

PINtext: A framework for secure communication based on context

MobiQuitous2011

Stephan Sigg, Dominik Schürmann, Yusheng Ji

December 8, 2011

Motivation

Bluetooth

Motivation

Our solution

- Unobtrusive approach: Secure pairing based on context information
- In our study: Context information

 audible background noise

Trust in real life

Motivation

- Frequently we trust people that share our context
- Users decide based on physical context if it is a trustworthy situation
- Trust is often based on "physical limits"
- \Rightarrow Use spatially limited context information ($\hat{=}$ background noise) for unobtrusive security

Framing

Framing

Absolute FFT Band Division

Framing Absolute FFT Band Division Energy $e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8$ $e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8$ computation

Framing Absolute FFT Band Division Energy $e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8$ $e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8$ computation Bit derivation

Audio fingerprints as context information

How to use audio fingerprints for secure pairing?

- Fingerprints are not exactly equal ... but similarities are visible!
- Don't compare fingerprints by transmitting themselves
- Threshold of minimum percentage of identical bits for successful pairing is needed
 - ⇒ Fuzzy Cryptography

Figure: Spectograms of audio recordings on two devices in physical proximity

Fuzzy Cryptography

Error-correcting codes

Encoding Adds redundancies to given word to produce codeword

Decoding Many similar codewords are decoded to one definite word

Fuzzy Cryptography¹

- 1. Device A and B generate their audio fingerprints $s_A \in \mathcal{S}$ ans $s_B \in \mathcal{S}$
- 2. Device A chooses a definite codeword $c_A \in \mathcal{C}$ randomly

¹based on "A Fuzzy Commitment Scheme" (A. Juels and M. Wattenberg, 1999)

Fuzzy Cryptography

- 3. Device A calculates $d = m(s_A, c_A)$ using a distance metric $m: \mathcal{S} \times \mathcal{S} \to \mathbb{R}$
- 4. d is send from A to B over air

Fuzzy Cryptography

- 5. Device B calculates c_B by subtracting the received d from its fingerprint s_B .
- 6. c_B is decoded to $a \in \mathcal{A}$ and encoded back to get $c_A \in \mathcal{C}$, if the fingerprints have enough equal bits

Pairing Model

Framework

Context sources: Temperature, light, audio,...

Pairing Protocol

- 1. Device synchronisation
- Feature extraction
- 3. Context processing
- 4. Key generation
- 5. Communication

Issues

Recording Hardware

- Existing audio hardware record different frequency spectra
- Different delays until recording starts after initiating it

Time Synchronisation

- Using Network Time Protocol (NTP)
- Derive fingerprints by shifting generated fingerprint in time

Figure: Median percentage of bit errors in fingerprints generated by two mobile devices in a canteen environment

Figure: Median percentage of bit errors in fingerprints from two mobile devices beside a heavily trafficked road.

Hamming distance in an Office setting Similar audio context with FM radios

Figure: Fingerprints generated by two mobile devices in an office setting. The audio context was dominated by an FM radio tuned to the same channel.

Conclusion

Results

- Unobtrusive pairing of previously unknown devices
- Real world experiments
- Implementation as a prototype
- Entropy considerations for audio fingerprints

Future use cases

- Pairing headsets without heavy user interaction
- Sharing files in a group of people

See demonstration of prototype at CoSDEO workshop!

Dominik Schürmann d.schuermann@tu-braunschweig.de

> Stephan Sigg, Yusheng Ji {sigg,kei}@nii.ac.jp

Error correction

- Generally the scheme can correct up to $\left|\frac{\Delta}{2}\right|$ errors
- 1. Decode c_R to A: a_R
- 2. Encoding a back to $C: \overline{C_R}$
- 3. $\overline{c_B} = c_B$ iff $m(s_A, s_B) < \left| \frac{\Delta}{2} \right| \Leftrightarrow m(c_A, c_B) < \left| \frac{\Delta}{2} \right|$

Entropy

Test suite

- DieHarder test suite to test entropy
- Tests calculates the p-value of a given random sequence with respect to several statistical tests
- The p-value denotes the probability to obtain an input sequence by a truly random bit generator

Results

- 7490 statistical-test-batches consisting of 100 repeated applications of one specific test each
- Only 173, or about 2.31% resulted in a p-value of less than 0.05

(a) Proportion of sequences from an indoor laboratory environment passing a test

(c) Proportion of sequences from all but music samples passing a test

(b) Proportion of sequences from various outdoor environments passing a test

(d) Proportion of sequences belonging to a specific audio class passing a test