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Abstract—We demonstrate the BANDANA gait-based ad-hoc
device pairing scheme. Our quantization approach extracts bi-
nary fingerprints from the deviation of acceleration sequences
representing instantaneous gait vs. mean gait and establishes
identical keys for fingerprints generated at distinct locations on
the same body via a fuzzy commitment scheme. The separation
between device-pairs on same-body and distinct body is possible
as the fingerprint similarity exceeds 70% for same-body device
pairs but on average reaches only 50% (random guess) for
different body device pairs. The application of the BANDANA ad-
hoc pairing will be demonstrated on a pair of Nexus 5X android
phones and with a Huawei Watch 2.

I. INTRODUCTION

Recent technological advances allow on-body appliances to
pervade our daily life. For instance, smart-watches become
fashionable gadgets that can communicate to your phones.
Sensor-equipped shoes help sportsmen to monitor and evaluate
their performance. In health-care, implant devices have been
standardized and employed for a long time. Furthermore,
research community in smart-textile envisions the future pop-
ularity of intelligent platforms embedded in clothes. The
increasing number of device types with various use cases for
spontaneous interaction has posed a challenge: securely pair-
ing them to form an ad-hoc network but for the duration only
of the context of use. Applications for ad-hoc secure pairing
are manyfold (cf. figure 1). For instance, ad-hoc spontaneous
pairings for a fixed duration is found in intelligent shopping
cards tht share a purchase list from a smart personal device for
he context of use, or fitness equipment such as a treadmill that
synchronizes training data (e.g. physiological information) se-
curely with the on-body worn fitness equipment. Furthermore,
devices worn on the same body are spontaneously paired with
always-fresh keys. Whenever a device is detached from the
user, pairing stops automatically without requiring an explicit
log-out command. Finally, the unobtrusive pairing schemes
release users from remembering passwords. Since the keys
are generated dynamically, there is no need to update them
manually. The third scenario extends the use of ad-hoc pairing
to equipment that interact with users.

PIN-based device pairing was a common solution but it
is obtrusive because of required user’s input. Moreover, it is
difficult to use with appliances that lack interactive interfaces.
Other common authentication approaches on mobile devices,
such as biometric or pattern-based input, also require the

users’ attention and feature security weaknesses for frequent-
use systems: Biometrics are inherently observable and easily
stolen [1] while pattern-based input is vulnerable to shoulder
surfing or smudge attacks [2].

Recently proposed protocols for ad-hoc pairing of devices
co-present on the same body [3]-[7] leverage sensor data
to form characteristic sequences, called fingerprints, in each
wearable device. These fingerprints can be collated with a tem-
plate database to identify legitimate users or detect impostors.
In device pairing, they are exploited to generate secret keys
for device-to-device communication.

The existing approaches [3]-[7] utilized the correlation
of movement data to generate fingerprints. It is observed
that fingerprints on devices carried or worn by the same
individual are more similar than those attached to distinct
users. To handle a limited number of errors in fingerprints,
error correcting codes and fuzzy cryptography can be applied
to create identical secret keys. Mayrhofer [3] proposes the
candidate key protocol in which a user is required to shake
devices together for several seconds. One device hashes the
acceleration readings and then sends the hashed values along
with random salt to the other. If the latter discovers a match in
its own processed data, the vector is appended to a candidate
key pool. As soon as a sufficient number of matched entries
is reached, the pool itself is hashed to create the shared secret
key. Groza and Mayrhofer [4] later improved the protocol
with heuristic tree and hashed heuristic tree to counteract
the attacker’s analysis over hashed values. Walkie-Talkie [5]
is another scheme that exploits correlated signals captured
by accelerometers when the user is walking. The authors
applied independent component analysis and low-pass filtering
to remove undesired movements. Acceleration amplitudes are
then quantized as binary sequences based on whether they
are lower or higher than a threshold region. The Inter-Pulse-
Interval protocol [7] exploits the random residual by which
individual steps (left and right) differ from the mean gait
cycle in time domain. The key is formed from first bits of
the graycode representing gait fingerprints.

We have implemented the BANDANA protocol for Android
and will showcase the implementation to demonstrate gait
pairing from acceleration conditioned on co-presence on the
same body. The application operates on the Android platform
as a background service. It continuously collects sensor data,



With the increasing number of devices present in our
lives and the IoT right behind the corner, BANDANA
provides an effortless and secure way to use devices
without passwords.
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Devices are paired spontaneously
when worn on the same body; the pairing breaks once separated.
BANDANA leverages gait patterns, shared by devices co-present on the body, to generate
robust, always fresh and secure keys, enabling secure authentication
Fig. 1. BANDANA enables seamless ad-hoc device pairing based on acceleration sequences
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Fig. 2. Simplified class diagram of BANDANA Android prototype

extracts gait fingerprints, and issues notification whenever on-
body devices change their status (e.g leaving user’s body or
being carried by another user). When running continuously
as a background application on our experiment phones in
two days, it utilized 4% of total app battery usage (for
comparison, Google background services leveraged 34%). The
energy consumption can be reduced by initiating BANDANA
only when necessary (e.g. movement detection). A simplified
class diagram of our prototype is displayed in Figure 2. The
main component is a background service to continuously
collect sensor data (SensorListener), generate gait fingerprints
(Linear Acceleration, Filter, and GaitCycleDetection), and
communicate with another device for demonstration purposes
only (DeviceManager, AcceptThread, and ConnectThread).

II. BANDANA GAIT-BASED DEVICE PAIRING

In BANDANA [6], secret keys reflect variations between
mean and instantaneous gait cycles. Algorithm 1 summarizes
all of the steps performed in each device partner in the pairing
procedure. The approach exploits only acceleration along the
gravity direction corrected by Madgwick’s algorithm [8]. We
first detect gait cycles from these enhanced values. Then,
we quantize the difference of mean and instantaneous gait
cycles into binary sequences. Figure 3 visualizes the process
of obtaining bits from cumulative disparity of gait cycles.
To further increase similarity of fingerprints generated on the
same body, we discard unreliable bits produced from low
difference between mean and instantaneous gait.

Our approach was assessed on two public datasets:
Mannheim dataset [9] of 15 subjects and Osaka OU-ISIR Gait

descending stairs, ...) for a period of 10 - 12 minutes each. The
latter dataset was recorded with three triaxial accelerometers
and gyroscopes worn on different parts of the waist (left, right,
center). Experimental subjects traversed a parcours comprising
a straight path, upstairs and down a slope.

Figure 4 depicts the similarity of intra- and inter- body
fingerprints for the walking activity for all subjects and sensor
locations in the Mannheim dataset. They are produced from
seven locations ! on human body [9]. Intra-body similarity
is calculated from comparison of fingerprints from various
positions on the same subject while inter-body values are
the similarity of gait fingerprints of different subjects. Our
experimental results encourage the use of error correcting
codes to transform fingerprints of sufficient similarity into a
pairing key whenever their similarity is high enough.

Algorithm 1: Extracting the secret key from walking
acceleration

Collect acceleration readings from the z-axis;

Correct rotation w.r.t. gravity (using gyroscope);

Bandpass filter between 0.5Hz and 12Hz;

Resampling (40 samples/gait) and gait detection;

Compute mean gait;

Transform difference between mean and instantaneous
gait to binary sequence;

Calculate reliability of bits, disregard least reliable;
8 Share reliability ordering;

9 Create fingerprint (see Figure 3);

10 Fuzzy cryptography: Get key from fingerprint
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III. DEMONSTRATION

For the demonstration, we will need a table, a monitor
and a power strip. If space is available, we can also bring
a poster featuring the technical concept of the gait-based
quantization and pairing utilized in BANDANA. We will

IChest, forearm, head, shin, thigh, upper arm, and waist
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Fig. 3. BANDANA gait fingerprinting scheme
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Fig. 4. Similarity of gait-based fingerprints extracted from body locations of
the same (intra-body) and different users (inter-body). The results are obtained
from Mannheim dataset [9]

continuously play a video introducing the BANDANA gait-
based pairing concept (processing of the acceleration data,
quantization and fingerprint extraction, key generation and
pairing) and captured example use cases.

The main part of the demo constitutes a life-experimentation
with the implemented application on two Nexus 5X phones
and on a Huawei Watch 2 smartwatch. One to two people will
be constantly present during the demo and first demonstrate
that a pairing based on gait is established continuously as long
as all three devices are co-present at any pair of locations on
the same body. Next, one of the devices is given to a by-stander
to demonstrate that the pairing to this device breaks as soon as
the devices are no longer co-present on the same body. If also
the second phone is handed to another person, all connections
break. Next, we invite two spontaneous volunteers visiting the
demo to try and achieve successful pairing by mimicking gait.
Finally, handing both devices to one spontaneous by-stander,
pairing is again successful. Figure 5 displays screenshots of
our prototype running on Nexus 5X phones. For demonstration
purposes only, the application shows similarity of gait finger-
prints when the devices are hold by one user (see Figure 5b)
and when one of them lies upon a table and the other is carried
(see Figure 5c). The similarity in the latter case is significantly
lower.

The demonstration shall showcase that robust pairing is
possible for arbitrary locations on the same body while it is
not possible to establish a pairing when devices are worn by
different persons. Further, it shall demonstrate that straight-
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Fig. 5. Screenshots of our Android prototype running as a background service

forward attacks like gait mimicry are not successful for our
implementation of the BANDANA protocol. In addition, at
our demo session, users are welcomed to suggest potential
attacking strategies (e.g. a couple walking together holding
hands).

IV. CONCLUSION

This paper introduces a demonstration for an on-body
device pairing mechanism based on natural body movements.
Specifically, we extract gait fingerprints from acceleration data
through comparing mean and instantaneous gait cycles. Our
technique is evaluated on seven locations, including upper and
lower body parts. The similarity of gait fingerprints on the
same user is consistently higher than those on different sub-
jects. Thus, an error correcting code can be applied to derive
secret communication keys. We implemented the scheme on
Android platform to demonstrate it in realistic scenarios.
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