Reality headsets and any co-used tools
and wearables shared among workers. In addition, external
devices such as a treadmill in a gym can be temporarily and
spontaneously paired and BANDANA might be extended to
pair with shopping carts, bicycles or cars.

BANDANA exploits common movement patterns to gener-
ate robust secure keys for pairs of devices worn at arbitrary
locations on the same body. In contrast to previous work,
proximity of devices on the body is not necessary as gait
can be extracted at arbitrary body locations. The protocol
is flexible in the strength of the generated key and can, for
instance, replace Bluetooth PIN authentication with 24 seconds
of gait while highly secure device pairing with 128 bit keys
requires about 96 seconds of gait. We exploit instantaneous
variations in gait sequences for implicit shared secrets among
all devices on the same body. The contributions of our work
are (A) a secure ad-hoc pairing scheme for devices worn on
the same body, and (B) the experimental verification of the
protocol on a large-scale gait dataset.

In a nutshell, a device (1) records acceleration sequences,
(2) corrects their rotation error, (3) computes the mean gait

Fig. 1: BANDANA creates implicit security barriers towards
devices in proximity, while establishing ad-hoc spontaneously
secure connections between devices worn on the same body.

from the previous gait cycles, and (4) generates a binary
feature vector as the difference between this mean gait and the
individual gait cycles. The feature vector reflects the pattern
in which the mean gait exceeds or falls below the individual
gait. Although individual and mean gait differ for various body
locations, BANDANA exploits the correlation in the deviation
from the mean. Utilizing fuzzy cryptography, device pairs are
then able to (5) generate identical secret keys from similar
binary fingerprints without disclosing any information about
the fingerprints or keys on the wireless channel.

II. RELATED WORK

For authentication based on arbitrary co-aligned sensor
data, Mayrhofer [2] proposes the candidate key protocol.
It interactively exchanges hashes from feature sequences as
short secrets and concatenates the key from the secrets with
matching hashes. Based on this protocol, unlocking of a
mobile device can be achieved by shaking it simultaneously
with a smartwatch [3], [4]. Their approach, however, requires
that acceleration sequences are exchanged and compared via
an established secure channel and also that both devices
are spatially close in order for acceleration sequences to be
sufficiently similar. Sensor modalities suited for unattended
co-presence-based device pairing extend to magnetometer [5],
RF-signals [6], [7] luminosity [8] or audio [9]. In contrast to
our study, however, these allow pairings not to the same body
but only to devices in proximity.

Cornelius et al. [10] identified devices co-located on the
same body via correlated acceleration readings. Even though
after abstracting to the magnitude, the resulting signal still
differed greatly due to inherently differing movement of
underlying body parts (e.g. arm vs. head vs. legs) [11], the
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(a) Unmodified accelerometer reading (z-axis) at 50Hz.
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(b) After Madgwick’s algorithm. Gravity g = ∼ 9.81m/s2 can now
be recognized, indicating a correct orientation relative to the ground.
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(c) Application of Type-II Chebyshev bandpass filter.
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(d) Resampling to ρ = 40 and gait detection with q = 8 cycles.

Fig. 2: Pre-processing and gait cycle detection. Z-axis of an accelerometer attached to the forearm is depicted.

authors showed good correlation among all body locations
from mean, standard deviation, variance, mean absolute de-
viation and interquartile range as well as signal’s energy. This
is a strong indication that secure keys conditioned on co-
location on the same body exist. However, as correlation can
be alternating positively and negatively, it remains unsolved
how this can be exploited for the generation of keys, when
the sequences shall not be disclosed to an adversary listening
to any communication between nodes.

An activity well recognized over the whole body is walk-
ing [12]. For instance, identical step patterns from acceleration
were utilized for co-location detection [13]. Hoang et al. [14]
generated a key from the difference of a mean world gait
(spanning the complete population) to the individual’s mean
gait. In this way, the authors assured that the resulting se-
quence is well balanced and uniformly distributed.

Recent studies on gait-based authentication, however, (1)
do not address the impact of different on-body locations and
sensor orientation and (2) use gait as a unique biometric
feature that does not change for an individual over time. In
contrast, we generate always-fresh keys from instantaneous
accelerations for arbitrary locations on the human body.

III. FUNDAMENTALS

In this section, our gait cycle detection algorithm is pre-
sented which builds on ideas by Hoang et al. [14], [15]. In
addition, we also utilize gyroscope readings to normalize the
sensor’s orientation and keep only the z-Axis that points in
the opposite direction of gravity. A gait cycle is defined as the
“time interval between two successive steps” [16]. The algo-
rithms input is a vector of amplitude values z = (z1, . . . , zn)
of the accelerometer z-axis (cf. Figure 2a). Its output is a gait
sequence of consecutive gait cycles with normalized length.

To find repetitive parts in the signal, we extract the local
minima with similar distance to each other to define clearly

separated cycles. Our filtering method is based on autocorre-
lation and distance calculation. The discrete autocorrelation at
time lag k and with variance σ2 is estimated as Acorr(k) =

1
(n−k)σ2

∑
t∈Z zt+k · zt where zt represents the conjugate

of zt. The resulting autocorrelation a = (a1, . . . , an) leads
to m non-ambiguous local maxima in a, stored as ζ =
{ζ1, . . . , ζi, . . . ζm}. The distances between these indices and
a mean distance δmean =

⌈∑m−1
i=1 ζi+1−ζi
m−1

⌉
are calculated.

δmean defines the length of half a cycle, i.e., the time between
the initial contact of the starting foot followed by the initial
contact of the subsequent foot. Thus, for q describing the
number of gait cycles, m = q ·2. For the gait-cycle extraction,
we assume healthy subjects, where the movement of the
right foot is sufficiently similar to the left foot and thus
have nearly the same distance. δmean can now be used to
select indices of minima from z that represent clear cycles
with the same length: µ = {µ1, . . . , µi, . . . , µm−1}; µi =
argmin(zζi−τ , zζi−τ+1, . . . , zζi+δmean+τ ). Every µj represents
the index of a minimum in z limited to the range of δmean

where τ defines an additional user defined factor to account
for small deviations in the gait duration. The indices in µ can
now be used to split the raw data z into full gait cycles Z =
{Z1, . . . , Zi, . . . , Zq}; Zi = (zµ i

2

, . . . , zµi , . . . , zµ i+1
2
−1).

Finally, the length of gait cycles are normalized by resampling
every Zi using a Fourier method to a fixed number of samples
ρ per gait cycle so that |Zi| = ρ (cf. Figure 2d). For
ease of presentation, we will, in the following, describe such
normalized gait cycle with Zi = {Zi1, . . . , Ziρ}. The choice
of ρ depends on factors such as sample rate and requirements
of the quantization algorithm discussed in Section IV.

A. Dataset

We used the real-world dataset by Sztyler et al. [17] for
position-aware activity recognition. 15 subjects performed
different actions for approximately 10 - 12 minutes each. They
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Fig. 3: Effect of applying Madgwick’s algorithm.

were equipped with 7 sensors on different body locations.
These locations were chosen in order to gather data from every
part of the body that behaves different during human motion.

B. Data Pre-Processing
In real-world settings, sensors locations differ, which intro-

duces changing orientations due to body part movements (cf.
Figure 3a). For best results, it is crucial to rotate every data
point such that at all time one of the axes is facing in the
direction opposite of gravity (cf. Figure 3b).

Nowadays, most mobile devices contain gyroscopes in ad-
dition to accelerometers [18]. We therefore posses information
about the initial device orientation (since the force of gravity is
included in every measurement recorded by the accelerometer)
as well as the angular velocity of the sensor platform itself.
Thus, it is possible to correct the ongoing orientation error.
We employ the algorithm proposed by Madgwick et al. [19]
to rotate all measurements zi accordingly, resulting in a signal
as shown in Figure 2b. Note that the output is only guaranteed
to be aligned along the z-axis. When comparing two readings,
both other axes may point in different directions as no other
fixed direction as, e.g., the direction of North is obtainable.

For noise removal, we apply a Type II Chebyshev bandpass
filter with passband chosen between 0.5Hz and 12Hz (cf.
Section V-B). The resulting signal is shown in Figure 2c.

IV. BANDANA
After correcting orientations from accelerometer and gyro-

scope data together with applying a band-pass filter, the gait
cycle detection algorithm produces a periodic signal. Shared
secrets need to be generated based on these signals on different
devices independently without disclosing them on the channel.

A. Quantization
To generate binary fingerprints from the continuous gait

sequence, we propose a quantization algorithm inspired by
Hoang et al. [14]. Recall the definition of Zi with the normal-
ized gait cycle |Zi| = ρ and Zi = {Zi1, . . . , Ziρ}. We define
the average gait cycle as A = (A1, . . . , Aj , . . . Aρ); Aj =∑q

i=1 Zij
q . Fingerprint bits are extracted by calculating the

energy difference between each gait cycle Zi and A as
depicted in Figure 4. To extract b bit per Zi, each Zi is split
into b parts of the same length ρ/b. Thus, a binary fingerprint
is defined by f̃ = (f̃11, . . . , f̃1 ρb , . . . , f̃b1, . . . , f̃b

ρ
b
); .

f̃ij =

{
1, δij > 0
0, otherwise.

as exemplary shown in Figure 4a. In the following, the
fingerprint vector is written as f̃ = (f̃1, . . . , f̃M).

B. Reliability

To calculate the reliability of the extracted bits, the dif-
ferences of the quantization algorithm are stored as δ =
(δ11, . . . , δ1b, . . . , δq1, . . . , δqb). The indices of δ are sorted
in descending order by their absolute value |δij | to retrieve
the reliability ordering r = (r1, . . . , rM) with ri ≥ ri+1.
We refer to r as the reliability vector containing indices
which experienced the highest difference between the mean
gait A and an instantaneous normalized gait Zj . These bits are
most reliable since they have high probability to be identical
at arbitrary body locations. In Figure 4b colors to indicate
the associated reliability. The elements of f̃ are then sorted
according to their values of r and the most reliable first N
are the fingerprint f = (fr1 , . . . , frN ) (cf. Figure 4c).

C. Fuzzy Cryptography

To derive unique shared secrets on two devices without
disclosing the fingerprint, error correcting codes are used,
which encode messages from the messagespace m ∈ M
into codewords of the (larger) codespace c ∈ C introducing
redundancies. Then, errors from transmission of c over lossy
channels are corrected before decoding back to m.

In a sense, our fingerprints f are lossy as they are not
entirely equal on the devices trying to mutually authenticate.
Here, the codespace C is chosen in a way that we can directly
pick a fingerprint f from this codespace and apply the Decode-
method to derive a binary key k that is error corrected. Due
to the usage of binary fingerprints we propose the usage of
BCH codes over the Galois field F2. A BCH code can be
parameterized to correct up to t errors, which in our case
must be chosen carefully to allow for errors within different
locations on the same body but not for correction of errors
between different bodies. As with the other parameters, t is
chosen based on our evaluation in Section V.

D. Protocol

Figure 5 specifies the BANDANA protocol. For two co-
aligned devices A and B, fingerprints fA, fB and reliability
vectors rA, rB are derived on both devices independently. The
vector with the higher hash is used for reliability ordering on
both sides. To account for errors, we apply the BCH decoding-
method to reduce both rA and rB to a unique k, which
is then used as the password for a Password-Authenticated
Key Agreement (PAKE). Both devices now share the same
secret s protected by a key agreement authenticated by their
gait fingerprints. We propose the usage of a modern non-
patented PAKE that feature additional countermeasures for low
entropy passwords, such as J-PAKE [20] or SRP [21].

For devices with high clock drift, the protocol can be
extended to allow for multiple tries with shifted fingerprints.
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f forearm fwaist

80% similarity

Fig. 4: Independent fingerprint generation on forearm and waist (forearm pre-processing is shown in Figure 2): Energy levels
above the average gait cycle A are blue and below red. After quantization in a), reliabilities are calculated and assigned to
each bit in b). Darker color, indicates higher reliability. In c) the fingerprint is sorted by reliability vector of the forearm.
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Quantization, Reliability

⇒ f̃A, rA

Sensor Recording

Madgwick, Bandpass Filter

Gait Cycle Detection

Quantization, Reliability

⇒ f̃B , rB

rA rB

If h(rB) > h(rA)

rA = rB

fA = Rel(f̃A, rA)

fA
Decode−−−−−→ k

If h(rA) > h(rB)

rB = rA

fB = Rel(f̃B , rB)

fB
Decode−−−−−→ k

PAKE

s = PAKE(k) s = PAKE(k)

Fig. 5: BANDANA protocol sequence between two devices A
and B worn on the same body.

V. EVALUATION

A. Signal Coherence

After applying Madgwick’s algorithm (cf. Section III-B),
we end up with sensor readings where the z-axis points
to the ground. This allows to examine their relation. For
this, we calculate the spectral coherence for different sensor
combinations to test whether any causality between readings
taken simultaneously by sensors located at different locations
on the same body exists – apart from just the correlation
for the motion in general. Figure 6 shows that there is high
correlation between records taken simultaneously. Between
arbitrary records, there is only correlation between 0Hz up
to 0.5Hz. This leaves us with two major results: (a) There is
a measurable causality between sensor readings taken simul-
taneously on the same body; (b) Some correlation at lower
frequencies still exists.
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Fig. 6: Average spectral coherence over full sensor readings
of the Mannheim dataset for same and different subject.

B. Bandpass Filter

As visualized in Figure 6, there still exists some unexpected
correlation between arbitrary readings on low frequencies. As
these frequencies - up to approximately 0.5Hz - only add
noise, we filter them out while keeping all the frequencies
above. We thus employ a Type-II Chebyshev filter, which
is known to have a very steep drop at the cutoff frequency.
Furthermore, in contrast to Type-I, Type-II Chebyshev filters
do not have any ripple in the passband. Researchers in the
domain of Activity Recognition report that human motion does
not affect frequencies significantly above 10Hz [22]. Based on
this observation and the coherence depicted in Figure 6, we
decided to choose an upper cutoff frequency of 12Hz.

C. Reliability

Our quantization scheme defines that iff δij > 0 for fixed
i, j is true for A, the same has to apply for B for at least 80%.
Some Zij are less prone to leading to different bits between
sensors at different body locations than others, namely those
with a higher difference δij to the mean gait A. Both A
and B keep a reliability value for each bit of the fingerprint.
According to the protocol sequence (cf. Figure 5), one of
these reliability vectors is chosen and the fingerprint is sorted
by each party following the vector’s order of indices (cf.
Figure 4). In a last step, the fingerprint’s most unreliable bits
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Fig. 7: Fingerprint similarity of different sizes M with cutoff
at N = 128 to evaluate the influence of Rel(). Each boxplot
value is defined by the similarity between two fingerprints
at different sensor locations within the same subject (intra-
body). All possible similarities over all combinations of sensor
locations within each subject are evaluated. Fingerprints are
generated by a sliding window over the sensor data with
half-overlapping windows. Only fingerprints from the same
window are matched against each other.

are discarded. To show the method’s viability, we calculated
the fingerprints’ similarity over all 15 subjects and all 7 sensor
locations. As shown in Figure 7, we chose different fingerprint
sizes M with cutoff at N = 128 to test how many additional
bits should be discarded to gain the best similarity. The mean-
similarity improves with greater values of M and settles
around N+64 with an average improvement of approximately
4%. Thus, we chose N + 64 for our configuration.

D. Discriminability of Intra- and Inter-body Fingerprints

Figure 8 illustrates the discriminability between intra-body
and inter-body fingerprints. While the intra-body case tests
only similarities between different sensor locations on the
same body (315 similarities), the inter-body case is much
larger (8880300 similarities). The mean similarity between
different subjects is 50%, which is indistinguishable from
a similarity between random bit sequences. In comparison,
the inter-body similarity exhibits a clear security margin with
82%. It is important to note that this test evaluates the
worst case of brute forcing all possible combinations between
subjects. In reality, an attacker is constrained to ∼ 900 tries
per day since BANDANA’s process takes up to ∼ 96 s with
M = 192 bit long fingerprints. In the inter-body case, it
can be seen that a small number of fingerprints match with
unexpected high similarity values (outliers). We assume that
these collisions happen in case of gait sequences with very low
entropy still exhibiting specific pattern due to the design of the
quantization scheme. While this should be investigated further,
only 0.0642% of these collisions show similarity values above
80%.
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Fig. 8: Intra-body and inter-body fingerprint similarity. For
intra-body, each boxplot value is defined by the similarity
between two different sensor locations (all possible similarities
over all combinations of sensor locations within each sub-
ject). For inter-body, each boxplot defines a different sensor
location. Only different subjects are tested against each other
with the same sensor locations. Fingerprints are generated by
a sliding window over the sensor data with half-overlapping
windows for M = 192 with cutoff at N = 128.

TABLE I: Fingerprint similarity between locations on the same
body (intra-body). Shown is the mean over all 15 subjects.
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chest 1.0 0.82 0.74 0.78 0.78 0.88 0.81
forearm 0.82 1.0 0.8 0.81 0.88 0.89 0.89
head 0.74 0.8 1.0 0.8 0.76 0.77 0.78
shin 0.78 0.81 0.8 1.0 0.77 0.78 0.8
thigh 0.78 0.88 0.76 0.77 1.0 0.85 0.84
upperarm 0.88 0.89 0.77 0.78 0.85 1.0 0.88
waist 0.81 0.89 0.78 0.8 0.84 0.88 1.0

E. Similarities between Sensor Location-Combinations

Table I illustrates how well different sensor locations au-
thenticate against each other. We found out that chest against
other locations and head against other locations perform worse
while forearm and waist perform best.

F. Statistical Bias

For the robustness against a potent adversary, it is important
that the keys generated from gait sequences are random. For
instance, Figure 10 exemplarily depicts 64 keys we extracted
using BANDANA with fingerprint length N = 256 bits for
an intuitive illustration of the randomness of the generated
fingerprints. We tested the keys generated by BANDANA
against statistical bias and employed the dieHarder battery of
statistical tests for this end [23]. While these tests can not
replace cryptanalysis, they are designed to uncover bias and
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Fig. 9: Distribution of p-values achieved for 128 bit keys (fingerprint length M = 192, 64 unreliable bits removed) in 21 runs
of the various statistical tests of the dieHarder set of statistical tests.

Fig. 10: Illustration of 64 binary keys. Each row contains one
256 bit fingerprint with 1 = black and 0 = white.

dependency in the pseudo random sequence. Every test has
an expected distribution of outcomes. A p-value, between 0
and 1, describes the probability that a real Random Number
Generator (RNG) would produce this outcome. A good RNG
will have a range of p-values that follows a uniform distribu-
tion. A p-value below a significance level α = 0.001 indicates
a failure of the RNG with probability 1 − α. For instance,
a p-value ≤ 0.05 is expected 5% of the time. Our results in
Figure 9 depict well distributed p-values clustered in the center
which indicates a good random distribution.

VI. CONCLUSION

We have presented BANDANA, a secure device-to-device
authentication scheme for devices worn on the same body. By
generating unique fingerprints from the user’s gait, we were
able to establish shared secrets implicitly without user inter-
action. The protocol accounts for errors without comparing
the fingerprints directly, instead it utilizes fuzzy cryptography
based on error correcting codes. A novel quantization method
for independently generating similar fingerprints at different
sensor locations has been proposed and evaluated. By selecting
only reliable fingerprint bits, we were able to boost the similar-
ity by 4%. We evaluated the security by generating all possible
fingerprints in our dataset for sensors worn on the same body
(intra-body) in comparison to sensors worn on different bodies
(inter-body). While intra-body similarity is indistinguishable
from similarity between random bit sequences (50%), inter-
body similarity exhibits a clear security margin with 82%.
Based on our evaluation, the final specification of BANDANA
is depicted in Figure 11.

Parameters: We used a resampling rate of ρ = 40 to extract
b = 4 bits per gait cycle Ri resulting in τ = ρ/b = 10. For
N = 128 bit keys we used M = 192 bit fingerprints (q = 48 gait
cycles), disregarding 64 least reliable bits. Fuzzy pairing corrected
at most 20% (cf. Figure 8) dissimilar bits (t = b128 · 0.2c = 25).
Consequently, at least 80% similarity between the fingerprints is
required. This results in a 103-bit security level for the PAKE
password k.
Time to generate a secure key: The key-strength depends on the
number of gait cycles. Our parameters b = 4, ρ = 40,M = 192

result in the worst-case duration of r = 96 s assuming that gait
cycles do not exceed 2 seconds. Clearly, by extracting more bits
from each cycle or requiring shorter key sequences, generation time
can be reduced linearly.
Time after which secure key generation fails: After removal from
the body, the gait-history is bit by bit replaced so that similarity
in fingerprints gradually deteriorates from about 80% to 50% (cf.
Figure 8). A fuzzy cryptography scheme requiring at least 75%

similarity (which is weaker than 80% in our results), then fails after
9.6 gait cycles or 19.2 seconds (0.8 · 80% + 0.2 · 50% ≈ 74%).
Adaptive security levels: The key-length determines its strength.
E.g. manual Bluetooth pairing (4-digit PIN) is equivalent to a 32
bit key, generated in 24 seconds (b = 4, ρ = 40,M = 48). Key
generation after removing the device from the body would then fail
after 5 seconds. An adaptive security protocol can alter security
levels (and granted rights) conditioned on the co-presence duration.
Pairing in the absence of gait: For some activities, gait is not
available. We did not consider this case in our study. The primary
challenge in such a case is then to identify a feature recognizable
from arbitrary locations on the same body, since else, device pairing
is constrained to proximate body parts (e.g. in [24]).
Technical requirements: Devices should feature accelerometer and
gyroscope. While instrumentations without gyroscope might also be
feasible in some scenarios, continuous correction of accelerometer
orientation works most reliable with gyroscope information. Given
its low price and since most contemporary wearables with acceler-
ation sensors also include a gyroscope, this is not a limitation.

Fig. 11: Technical specification and limitations of BANDANA.
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