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Abstract

Seamless device pairing conditioned on the context of use fosters novel application domains and ease of
use. Examples are automatic device pairings with objects interacted with, such as instrumented shopping
baskets, electronic tourist guides (e.g. tablets), fitness trackers or other fitness equipment. We propose a
cryptographically secure spontaneous authentication scheme, BANDANA, that exploits correlation in accel-
eration sequences from devices worn or carried together by the same person to extract always-fresh secure
secrets. On two real world datasets with 15 and 482 subjects, BANDANA generated fingerprints achieved
intra- (50%) and inter-body (> 75%) similarity sufficient for secure key generation via fuzzy cryptography.
Using BCH codes, best results are achieved with 48 bit fingerprints from 12 gait cycles generating 16 bit
long keys. Statistical bias of the generated fingerprints has been evaluated as well as vulnerabilities towards
relevant attack scenarios.
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1. Introduction

With increasing importance of short-term spontaneous interaction, ad-hoc device pairing promises seam-
less secure interaction in smart environments.

We envision short-term spontaneous pairing such that co-presence, i.e. devices worn or carried by the
same person, suffices for autonomous, spontaneous secure connection establishing (not assuming any prior
shared secret, not involving any trusted third party and without leaking information on the key via any
communication channel). Pervasive Computing applications for such protocol are numerous and include,
for example, the pairing between a personal device worn on the body, and other pervasive, computing, and
sensing capable devices. For instance, a shopping basket carried by the same person, or even instrumented
items carried inside the basket. Such pairing could enable synchronization of a shopping list on the personal
device with items in the basket, or the display of advertisements on the personal device, tailored to match
items in the basket.

Furthermore, in a Pervasive Computing setting, computing and sensing capable fitness equipment in a
gym could spontaneously pair with a fitness app on a personal device during the context of use to provide
accurate information on the intensity and performance of a specific workout.

Also, tablet-based electronic tourist guides could pair spontaneously with a personal on-body device
in order to inquire information on language preferences, interest and background to tailor the provided
experience on the respective user.
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There exist many further examples and in all cases the spontaneous pairing shall break in the very moment
that the device (e.g. basket, fitness equipment or tourist guide) is discarded or handed to another person,
so that no privacy-related information is disclosed unwittingly. We present BANDANA, a spontaneous
secure pairing scheme based on gait, which allows frequent re-pairing (restricted to the time-of-use), and
ad-hoc implicit (no manual interaction required) secure authentication bound to an individual. Our solution
does not require a trusted third party. In particular, we utilize instantaneous variations in gait sequences
for implicit generation of a shared secret among all devices on the same body. Our contributions are (1) a
secure ad-hoc pairing scheme for devices worn on the same body, (2) experimental verification of the protocol
on two large gait datasets, and (3) security analysis on the pairing approach covering statistical bias, and
attack scenarios.

Compared to [1], we integrate BANDANA with Password-Authenticated Key Agreements (PAKEs),
such as in Bluetooth’s Secure simple Pairing (SSP) to reduce extracted the gait fingerprint to M = 48 bits,
while retaining security guarantees (cf. Section 4-6.) A new dataset and a consideration of new activities
(running, ascending and descending stairs) was added to the evaluation (cf. Section 3.3, and Figures 10, 9),
correlation distances for various body parts (cf. Figures 7-9), and a detailed threat model including video
attacks have been added (cf. Section 7).

2. Related Work

A popular sensor to detect co-presence is the accelerometer. For instance, [2, 3] present a process to
generate shared keys via a threshold-based protocol conditioned on the magnitude of co-aligned acceleration
processes. [4, 5, 6] further improve this protocol with respect to success probability, different sample rates
and starting points as well as differing rotation. Implementations of this protocol have been presented
in [7, §].

For authentication based on arbitrary co-aligned sensor data, the candidate key protocol is proposed
in [9]. It interactively exchanges hashes from feature sequences as short secrets and concatenates the key
from the secrets with matching hashes. All above implementations require that pairing patterns are explicitly
generated (e.g. devices are shaken together). In contrast, we propose to exploit derivation from mean
acceleration (where the mean serves as a sort of normalization among devices) to pair devices implicitly
conditioned on co-presence on the same body.

Other sensor modalities that can be used for unattended co-presence-based device pairing [10] are mag-
netometer [11], RF-signals [12, 13| luminosity [14] or audio [15]. For these, in contrast to our approach,
pairing is not constrained by co-presence on the same body but, more generally, by proximity.

Acceleration sequences from devices worn or carried by the same person differ in orientation and place-
ment [16]. To receive placement independent features one can (A) calculate norm or magnitude m; =
Va2 +y? + 27 (discarding information on acceleration along individual axes [17]), (B) to first detect the
location and then to try to deal with changes that occur due to placement [16], or (C) to tackle disorien-
tation and misplacement errors by calculating the rotation matrix from magnetometer readings [18]. Even
though after (A), the resulting signal still differed greatly due to inherently differing movement of underly-
ing body parts (e.g. arm vs. head vs. legs) [19], Cornelius et al. [20] succeeded to show good correlation
among all body locations. We implement (C) to remove additional uncertainty and noise due to the merged
acceleration angles.

For many daily activities, upper body and lower body movements are only weakly or not correlated. We
therefore propose to use gait, which can be well recognized over the whole body [21]. For instance, identical
step patterns have been utilized for co-location detection [22]. The authors in [23, 18] employ gait cycles
to authenticate a user on his smart-phone by matching the current walking pattern against a previously
saved walking template exploiting a fuzzy commitment scheme [24]. In [25], it was shown that gait as a
biometric feature is robust against an attacker mimicking the victims gait. In their study, professional actors
with matching physical properties have been chosen. [23] recently presented an approach to generate a key
fingerprint from the difference of a mean world gait (spanning the complete population) to the mean gait
of an individual. By computing the mean gait over the whole population, the authors assured that the
resulting sequence is well balanced and uniformly distributed.
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Figure 1: Pre-processing and gait cycle detection (z-axis, accelerometer at the forearm).

We also exploit this idea of using the difference to a mean for normalization, but, in contrast, we are
not interested in a mean gait over a world population but instead, we derive a mean gait over few preceding
gait cycles for all devices on the same body. This is important since the protocol shall generate always fresh
instantaneous keys for ad-hoc pairing based on the recent gait history.

Summarizing, the related work on device pairing from on-body features does, in contrast to our work,
(1) not address the impact of different on-body locations and sensor orientation, (2) require devices in
close proximity and with strong, purpose-generated acceleration sequences, and (3) use biometric features
for distinguishing distinct individuals, rather than instantaneous characteristic movement patterns that
change over time. In contrast, we generate always-fresh authentication keys from instantaneous acceleration
sequences for arbitrary location on the body. Muaaz et al. [26] confirmed the significant challenge of (1) but
demonstrated gait-based authentication for selected related locations on the human body (from one to the
other side of the hip), accepting a high error rate.

A work closely related to our study has been presented in [27]. The authors exploit independent compo-
nent analysis to obtain meaningful gait sequences and extract binary patterns for device pairing by applying
a threshold to the data. In contrast, our quantization exploits difference of an instantaneous gait to the mean
gait of a respective body location. In addition, we demonstrate that our method is feasible on two freely
available benchmark gait databases. In particular, the body locations considered by us cover, in contrast
to [27], also lower body-parts, which are more challenging to pair as detailed in Section 6.3.

3. Fundamentals

3.1. Data Pre-Processing

Body-worn sensors feature dynamically changing orientations due to body part movement (cf. Figure 2a).
To derive a correlated acceleration independently of the on-body location every data point must be rotated
such that one of the axes is facing in the opposite direction of gravity as depicted in Figure 2b. We employ
the algorithm proposed by Madgwick et al. [28] to rotate all measurements z; accordingly, resulting in a
signal for the z-axis as indicated in Figure 1b (Orientation and gravity are derived from gyroscope and
accelerometer [29]). Compared to sensor fusion based on Kalman filters, Madgwick’s algorithm is less
computationally expensive due to its linearity and is thus suitable for mobile devices [28]. Afterwards,
correlation between records taken simultaneously from devices worn or carried by the same person exists
(cf. Figure 3). To remove additional noise for correlations in high and low frequencies, we apply a Type II
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(a) Before (b) After Madgwick

Figure 2: Body-worn sensors’ coordinate systems before and after application of Madgwick’s algorithm. Note the remaining
degree of freedom along the xy-plane.
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Figure 3: Average spectral coherence for the Mannheim dataset (same and different subject).

Chebyshev bandpass filter with passband between 0.5 Hz and 12 Hz. The choice for these cutoff frequencies
was taken since human motion does not affect frequencies significantly above 10 Hz [30] (cf. Figure 1c).

3.2. Gait Cycle Detection

A gait cycle is the time interval between two successive steps [31]. As discussed in the related work,
our algorithm is based on ideas by Hoang et al. [18] providing a reliable method for segmentation. The
algorithm’s input is a vector of amplitude values z = (z1,. .., 2,) of the accelerometer z-axis (cf. Figure 1a).
Its output is a gait sequence of consecutive gait cycles with normalized length.

To find repetitive parts in the signal, clearly separated cycles are extracted based on autocorrelation and
distance calculation. The discrete autocorrelation at time lag k and with variance o2 is estimated as

1 _
AcorT(k) = m Z Zt4k 2t

tEZ
where Z; is the conjugate of z;. The resulting autocorrelation @ = (ay,...,a,) leads to m non-ambiguous
local maxima in a, stored as ¢ = {(1,...,(i,..-Cm}. The distances between these indices and a mean
distance
Omean = 22111 <i+l — CZ
m—1

are then calculated. 6§,,cqn, can now be used to select indices of minima from z that represent clear cycles
with the same length:

H = {:U’la"'nuiw"numfl};
i = ATGMIN(Z¢ 7 26741y s 24 Seant)-
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Every p1; represents the index of a minimum in z limited to the range of d,,can Where 7 defines an additional
correction factor to account for small deviations in gait duration. The indices in g are used to split raw
data z into gait cycles

zZ = {Z15-~-7Zi7~-~7Zq};
Zi

(zu%,...,zm,..‘,zuﬁ,l);
2

with i = {2,4, ..., q}.

Finally, the length of gait cycles are normalized by resampling every Z; using a Fourier method to p samples
per gait cycle so that |Z;| = p (Z; ={Z;1,...,Z;p}; cf. Figure 1d). The choice of p depends on factors such
as sample rate and requirements of the quantization algorithm discussed in Section 4.

3.8. Datasets

In order to verify that our approach is able to establish gait-based short-term spontaneous pairing for
devices worn or carried jointly by the same person we employ two real-world datasets that feature specific
characteristics well aligned with this aim. In particular, we utilize the Mannheim dataset presented in detail
in [32] for the use in position aware activity recognition. It features 15 subjects (8 male, age 31.9 + 12.4,
height 173.1 £+ 6.9, weight 74.1 + 13.8), which are equipped with 7 sensors on different body parts (head,
upper arm, chest, waist, forearm, thigh, shin), and which performed different activities (walking, running,
ascending, descending stairs, ...) for a time period of 10 - 12 minutes each. It is well suited because it features
several relevant sensor positions for on-body device pairing, multiple activities and complete ground truth
is available from video recordings.

A single limitation of the Mannheim dataset is the limited number of participants. We therefore, in
addition, verified our approach on the Osaka OU-ISIR Gait Database [33]. This dataset features acceleration
recordings from a total of 496 subjects from which 482 have been used in this paper after removing samples
with missing sensor locations or short duration. Samples are taken from three triaxial accelerometers and
gyroscopes worn on different parts of the waist (left, right, center). Subjects traversed a course comprising a
straight path, upstairs and down a slope. A conceptual issue in our case lies in the fact that all sensor units
were located on rather close locations on the body and mounted to the same harness, potentially introducing
an error.

4. BANDANA

For BANDANA'’s device-to-device authentication, shared secrets are generated based on acceleration
sequences independently on participating devices and, in particular, without disclosing information on the
gait sequence on the communication channel. For this, we generate binary fingerprints from the gait and
utilize fuzzy cryptography to derive unique key sequences. Following Figure 4, we summarize the novel parts
of our protocol.

Gait cycle detection is applied on accelerometer data recorded on A and B and corrected by Madgwick’s
algorithm and Type-II Chebyshev bandpass filter.

We propose a quantization algorithm inspired by [23], but instead of exploiting the difference to a mean
world gait, we calculate differences to the mean of a specific gait sequence. The mean gait is thus defined as

A= (A q
— : Zz
( 17"'7Aj7"'Ap); AJ—@

and compared to each gait cycle Z; (Figure 5).
The mean normalizes differences in acceleration patterns at distinct body locations. To extract b bit per
gait cycle Z;, each Z; is split into b parts of identical length p/b. A binary fingerprint f = (f1,..., far) is



Authentication request

A B
Sensor recording Sensor recording
Madgwick, Bandpass filter Madgwick, Bandpass filter

A B
Gait cycle detection, Quantization Gait cycle detection, Quantization
= fingerprint fA, reliability vector r 4 = fingerprint fB, reliability vector rp

A B
Select reliability vector: Select reliability vector:

If h(rg) > h(ra) then ra4 =7p If h(ra) > h(rp) then rg =ra
Remove unrel. bits: fa = Rel(fa,r4) Remove unrel. bits: fg = Rel(fB,7B)
Decode Decode
Correct errors: fa —— k Correct errors: fg — k
Key agreement protocol P

A B

| Shared secret s = P(k) Shared secret s = P(k) |

A B

Figure 4: Protocol sequence between two devices A and B worn on the same body.

given by

= 1, 4;; >0
o=

0, otherwise.
p/b

i = Y Aivk— Zignj
k=0

The differences of the quantization are
0= (11, ,01bs-- 015, 0gp)-

Larger §;; indicate higher probability to be identical for arbitrary body locations.

The indices of § are sorted in descending order by the absolute value |0;;| to retrieve the reliability vector
r = (ry,...,rp) with 7; > r;11. The independently generated vectors r4 and rp are exchanged. While
their ordering is similar, it is decided that the one with a higher hash value generated by h(), e.g., SHA-256,
is selected on both sides. Using Rel(f,r), the least reliable bits are disregarded for the fingerprint, so that
the first N constitute the fingerprint f = (fr,,..., fry) (cf. Figure 5 (c)).

After reliability ordering, the remaining differences in the derived secrets are corrected with fuzzy cryp-
tography. We choose the codespace C of an error correcting code (We propose to use BCH codes over the

Galois field Fo; A BCH code can be parameterized to correct up to p errors) such that we can directly map

a fingerprint f into this codespace. By decoding it with f Decode, o into the message-space of the error

correcting code, a binary key k is derived that is identical for a pair of on-body devices. Using f Decode, k,

a (N, K)-error correcting code can correct up to p = LN ;K J errors. The minimal percentage such that all
errors are corrected, i.e. the threshold for a successful pairing, is u =1— %.1 Based on the targeted bit size
K of the key k and u, the required fingerprint size is therefore N = 5 ufi T

Finally, a shared secret s can be derived by executing a key agreement protocol s = P(k).

12019-08-14: Errors have been corrected and an additional explanation has been added (changes marked in blue).
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5. Key Agreement

BANDANA can be applied in conjunction with various key agreement protocols. To provide a large
security margin, we propose to use protocols with a two-party adversarial model, where the attacker is
reduced to a one-shot Man-in-the-Middle attacker. A typical design constrains the attacker to only one try
by extending a Diffie-Hellmann key exchange. One possible implementation is to use a hash commitment
before revealing public values over the channel (cf. Vaudenay [34]). Other protocols, called Password
Authenticated Key Exchanges (PAKE), have been proposed with similar goals: The chance of a successful
attack should not depend on an attackers offline computing power, but solely on the interaction during the
protocol execution. Important standards implementing these primitives include Bluetooth Secure Simple
Pairing (SSP), IPSec, and ZRTP [35, 36, 37].

PAKESs can roughly be categorized by (a) their way of storing the password, (b) encrypting transmitted
public-keys, and (c¢) their number of participants [38]. In BANDANA, a “balanced” PAKEs should be used
to derive a shared secret on both sides because either party can initiate an exchange (a). Whether public-
keys are transmitted encrypted or not can independently be chosen as it is not influenced by BANDANA’s
threat model (b). We focus on a two-party adversarial model (c). Besides this categorization, a modern
PAKE should provide resilience to dictionary attacks, replay attacks, Unknown Key-Share attack, and
Denning-Sacco attack [39]. As security attributes it should provide mutual authentication, key control,
known-key security and forward secrecy. However, we note that BANDANA does not require passkey
secrecy of a previous authentication attempt, as discussed in Section 7.2. While any modern PAKE within
this category could be chosen, we focus on the integration of BANDANA into real-world applications and
thus on the Bluetooth standard. Bluetooth 4.2 with Secure Connection and Secure Simple Pairing fits well
into BANDANA’s threat model. BANDANA can be integrated as an additional Out of Band (OoB) mode
besides NFC providing k as the Bluetooth passkey. This is considered secure under the PE(i) model in [40].
In Section 6.1 we discuss our choice of an appropriately short key size with a negligible success probability
for an attacker (also cf. Section 7.3).

6. Length of Fingerprints and Keys in BANDANA

As sketched in Figure 4, BANDANA utilizes fuzzy cryptography and reliability amplification, both of
which shorten the extracted bit sequence so that the final key length is smaller. In the following, we argue
on a reasonable size of the key (Section 6.1) as well as on a suggestive number of bits to disregard for
reliability amplification (Section 6.2). Finally, we discuss the discriminability of fingerprints (Section 6.3),
which defines the parameters of the error correcting code. Final parameters are proposed in Section 6.4.

6.1. Key Size
PAKES, as discussed in Section 5, prevent offline attacks and can thus provide a sufficiently large security
margin even with short key sizes K. Most PAKEs allow for multiple parallel protocol runs per node, such

7
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as 210 [34]. In BANDANA we suggest to forbid parallel protocol runs, as this would allow an attacker to
boost her success probability by pretending to be multiple devices.

In addition, threat models, such as [41], choose a relatively high K = 24 to even have a negligible
attacker’s success probability if only 16 out of 24 bits are compared correct. Similar margins have been
chosen in Bluetooth for PIN comparison with K =~ 20 and ZRTP for word comparison with K = 20. In
contrast, we can keep a tighter margin as k is generated automatically. Thus, we propose to target a bit
size of K = 16 with a one-shot success probability for the attacker of 2716.

6.2. Reliability

We evaluated the number of unreliable bits that could be removed by testing different sequence lengths
M with cutoff at N = 32 bit using the Mannheim dataset (cf. Figure 6). For M = 2¢ the mean-similarity
improves by approximately 3% for ¢ — i+ 1 and settles around M = N +16. Thus, we chose M = N + 16 for
our configuration. When repeating this test for NV = 64,128, we were able to observe a similar improvement
always settling around M = N + %N .

6.3. Discriminability of Intra- and Inter-body Fingerprints

We observe that upper body locations share a greater similarity than lower body locations. In particular,
we identify three similarity groups shown in Figure 7: torso and head (~ 81% similarity), upper body with
respect to more distant pairs (~ 78% similarity), and lower-body locations (~ 75% similarity).

Figure 8 illustrates the discriminability between intra-body and inter-body fingerprints. While the intra-
body case tests only similarities between differing sensor location on the same body (8037 similarities),
each inter-body location case contains 11968975 similarities?. As expected, the similarity between different
subjects is centered at 50%.

Intra-body similarities for other actions are shown in Figure 9. Due to the strong acceleration during
running, which effect the whole body, we observed more homogeneous mean values for this action (cf.
Figure 9a). Unfortunately, these are less unique. In contrast, climbing stairs up and down has been shown
to generate very unique fingerprints for the upper body (cf. Figure 9b,9c¢).

In addition to the Mannheim dataset, we evaluated BANDANA using the Osaka dataset, which contains
just three sensor locations around the waist, but provides recordings of 482 subjects. Figure 10 illustrates
the discriminability between intra-body and inter-body fingerprints. For Osaka, the intra-body test case
contains 1446 similarities, while the inter-body case comprises 8694075 similarities.

2Note that an attacker is constrained to only ~ 3600 tries per day (cf. Section 7).
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In the inter-body case, a number of fingerprints (4.64% (Mannheim); 2.47% (Osaka)) match with above
75% similarity. We attribute these collisions to gait sequences with low entropy due to the design of the
quantization scheme. To guard against this, we suggest to disregard gait sequences with low entropy.

6.4. Choice of Parameters

We propose the following configuration for a deployment of BANDANA. As detailed in our security
discussion in Section 7, the length K of the resulting key k should be K = 16. Following the results
depicted in Figure 8, we chose to parameterize the BCH codes to allow correction of at maximum 25% of
the bits in the fingerprint. Thus, calculating the error correction rate shows that N = 32 bit fingerprints
are required: N = 5 uli 7= % = 32. When using an accelerometer resolution of 50 Hz, we propose a
resampling rate of p = 40 for bit extraction of b = 4 bits per gait cycle R Conditioned on p and b, we define
the correction factor 7 = p/b = 10. As shown in Figure 6, removing 3 L of unreliable bits (i.e. M = 48 bit
sequences from ¢ = 12 gait cycles) provides the best trade-off. We estlmate an upper bound for the required
length of the recording r as 12 - ~1 s ~ 12 s3.

7. Security Discussion

In the following, we analyze BANDANA’s security model by discussing possible attack scenarios and
properties of the fingerprints. In particular, we focus on the risk that an adversary obtains a gait acceler-
ation sequence that is sufficiently similar to pair with a device located on the subjects body following the
BANDANA protocol (cf. figure 4). Since BANDANA corrects 8 bits from the 32 bit fingerprints derived, an
adversary would be able to successfully pair with an on-body device provided that she is able to establish a
32 bit fingerprint in which at least 24 bits are identical to the fingerprint generated for the on-body device.

For instance, after successful pairing, an adversary might be able to access private information that shall
be restricted to body-worn personal devices only. Considering the example applications specified in the
introduction, this might be information related to a subject’s shopping list (e.g. for user profiling or also
dietary or health related), access to health related data from on-body bio sensors or workout performance,
as well as demographics and personal interests.

3Dall et al. [42] found a mean cadence of 109 steps/minute = 0.91 cycles/second.
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Figure 9: Intra- vs. inter-body similarity for other actions of the Mannheim dataset. Fingerprint length: M = 48 with N = 32.

10



1.0

i T T T T
+ + + + +
+ + —_ + + +
& - l n n H
] ] —_—
0.8} . . .
s s A
‘b\o I I I
— L | | |
: . ‘ ' i B B E
= +
é 0.4r | | :
N I I :
0.2} : : s
b
T T i
f 1 1
0.0 :
NN X xS S O X
@A o & & N &
o K Rt O 5
¥ A S
Intra-body Inter-body

Figure 10: Osaka: Intra- vs. inter-body similarity. Fingerprint length: M = 48 with N = 32.

1

T N - T T T = T, T
X \:‘\"‘\ TN 1 NI ‘ Vi ‘:‘m‘\“‘
0.8} ! | U P b ni \ :: ]
1 Il I
| I i |
l:j 0.6 - A H ' i H ‘ ! H u
Z 0.4~ : : | | : : ‘ —: Y : : : I din
o [T U TR e B B T R R R TR A T (YT
N N R I N S S S I I H T S L T S A L S
1-19 20-35 36-47 48-51 52-55 56-88 89-95
1:birthdays 5:bitsream 9:countlsstr 13:3dsphere 17:marsagliatsanged ~ 36-47:rgb-bitdistribution (1-12) 90:dab-bytedistrib
2:operm5 6:0pso 10:count1sbyt 14:squeeze 18:sts-monobit 48-51:rgb-minimum-distance (2-5) 91:dab-dct
3:rank32x32  7:0qso 11:parkinglot 15:runs 19:sts-runs 52-55:rgb-permutations (2-5) 92-93:dab-filltree (20-21)
4:rank6x8 8:dna 12:2dsphere 16:craps 20-35:sts-serial (1-16) 56-88:rgb-lagged-sum (0-32) 94:dab-filltree (32)
89:rgb-kstest-test 95:dab-monobit2 (12)

Figure 11: Distribution of p-values achieved for BANDANA fingerprints in 21 runs of the various statistical tests of the
dieHarder set of statistical tests.

7.1. Statistical Bias

BANDANA is basically a pseudo random number generator (PRNG) conditioned on instantaneous gait
acceleration sequences. As for any PRNGs, it is essential that the generated binary sequences are unbiased
since the adversary could else exploit knowledge on the bias of the PRNG to boost her chances to guess the
same binary fingerprint. We rigorously tested the keys generated against statistical bias via the dieHarder
battery of statistical tests [43], to uncover bias and dependency in the pseudo random sequence. Test runs
produce a value that is compared to the theoretical outcome. A p-value, describing the probability that a
real Random Number Generator (RNG) would produce this outcome, between 0 and 1 is computed. A good
RNG features uniformly distributed p-values. A p-value below a fixed significance level o = 0.001 indicates
a failure of the PRNG with probability 1 —«. For instance, a p-value < 0.05 is expected 5% of the time. Our
results are depicted in Figure 11. Observe that the p-values are well distributed over the complete range
and clustered in the center which indicates a good random distribution.

7.2. No Passkey Secrecy Required

In general, for a pairing scheme, an adversary might consider to exhaust the key-space via multiple
repeated attacks. This is not possible for BANDANA though, since k changes with each attempt so that
previously learned parts cannot be reused. The adversary is confined to challenge one-shot success probability
in each new attempt. This is similar, for instance, to Bluetooth 4.2, which implements Secure Connection
and Secure Simple Pairing (SSP). SSP realizes bit commitment, in which the individual bits of the key
are iteratively validated in an interactive protocol. Because each Bluetooth pairing uses a new ephemeral
passkey, by design SSP does not provide passkey secrecy [35, 40].
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7.8. One-Shot Success Probability

Without requiring additional knowledge about the victim’s gait, an attacker may want to exhaust the
key-space C = Fq16. However, in BANDANA, after each single try, a completely new authentication process
(new k independent from the previous one) is started, thus making it impossible to exhaust C. For M = 48
bit long sequences, BANDANA’s full process takes about ~ 12s. Thus, an optimal imposter is constrained
to not more than ~ 7200 tries per day. From each 48 bit sequence, 16 bit are disregarded for reliability
amplification. From the remaining 32 bit fingerprints, up to 8 bit are corrected by BCH codes, resulting in
|k| = 16 bit long keys (cf. Section 6.4). The success probability of a single randomly drawn fingerprint is

therefore
32!

i( 32 )/232 _ Zi:o (m) ~ 0.0035 1)

k 232
k=0

7.4. Mimic Gait

A frequently envisioned attack on gait-based authentication and pairing schemes is that an adversary
would walk next to the victim, thereby mimicing the victims gait so that a device on the body of the
adversary would be able to establish a successful pairing to a device on the body of the victim.

Multiple studies have demonstrated that the success probability of an imposter trying to mimic a subjects
gait are low [44] even when trained professionals with similar physical characteristics are employed [25].

For instance, Mjaaland et al [45] trained seven individuals to imitate one specific victim. Even after
intensive training over two weeks (5 hours every day), and for one subject even for six weeks, it was
not possible for the subjects to accurately imitate the walking pattern of the victim. Also, the provision
of continuous visual feedback did not suffice to assist imitators in [46]. Furthermore, the authors of [44]
investigated the success probability of an attacker towards a particular subject on a database of 100 subjects
and concluded that it is unlikely for an adversary to mimic the subjects gait with sufficient accuracy. This
result has been confirmed by [25] who employed professional actors to mimic the gait of 15 subjects with
close physical properties. Indeed, the attempt to mimic gait incorporates the risk of asymmetric gait cycles
and thus even lowers the chance of success. However, as indicated in [44], the probability of random matches
significantly exceeds the expected probability in the birthday paradoxon. An attacker with knowledge to her
closest person poses a serious threat to gait-based authentication, and does not even have to impersonate
his or her nearest target. This is confirmed in [21, 47] who report an equal error rate (EER) (Equal rates for
false acceptance and false rejection) of 20% for gait authentication. In addition, given the gait features of
the victim and exploiting a treadmill to control speed, length of steps, thigh lift, hip movement and width
of steps, the authors in [48] could reach a false acceptance rate (FAR) of 46.66%.

7.5. Video Recording

An attacker with access to surveillance cameras could create a video recording of the victim’s gait for
the timespan during which the device-to-device authentication happens in order to pair with an on-body
device. To investigate this attack, we captured user’s movement by a wearable inertial measurement unit
(smartphone) attached to the subjects shin, and simultaneously with a high-speed camera at 90 fps. We
chose the position shin as this location has clearly distinguishable movement from video. With automated
video-tracking software, we have not been able to extract the gait from the video with sufficient accuracy.
We therefore utilized Tracker* to manually track the smartphone on a frame-to-frame basis (cf. Figure 12b).
Then, we estimated acceleration data of the smartphone from the tracking result. Figure 12a illustrates the
results. The figure shows that a powerful attacker might achieve successful pairing. We considered optimal
conditions (stationary high-speed camera at optimal height & subject passing in straight line). We did not
succeed to adhere BANDANAS real-time constraints, but a powerful attacker might achieve this.

4http://physlets.org/tracker/
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Figure 12: Approximating the acceleration reading from video.

7.6. Attach Malicious Device

In order to establish a pairing with an on-body device, an attacker could attach a malicious device to the
body of the victim, e.g. by slipping a small sensor node into the victim’s jacket or by selling a compromised
device to the victim. This device could create a second communication channel to forward traffic from
inside the BAN to an outsider. Due to the fact that BANDANA works without explicit user interaction,
this attack could succeed if executed properly and unnoticed. We would like to remark, though, that this
physical attack also contains significant risk for the attacker to be revealed when such malicious device is
detected.

8. Conclusion

We have discussed and analyzed implicit secure device-to-device authentication via the BANDANA
protocol for devices worn on the same body. Shared secrets are implicitly extracted for fingerprints generated
from the user’s gait. The protocol accounts for errors without comparing the fingerprints directly, but utilizes
fuzzy cryptography based on error correcting codes. A quantization method for independently generating
similar fingerprints at differing sensor locations has been proposed and evaluated. By selecting only reliable
bits, we were able to boost the similarity by 3%. Our fingerprints between devices worn on the same body
have a minimum similarity of > 75% in contrast to devices worn on different bodies (50%). The protocol was
verified on two large gait datasets and for various gait types (walking, running, descending and ascending
stairs). The security properties of the protocol have been discussed. BANDANA enables novel pervasive
applications such as the pairing between a personal device and a shopping basket in order to synchronize a
shopping list on a personal device with items already placed in the basket, as well as for means to advertise
offers tailored to a persons shopping items from the basket on a personal device.

Furthermore, fitness equipment in a gym could spontaneously pair with a fitness app on a personal device
during the context of use in order to provide accurate information on the intensity and performance of a
specific workout.

Also, tablet-based electronic tourist guides could pair spontaneously with a personal on-body device
in order to inquire information on language preferences, interest and background to tailor the provided
experience on the respective user.

The list of further examples is countless and in all cases the spontaneous pairing would break in the very
moment that the device is discarded or handed to another person, so that no privacy-related information is
disclosed unwittingly.
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