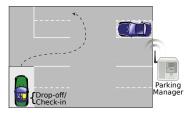


Secure Smartphone-based Registration and Key Deployment for Vehicle-to-Cloud Communications

Workshop on Security, Privacy and Dependability for Cyber Vehicles (CyCAR)

Julian Timpner, Dominik Schürmann, Lars Wolf, 4. November 2013

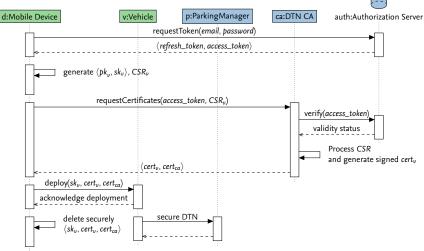

Motivation

V-Charge

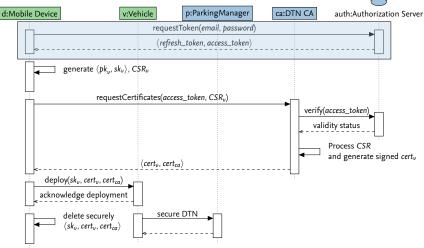
- Autonomous valet parking with e-mobility
- Electric vehicles, equipped with affordable sensor systems
- No Internet access on vehicles (parking garage)

Challenges

- Minimum of infrastructure (DTN)
- Efficiently using charging resources
- Multiple communication channels (V2C, Web, mobile)


Security Challenges

- Vehicle registration process independently of OEMs
- Key generation and deployment, while minimizing trust in central authorities


Secure smartphone-based registration and key deployment

- Framework can be used by vehicle owners at any time
- Key generation solely done by vehicle owner on a mobile device
- Vehicle registration on mobile device based on well-researched PKI
- No proprietary protocols involved

Requirements

- Don't store account passwords on device (protection against theft)
- Easy revocation of devices (recovery after theft)
- Don't force users to repeatedly login before usage (usability)
- Based on open standards

Requirements

- Don't store account passwords on device (protection against theft)
- Easy revocation of devices (recovery after theft)
- Don't force users to repeatedly login before usage (usability)
- Based on open standards

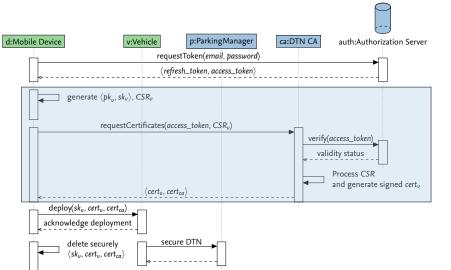
OAuth 2.0

- Provides authorization for Web services and mobile devices
- RFC 6749, 6750, 6819
- Heavy standard, some say "over-engineered"

Authentication/Authorization

- No third-party applications planned for V-Charge
- No redirection flow based on grant_type "authorization_code"
- Reducing protocol complexity
- RESTful JSON interface, OAuth based on Apache Oltu

Concept	Description
Token Endpoint grant_type refresh_token access_token	HTTP service to request tokens our subset implements "password" and "refresh_token" long living authorization token limited access token



V-CHARGE

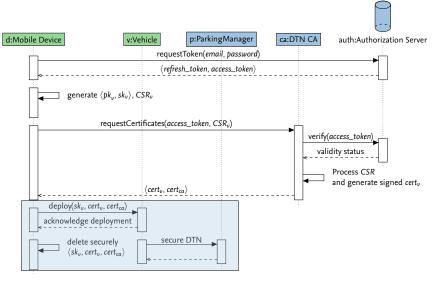
Vehicle Registration

Registration

- Easy registration process executable by customers
- Vehicle Identification Number (VIN)
- Registration of vehicles without the need of in-vehicle display and in-vehicle Internet connection

Key generation

- Nobody but the owner possesses the private key
- Generation on mobile device, protected by OS security
- Enough entropy compared to embedded hardware



Vehicle Registration

Key Deployment

Requirements

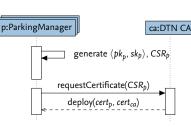
- In-vehicle Hardware Security Module (HSM)
- NFC-enabled mobile device

Deployment process (only conceptual)

- Transmission of $\langle sk_{\nu}, cert_{\nu}, cert_{ca} \rangle$ over NFC-SEC to HSM
- Delete $\langle sk_{\nu}, cert_{\nu}, cert_{ca} \rangle$ from device

Hardware Security Modules

- Hardware implementation details are beyond the scope of our paper
- API: Mode to reset its memory and a deployment mode to store new $\langle sk_{\nu}, cert_{\nu} \rangle$ -pairs
- Vehicles are equipped with HSM by service stations or car manufacturers
- Require PIN to access the API
- NFC with security layer or NFC-SEC



Implementation

- IBR-DTN daemon
- Cloud-to-Vehicle security based on RFC 6257
- TLS on TCP convergence layer

V-Charge key management design

- PKI with certificates
- Revocation by "floating" CRLs

Remote Attacks

Intercept access_token

Attack on TLS with pinned certificate

Eavesdropping/replay attacks on NFC

- NFC-SFC standard
- Transmission only happens once, as opposed to vehicular access control systems

Attacking the Application

Extract refresh_token

- Malicious application attacking Android's AccountManager (root exploit needed)
- Revocation on device theft

Steal sk, before deployment

- Privilege escalation to gain access to Unix user of V-Charge app
- sk_{ν} is stored only for a short duration on smartphone

Attacks Involving the Vehicle

Deploy attacker's $\langle sk_t, cert_t \rangle$ to a victim's vehicle

• HSM should only accept $cert_t$ if it is issued for the corresponding VIN_y of the vehicle

Extract $\langle sk_{\nu}, cert_{\nu} \rangle$ from a victim's vehicle

- Requires hacking the HSM
- Revocation of cert_v, re-generate sk_v , request a new cert_v

Conclusion

- Novel approach for securely deploying cryptographic keys to vehicles
- Supporting multiple services without trusting central authorities
- Private key never leaves vehicle owner
- Authentication/Authorization based on standards
- Overcoming OAuth design problems: keeping it simple
- Usable security
- No vehicular Internet access required

Conclusion

- Novel approach for securely deploying cryptographic keys to vehicles
- Supporting multiple services without trusting central authorities
- Private key never leaves vehicle owner
- Authentication/Authorization based on standards
- Overcoming OAuth design problems: keeping it simple
- Usable security
- No vehicular Internet access required

Questions?

email: schuermann@ibr.cs.tu-bs.de

V-CHARGE

STATUS	CHECK-IN	ADMIN		YOUR AC	COUNT	LOGOUT
Vehicles of test	2@v-charge.eu					
New Vehicle						
License Plate: *	BS-IB 279					
■ Add Vehicle						
		(1 of 1)		10 •		
^	License Plate	\$	Certificate		Options	
BS-IB 279				 		
		(1 of 1)	14 <4 1 D D	10 -		
* Regenerate	all public key files for I	BR-DTN				

Copyright © 2013 / V-Charge Consortium / All Rights Reserved

- Introducing certificate/public key pinning
- Include V-Charge's SSL CA certificate in-app
- Trust by application updates
- No reliance on CAs

V-Charge Project

Goals

- A system combining autonomous valet parking with e-mobility
- Increasing customer acceptance of electric vehicles
- By compensating for longer charging cycles

Challenges

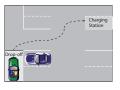
- Efficiently using scarce charging resources
- Multiple communication channels (V2I, Web, mobile)
- Autonomous driving and parking (not in this talk)

V-Charge Partners

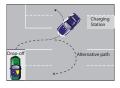
BOSCH ETH

Scenario: EV driver at airport

- Roam for a free spot
- Use shuttle services
- Transport luggage
- What about charging?


Disadvantages

- Cumbersome
- Only few charging stations
- Makes it even harder to find parking



Reparking

No CS available

Blocked path

TU Contributions

- V2X communications
- Server infrastructure
- Customer interaction
- System security
- Parking resource management

