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Abstract In Delay/Disruption-Tolerant Networks, Man-
in-the-Middle attacks are easy: Due to the Store-Carry-
Forward principle, an attacker can simply place itself
on the route between source and destination to eaves-
drop or alter bundles. This weakness is aggravated in
networks where devices are energy-constrained but the
attacker is not.

To protect against these attacks, we design and im-
plement µDTNSec, a security layer for Delay/Disrup-
tion-Tolerant Networks on microcontrollers. Our design
establishes a Public Key Infrastructure with lightweight
certificates as an extension to the Bundle Protocol. It
has been fully implemented as an addition to µDTN
on Contiki OS and uses Elliptic Curve Cryptography
and hardware-backed symmetric encryption. In this en-
hanced version of µDTNSec, public key-identity bind-
ings are validated by exchanging certificates using Neigh-
bor Discovery. µDTNSec provides a signature mode for
authenticity and a Sign-then-Encrypt mode for added
confidentiality. Our performance evaluation shows that
the choice of the curve dominates the influence of the
payload size. We also provide energy measurements for
all operations to show the feasibility of our security layer
on energy-constrained devices. Because a high quality
source of randomness is required, we evaluated the Ran-
dom Number Generators by the AT86RF231 radio, its
successor AT86RF233, and one based on the noise of
the A/D converter. We found that only AT86RF233
provides the required quality.

This paper is an extended version of “D. Schürmann, G. von Zen-
gen, M. Priedigkeit, L. Wolf: µDTNSec: A Security Layer for
Disruption-Tolerant Networks on Microcontrollers” [1].
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1 Introduction

In recent years Internet of Things (IoT) technology
emerged into more and more fields where sensitive data
is handled. Namely industrial applications like process
monitoring where production data needs to be protected
from being accessed unauthorized. Another situation is
in the field of intelligent transportation systems, where
control data must not be manipulated by an attacker [2].
The most challenging fields are healthcare applications.
IoT technology has to face several challenges at once:
The first challenge is the mobility of nodes. Devices are
mounted to patients, therefore they have to cope with
mobility and thus disruption of connections. To ensure
a curtain level of reliability in terms of data delivery,
these networks have to cope with the mobility of their
nodes. Also, the security layer of such a network needs
to be tolerant against network disruption. Considering
frequent connection losses and short connection periods,
key exchange mechanisms like Diffie Hellman might
not be able to exchange a key prior every connection.
The second challenge is the variety of communication
partners and their different access rights to the data.
For example, an X-ray unit might only need an identifier
of the patient but a doctor needs the full history of the
patient.

To keep the costs of these systems low, direct con-
nections as well as multihop connections are needed.
Introducing multihop and different access rights in one
network makes traditional IoT security concepts not ap-
plicable. For instance in a network using IEEE802.15.4,
a key can be specified that is used by the MAC sublayer
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for full link layer AES encryption. Thus, every device in
the network needs to have the same key to be able to
read routing information inside the packets. This means,
every device is able to read all data it forwards. Another
problem with this encryption is that if one device is
hijacked and an attacker was able to read out its key,
the attacker is able to read all data transferred in the
whole network. This is a severe issue when taking into
account that the devices will be handed out to patients
for several days or weeks.

In this paper we present a system that overcomes
these challenges. To overcome the challenge of disrup-
tions in the connections, we propose to use µDTN [3], a
lightweight implementation of the bundle protocol [4].
By utilizing public key cryptography we solve the secu-
rity part of the disruption challenge. Another advantage
of public key cryptography is the ability to ensure au-
thentication. The most profound advantage of public
key cryptography is the robustness against Man-in-the-
Middle attacks. By using a lightweight design of the
bundle security protocol we enable IoT devices to use
all these advantages.

This paper presents an extended version of µDTNSec.
The main addition to the original version [1] is the intro-
duction of certificates. Prior to this extension, µDTNSec
required that each node’s public key must be pre-deployed
on all other nodes in the network. Thus, to add a new
node, all existing nodes must be re-programmed. In this
extended version, we allow dynamic addition of new
nodes by introducing a method to exchange certificates
by piggybacking them on DTN IP Neighbor Discov-
ery (IPND) [5] packets. Now, the certificates defines the
affiliation to the network. Thus re-programmming is no
longer needed and the nodes exchange keys automati-
cally via IPND. The performance and energy overhead
by certificates is evaluated in Section 4.2. For the se-
curity of µDTNSec’s session keys, initialization vectors
and nonces a cryptographically secure Random Number
Generator (RNG) is required. This is especially diffi-
cult on microcontrollers due to their limited sources
of randomness. Thus, we evaluated the different RNGs
available on our sensor nodes to rate their quality in
Section 4.4.

2 Related Work

A possible protocol for Delay/Disruption-Tolerant Net-
works (DTNs) has been standardized as the Bundle
Protocol (BP) in RFC5050 [4]. The BP is designed for
establishing a Store-Carry-Forward overlay network on
top of convergence layers, such as TCP/UDP, or directly
on top of the data link layer. It defines addresses with
Endpoint Identifiers (EIDs), overlay routing algorithms,

and a data unit format called bundles. Each bundle
consists of several blocks, such as the payload block.
The protocol can be extended by defining new block
types.

RFC6257 [6] specifies an extension with security
block types, security processing rules, and ciphersuites.
Ciphersuites are based upon the cryptographic prim-
itives of RSA with SHA-256 for signatures, Keyed-
Hash Message Authentication Code (HMAC) for data
authenticity, RSA for encrypting symmetric session
keys, and Advanced Encryption Standard (AES) in Ga-
lois/Counter Mode (GCM) for authenticated data en-
cryption. While most desktop implementations, such
as IBR-DTN [7] and DTN2 [8], support this extension,
implementations for embedded devices lack security fea-
tures. There are currently three actively maintained
implementations of DTN for microcontrollers:

µDTN1 [3] is our implementation of the BP. It was
implemented to meet the hardware and energy con-
strains of wireless sensor nodes. To meet these we use
the compressed bundle header encoding [9]. Originally,
µDTN was developed for 8-Bit micro controllers run-
ning Contiki OS2. By transmitting bundles directly in
IEEE802.15.4 frames we reduced the overhead to a min-
imum, as shown by Pöttner et al. [10]. To the best of our
knowledge it was the first RFC5050-compatible DTN
implementation for wireless sensor nodes. Recently, it
was ported to run with FreeRTOS3 on STM32F4 micro-
controllers under the name miniDTN [11]. Both, µDTN
and miniDTN, share the same architecture and most of
the code. Therefore, in the remainder we handle them
as one.

µPCN4 [12] is a microcontroller-compatible BP im-
plementation that focuses on CubeSat applications. There-
fore, the authors consider a routing scenario with a
single hop from the satellite to a ground station and
multiple nodes behind the ground station. In satellite
applications, not every node is reachable from all ground
stations and malicious ground station might announce
neighbours they can not reach. To tackle these special
challenges, µPCN’s decision whether to transmit a bun-
dle to the ground station is based on two factors: the
reliability and the trustworthiness. Reliability is the
number of successful contacts minus the number of un-
successful ones. Trustworthiness is the probability that
a transmitted bundle reaches its destination. With these
factors µPCN implements routing security but other
security and authentication aspects are left to future
work.

1 https://www.ibr.cs.tu-bs.de/projects/mudtn/
2 http://contiki-os.org
3 http://freertos.org
4 https://upcn.eu
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DTNLite [13] is an implementation of the concepts
of DTN for TinyOS5. Instead of implementing the BP,
it relies on existing routing protocols and therefore
forms an overlay network. The typical DTN Store-Carry-
Forward mechanism is implemented by storing data in
non-volatile memory on nodes and transporting it to-
wards a single sink over multiple hops. The authors do
not consider encryption or authentication in their work.

While these DTNs do not provide confidentiality and
authenticity, security on microcontrollers has been stud-
ied in other contexts. In general, the energy limitations
on microcontollers lead to difficult design constraints as
discussed by Trappe et al. [14]. Because asymmetric RSA
operations do not scale linearly with their key size [15]
and secure keys must be at least 3072 bit [16], RSA is
not practical for embedded systems. Thus, for resource
constrained networks, encryption is often implemented
by pre-deploying symmetric keys. To automate this pro-
cess, plenty of key pre-distribution protocols have been
designed. However, symmetric key distribution does not
scale for huge networks as envisioned for the IoT [17].
Thus, more performant asymmetric operations, such as
Elliptic Curve Cryptography (ECC), have been evalu-
ated for ATmega128 and CC1010 microcontrollers by
Gura et al. [15]. With NanoECC [18], a fast implemen-
tation for TinyOS has been written in C/nesC with
assembly optimizations.

Another approach has been developed by Oliveira
et al. [19,20]. Their security layer is based on Iden-
tity Based Cryptography (IBC) to encrypt messages
by deriving public keys from the nodes’ IDs. Their last
implementation TinyPBC is based on cryptographic
pairings [20]. For this, the authors developed a crypto-
graphic library for microcontrollers called RELIC [21].
It has been shown that RELIC provides the fastest op-
erations but with higher RAM usage in comparison to
TinyECC and Wiselib [22]. Later, several improvements
have been made to RELIC, e.g., performance improve-
ments on ARM Cortex-M0+ [23]. Due to the costs of
cryptographic co-processors, asymmetric operations are
still implemented in software. In contrast, most modern
radio chips support symmetric algorithms, such as the
AES in hardware. In this paper, we leverage the low-
level operations of AES provided by the AT86RF23X
chip [24]. Its high-level functionality for Contiki OS
has been implemented previously during the design of
RAIM [25].

Besides cryptographic primitives, full security layers
have been proposed and implemented for TinyOS and
Contiki. TinySec [26] provides modes for authentication-
only (TinySec-Auth) and fully authenticated encryp-
tion (TinySec-AE). Here, the Skipjack cipher is used

5 https://github.com/tinyos

in Cipher Block Chaining (CBC) mode. TinyKey [27]
provides key management for TinySec, but introduces
no algorithm changes. A successor of TinySec called
MiniSec [28] still uses Skipjack, but in Offset Code-
book (OCB) mode. All these use Skipjack instead of a
more widely used and standardized block cipher, such as
AES. Asymmetric ECC operations have been introduced
by Liu et al. for key exchange and digital signatures [29].

For Contiki, ContikiSec [30] has been designed and
implemented. It provides modes for encryption-only
(ContikiSec-Enc), authentication-only with CMAC (Con-
tikiSec-Auth), and a full authenticated encryption mode
by using AES in OCB mode (ContikiSec-AE). All modes
require a single network-wide key that is pre-deployed
on all devices. Optionally, by using other key exchange
methods, a session key can be plugged in. ContikiSec
uses standardized and well researched cryptographic
primitives.

More recently, Datagram Transport Layer Security
(DTLS) gained a lot popularity in the Wireless Sensor
Networks (WSN) and IoT communities. An optimized
DTLS implementation for the IoT that implements an
optimized ECC key exchange is provided by Capos-
sele et al. [31]. To better adapt DTLS to constrained
hardware, Pittoli et al. propose to reduce the payload
overhead and number of handshake messages [32]. A full
mobility enabled system for healthcare applications is
presented by Moosavi et al. using DTLS for end-to-end
security [33]. Their system consists of three layers: the
sensor node layer, the smart gateway layer that inter-
connects the sensor node layer with the third layer, the
cloud layer where data processing is done. By having
all smart gateways connected to each other, DTLS is
capable of handling the mobility of the sensor nodes.
While DTLS can be appropriately applied in their work,
in DTNs, there is no permanent connection between
gateways.

To the best of our knowledge, there is no implementa-
tion of a DTN for microcontrollers that provides end-to-
end security. In contrast to existing work, we provide a
fully integrated solution for resource-constrained DTNs
with software-based ECC using the NanoECC [18] and
AVR-Crypto-Lib [34] libraries and hardware-based AES
using the AT86RF23X radio.

3 µDTNSec

µDTNSec provides end-to-end security between source
and destination. It has been designed as a security layer
for µDTN and provides two main modes of operation:
Signature-only mode for authenticity and Sign-then-
Encrypt mode for combined authenticity and confiden-
tiality. A short reference specification is given in Table 1.
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In the following, we provide a threat model and discuss
µDTNSec’s design and modes in detail.

3.1 Threat Model

Before discussing the design of µDTNSec, we first specify
a clear threat model. This allows us to derive a set of
security features.

Eavesdropping: The typical threat for all network
communications is passive eavesdropping. In a wireless
network without payload encryption an attacker can
eavesdrop on the wireless channel and read transmitted
data.

Man-in-the-Middle: In networks with peer-to-peer
encryption, but no end-to-end encryption, an attacker
could place herself into the route between source and
destination to read bundles intended for the victim.
In comparison to passive eavesdropping, a Man-in-the-
Middle attack is active and requires a more sophisticated
attacker with network knowledge.

Data Modification: In a variation of the Man-
in-the-Middle attack, the attacker not just reads but
modifies bundles in transit. Every node participating in
Store-Carry-Forward routing can do this.

Impersonation: For this attack, the attacker imper-
sonates the victim to receive its bundles or to transmit
malicious bundles in the victim’s name.

3.2 Security Features

Our threat model covers the most important threats
posed by outside attackers. µDTNSec’s full Sign-then-
Encrypt mode provides confidentiality, node authen-
ticity/non-reputability, and data integrity. These fea-
tures protect against eavesdropping, Man-in-the-Middle
attacks, impersonation, and data modification between
both endpoints. We introduced certificates to manage
network access and provide key authenticity.

Inside attackers, i.e., nodes that are already part of
the network, are considered out of scope for µDTNSec.
Currently, revocation of certificates is not implemented,
but will be part of a future version. For the typical
use cases of sensor networks, anonymity and metadata
protection mechanisms are not relevant and are contrast-
ing node authenticity. While other BP implementations,
such as IBR-DTN, need to take extra care to secure the
lower network layer, e.g., TCP or UDP, µDTN works
directly above the data link layer. Thus, only Denial-of-
Service jamming attacks against the physical layer must
be considered additionally to µDTNSec.

Finally, attacks against the hardware, which require
physical access to a placed node, are considered out of

Transmitter
process µDTNSec µDTN

Network
Receiver
process

µDTNSec

µDTN

Payload Bundle
Bundle

Bundle

Bundle

Bundle

Payload

Transmitter (tx)

Receiver (rx)

Fig. 1: Interaction between µDTN and µDTNSec

scope. This includes tampering with the hardware and
side channel and fault attacks, such as key extraction
by power measurements.

3.3 Trade-off Between Security and Performance

In this version of µDTNSec, certificates are used to
allow dynamic addition of new nodes to the network,
and providing an automatic key exchange mechanism
over IPND. However, when the Sign-then-Encrypt mode
is used, signatures are only verified by the final receiver
after bundle decryption. This is a deliberate decision to
have no computational overhead on forwarding nodes.
The Signature-only mode or an additional Sign-Encrypt-
Sign mode could be used for bundle verification on
forwarding nodes to protect against routing attacks.
Still, we advice against doing this, as the protection
against these attacks does not justify the performance
penalty on forwarding nodes. Conclusively, µDTNSec
currently provides end-to-end security, while hop-by-hop
security is considered out of scope.

3.4 System Design

µDTNSec has been developed for the INGA sensor node
platform [36]. INGA is equipped with a AT86RF23X
radio chip that already provides a hardware implemen-
tation of AES-128 in Electronic Code Book (ECB) and
CBC mode. Interfaces to its AES methods and RNG
have already been implemented for Contiki during the
design of RAIM [25]. ECC is implemented in software
using the NanoECC [18] and AVR-Crypto-Lib [34] li-
braries.

Previously, in the µDTN program flow, Contiki pro-
cesses were able to call a µDTN function to transmit
a payload together with the destination (receiver) IDs.
µDTN encapsulated the given data into a bundle accord-
ing to RFC 5050 for Store-Carry-Forward routing. We
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Table 1: µDTNSec Specification: Modes with their corresponding BP block, BP ciphersuite and details

Mode Block Ciphersuite Details

Signature PIB PIB-ECDSA-SHA256 Signatures are generated and verified with ECDSA and SHA-256.
Public keys from validated certificates are used for verification.

Sign-then-
Encrypt

PIB
+PCB

PCB-ECDH-SHA256-
AES128-PIB-ECDSA-
SHA256

After signature generation, a shared secret is calculated by
ECDH on valid public keys. A session key is derived using
the ANSI-X9.63-KDF and used for hardware-backed AES-128
encryption in CBC mode. The payload is encrypted in-place
while the PIB is encrypted separately.

Supported SECG [35] curves: secp128r1, secp192r1, secp256r1

integrate µDTNSec in this flow as depicted in Figure 1.
On the transmitting side, Contiki processes should now
call µDTNSec’s function instead of µDTN. This allows
µDTNSec to apply the configured security protection
before handing the encapsulated bundle to µDTN. At
the final destination (receiver), µDTN processes the bun-
dle and hands it to the Contiki receiver process. If the
bundle includes security protection, the process calls
µDTNSec for decryption/verification.

µDTNSec is based on ECC as specified by the Stan-
dards for Efficient Cryptography Group (SECG) [37,
35]. It includes the algorithms Elliptic Curve Digital
Signature Algorithm (ECDSA) for signatures and El-
liptic curve Diffie–Hellman (ECDH) for encryption. For
each node, a secret/public key pair sk , pk is generated.
Our implementation supports the secp128r1, secp192r1,
secp256r1 curves for different security levels [35]. The
implementation follows parts of RFC6257 [6] recommen-
dations, but does not provide full compatibility.

3.5 Signature Mode

µDTNSec’s signature mode provides end-to-end auth-
enticity/non-reputability, which automatically includes
integrity protection. We implemented signature genera-
tion and verification based on ECDSA with SHA-256.
Following the flow chart in Figure 2a, first a SHA-256
hash is calculated over the payload and the non-mutable
fields of the bundle. Non-mutable fields are all fields that
are not changed by nodes forwarding the bundle on the
way to its final receiver. In µDTNSec, the non-mutable
fields include the IDs of the transmitter, the transmitter
process, the receiver, and the receiver process. This is
designed similar to the Mutable Canonicalization in the
Bundle Security Protocol RFC 6257 [6]. No timestamps
are included by µDTN.

h = SHA−256 (payload ‖ non−mutable−fields)

Payload

SHA-256IDs

ECDSA-signsk{tx}

PIBPayload

(a) Transmitter: Generation

PIB Payload

SHA

IDs

ECDSA-verify

yes/no

isValid

pk{tx}

(b) Receiver: Verification

Fig. 2: Flow charts of µDTNSec’s signature mode: Gen-
eration and verification of signatures encapsulated in
the PIB

The resulting hash h is finally signed with ECDSA [38]
using the secret key sk{tx} to produce a signature.

σ = ECDSA−sign(sk{tx}, h)

The Payload Integrity Block (PIB) consists of the de-
fault fields of a BP block (size in bytes), namely Type
(1), Flags (1), Length (dynamic), and encapsulates the
signature σ ((192 · 2)/8 = 48 for secp192k1). The result-
ing bundle is handed back to µDTN. The verification of
bundles including a PIB works analogously. Following
Figure 2b, a hash is calculated over the payload and non-
mutable fields. To protect against related key attacks,
the public key of the transmitter pk{tx} is validated
first, i.e., it is checked if the key is based on the correct
curve. For verifying σ, ECDSA verification is executed.

ECDSA−verify(pk{tx}, h, σ)

3.6 Sign-then-Encrypt Mode

µDTNSec’s Sign-then-Encrypt mode provides end-to-
end confidentiality in addition to the security features
provided by its signature mode. Besides ECDSA sig-
natures, this mode uses hardware-backed AES encryp-
tion, while its session key is asymmetrically secured
with ECDH. Following the flow chart in Figure 3a, a
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isValid

ECDH
Shared Secret
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sk{tx}

KDF

Leading
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AES-128-CBCPadding

Payload

PayloadPCB
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as in Figure 2a

Padding

AES-128-CBCIV
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SHA

IDs

ECDSA-verify Payload
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Fig. 3: Flow charts of µDTNSec’s Sign-then-Encrypt mode: AES encryption/decryption is done in-place inside the
payload block/PIB. The PCB contains a nonce and the IV . Signatures are encapsulated in the encrypted PIB

shared secret is derived using ECDH. This requires the
receiver’s public key pk{rx}, which has been validated
to be based on the correct curve, and the transmitter’s
secret key sk{tx}. Because this shared secret would be
the same for each communication, an additional nonce,
generated from a secure Random Number Generator,
is taken into account. A unique session key is derived
using the ANSI-X9.63-KDF [37].

s = KDF (ECDH (pk{rx}, sk{tx}),nonce))

A PIB is generated as described in µDTNSec’s signa-
ture mode. The payload and PIB are symmetrically en-
crypted with the session key s using AES in CBC mode.
It is important to note that symmetric encryption is
done in-place without adding new blocks. Here, the low-
level operations of AES are provided by the AT86RF23X
chip [24]. The utilized CBC mode requires a public ini-
tialization vector IV , which should be unique for each
bundle. The Payload Confidentiality Block (PCB) con-
sists of the default fields of a BP block (size in bytes),
namely: Type (1), Flags (1), Length (dynamic), and
additionally contains the Nonce (1), IV (16), the en-
crypted payload (dynamic) and padding (0-15). The
resulting bundle is handed back to µDTN.

After µDTNSec extracts the three blocks, the de-
cryption and verification of bundles works as follows.
Following Figure 3b, pk{tx} is validated and used to-
gether with sk{rx} to derive a shared secret. Using the
public nonce, the same session key s is derived. Together
with the IV , it is used to decrypt the payload and PIB.
The signature encapsulated in PIB is verified as de-
scribed before. Finally, the payload is only returned to
the calling process if the verification succeeded.

3.7 Lightweight Certificates

We implemented lightweight certificates exchanged be-
tween nodes via IPND. This allows for key distribution,
provides a closed network and most importantly key
authenticity, i.e., a way to verify that a given public key
corresponds to the alleged node. First, a secret/public
key pair sk{ca}, pk{ca} is generated for the Certificate
Authority (CA) operating the network. All network
nodes come with pk{ca} pre-deployed. A certificate is
issued before deployment by signing the nodes’s EID,
Certificate Flags (CertFlags), and public key pk{tx}:

Σ{tx} =ECDSA−sign(sk{ca},
SHA−256 (EID ‖ CertFlags ‖ pk{tx}))

Σ{tx} is piggybacked on IPND and thus exchanged
with encountered nodes. Receiving nodes can verify the
key authenticity to this specific EID.

ECDSA−verify(pk{ca},
SHA−256 (EID ‖ CertFlags ‖ pk{tx}),
Σ{tx})

It is extremely important to also validate that the cer-
tificate’s EID matches the one announced by the node.
Certificates are stored when receiving the IPND packet,
but validated only when receiving the first bundle of the
corresponding EID. Consecutive bundles from the same
EID require no additional certificate validation. Besides
the default fields of an IPND packet (size in bytes),
namely Version (1), Flags (1), and SequenceNumber (2),
we added EID (4), CertFlags (1), pk{tx} (24 · 2) Σ{tx}
(24 · 2) for our certificate exchange. CertFlags could
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potentially be used for revocation or other additional
features in a future version of µDTNSec.

While the BP proposes the Bundle Authentication
Block (BAB) for controlling network access [6], we argue
that in our lightweight design and threat model this
block is not required: A closed network has been created
by issuing certificates to verified nodes only.

4 Evaluation

Our evaluation focuses on the energy and time over-
head introduced by µDTNSec’s security modes and its
certificate exchange. In addition, a quality estimation
of the RNGs by the AT86RF231 radio, its successor
AT86RF233, and one based on the noise of the A/D
converter is provided.

4.1 Energy and Performance of Security Modes

In our evaluation setup we connected two INGA sensor
nodes to a precise energy measurement device named
Potatoscope [39]. By utilizing this device we were able to
trigger the measurement exactly at the time µDTNSec
started processing a bundle and also to stop the mea-
surement when µDTNSec finished.

In the first part of the evaluation, we performed a
measurement just for the PIB with the secp192r1 curve,
in the second part we compare the PIB+PCB process-
ing with three curves namely: secp128r2, secp192r1, and
secp256r1. By comparing the two parts we can point
out the overhead introduced by the encryption or de-
cryption. The ciphersuites used are the ones mentioned
in Table 1. To investigate the influence the payload size,
we evaluated six different byte sizes from 1B to 250B.

Figure 4 shows the mean time needed to verify the
authenticity of a bundle (blue circles). As the values
are neither linear rising nor falling and have a standard
deviation higher than the span of the of the mean values,
we can assume the influence of the payload size for the
verification is negligible. The red triangles represent the
time needed to process the PIB at the transmitter of
the bundle. With up to 7.95 s the transmitter needs
significantly less time than the receiver with up to 9.51 s.
These results match with the ones by Jansma et al. [40].
Similar to the receiver, the payload does not have a
significant influence.

The comparison between the time in Figure 4 and
the consumed energy plotted in Figure 5 shows that
both correlate almost perfectly. At the transmitter the
energy ranges from 0.1258mWh to 0.1265mWh. As
for the time, the receiver’s effort in terms of energy
is higher with 0.1484mWh to 0.1521mWh. Thus, the
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Fig. 4: Signature mode: The red triangles show the
time need to generate a PIB with secp192r1 at the
transmitter, the blue circles indicate the time used to
verify its authenticity at the receiver
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Fig. 5: Signature mode: The red triangles show the
energy need to generate a PIB with secp192r1 at the
transmitter, the blue circles indicate the energy used to
verify its authenticity at the receiver

receiver needs approximately 20% more energy than
the transmitter to process the PIB.

In comparison to the PIB, the processing of PIB+PCB
doubles the amount of time and energy needed, as the
green triangles in Figures 6a to 6d show. This is due
to the additional encryption operation of the payload.
Another observation from the figures is that the influ-
ence of the chosen curve clearly dominates the influence
of the payload size. While the payload’s influence is
hardly noticeable, secp256r1 doubles the energy and
time needed to process a bundle compared to secp192r1
and this doubles it from secp128r1. For secp128r1 the
receiver needs up to 0.121mWh to decrypt and verify
the payload of Bundle. It lasts 7.621 s to perform this
operations. For secp256r1 0.741mWh and 46.6 s are
needed. The values for the transmitter of a bundle are
similar: 0.122mWh and 7.742 s for secp128r2. Utilizing
secp256r1 at the transmitter the consumption is raised
to 0.691mWh and 43.227 s.
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bundle’s content at the transmitter for the three evaluated curves
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(b) Sign-then-Encrypt mode: Time need to decrypt and verify a
bundle’s content at the receiver for the three evaluated curves
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(c) Sign-then-Encrypt mode: Energy consumed to encrypt and
sign a bundle’s content at the transmitter for the three evaluated
curves
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(d) Sign-then-Encrypt mode: Energy consumed to decrypt and
verify a bundle’s content at the receiver for the three evaluated
curves

Fig. 6: Comparison of the influence of payload size and ECC curve choice on energy consumption and performance

The results show that the curve should be cho-
sen carefully to the needs of the application. It needs
to be considered whether the additional security that
secp256r1 offers compensates the five times higher en-
ergy and time consumption compared to secp128r1. Fur-
ther it need to be considered whether an application
needs encryption. If data authenticity is sufficient only
the PIB should be used, this reduces the energy and
time consumption by half.

4.2 Energy and Performance of Certificates

To evaluate the performance of the certificate validation
we transmitted eight consecutive bundles to one destina-
tion and measured the time and energy used to process
every bundle.

Figure 7a depicts the results for the timing measure-
ments. It shows that the certificate is only validated
once when the first bundle arrives at the receiver. The
consecutive bundles 2 to 8 need only around 400ms
while the first bundle needs 10.39 s on average. Fig-
ure 7b shows the same effect: the first received bun-
dle needs 0.168mWh while the following bundles need

Table 2: Performance of µDTN in comparison to
µDTNSec (curve secp192r1, mean time)

Payload µDTN µDTNSec

Signature Sign-then-Encrypt

1B 0.007 s 17.299 s 33.833 s

50B 0.020 s 17.207 s 34.343 s

100B 0.035 s 17.337 s 34.743 s

150B 0.041 s 17.430 s 35.025 s

200B 0.051 s 17.434 s 35.408 s

250B 0.073 s 17.540 s 35.774 s

0.0063mWh on average. Therefore, our certificate ex-
change only adds 10 s or 0.162mWh each time a newly
discovered neighbor sends a bundle.

4.3 Performance Penalty of µDTNSec

To evaluate the true performance penalty introduced
by µDTNSec, we evaluated the time of the full pro-
cess of creating, sending, receiving, and processing bun-
dles between two devices with a direct connection. Ta-
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Fig. 7: Timing and energy evaluation of lightweight certificate validation

ble 2 provides the comparative measurements between
µDTN and µDTNSec’s modes. The comparison shows
the huge performance penalty introduced by cryptogra-
phy on extremely resource-constrained microcontrollers,
i. e., our INGA node with its ATmega1284p MCU and
AT86RF23X radio.

Thus, we decided to design µDTNSec with end-to-
end security in mind and leave hop-by-hop security out
of scope, i. e., the current version does not verify signa-
tures on forwarding nodes, as described in Section 3.3.

Another suggestion we deduce from the results is
to gather measurement data as long as possible and
therefore transmit bundles as big as possible. How long
measurement data can be gathered locally depends on
the capabilities of the sensor node and the requirements
of the application. In longterm patient monitoring for
example, larger samples of sensor data can be gathered
before forwarding it protected by µDTNSec.

Altogether, the evaluation showed that µDTNSec
needs be configured for its application to perform best.
Thus, µDTNSec provides no appropriate solution for
real-time communications. However, its configurability
makes it suitable to a wide range of delay-tolerant ap-
plications.

4.4 Quality of RNGs

For cryptographic applications a cryptographically se-
cure RNG is required. In case of µDTNSec, the security
of the generated nonce, IV , and the session key depends
on the randomness of the RNG. We run the Contiki [41]
operating system, which provides two sources of ran-
domness, the noise of the least significant bits of the
A/D converter and the RNG of the attached radio chip.
On our platform we used the AT86RF231 and its suc-
cessor AT86RF233. Thus, we compare the quality of

these three RNGs with the default Linux /dev/random
RNG.

To evaluate and compare these four RNGs, we plot-
ted graphs showing the probability distribution of gen-
erated values. Furthermore, the statistical analysis pro-
gram Dieharder [42] has been used. While it is incapable
of proofing randomness of RNG output, it can still be
used to evaluate the statistical properties of the val-
ues’ distribution, e.g., by detecting patterns. It is thus
helpful to compare RNGs with each other. For each
RNG evaluation, we collected two times 64MiB data.
Probability distributions have been plotted in Figures
8a to 8d show.

4.4.1 Linux /dev/random

Before testing the actual targeted RNGs, we ran the test
suite on a well-tested RNG as a ground truth for compar-
ison. The data has been generated using /dev/random
on a current GNU/Linux system (Ubuntu 14.04.2 LTS,
GNU/Linux 3.16.0-30 x86_64).

Looking at the output of the analysis by Dieharder
and at the probability distribution of the different byte
values (cf. Figure 8a) in the generated 64MiB, these
results look exactly as expected from a good RNG. The
byte values appear in nearly the same frequency. A per-
fect uniform distribution would be expected at 0.3906%.
The Dieharder evaluation results in 13/15 ‘passed’ tests.
The tests which are ‘failed’ or ‘weak’ are probably due to
the comparatively small amount of analyzed data. This
also results in the repeated usage of the same random
data for some tests. To have enough data for theses
tests, presumably approx. 1GiB random data would be
required. However, we assume that for a basic quality
rating of a RNGs randomness 64MiB are enough.
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(b) A/D Converter Noise
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(c) AT86RF231 RNG
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(d) AT86RF233 RNG

Fig. 8: Comparison between RNGs: Probability distribution of generated values

4.4.2 A/D Converter Noise

Contiki ships with a RNG that uses the noise of the two
least significant bits of the A/D converter to generate
random numbers. Due to the relatively long A/D conver-
sion, this RNG can only reach a data rate of 0.2KiB/s

for the generation of random numbers.
All 15 Dieharder tests ‘failed’, which means — with

a high probability — that the RNG based on A/D con-
verter noise does not produce cryptographically secure
random numbers. This outcome is confirmed when look-
ing at the byte values in Figure 8b. It can be seen that
some byte ranges appear with a much higher probabil-
ity, i.e., up to 10%. In reverse, this means that some
byte ranges appear with a much lower probability, i.e.,
down to 0.01%. Conclusively, random numbers gener-
ated based on noise from the A/D converter do not
appear to be uniformly distributed and are, thus, not
suitable for cryptographic applications.

4.4.3 AT86RF231 RNG

A faster and more trustworthy source of randomness
is provided on the INGA platform as a two bit RNG
provided by the built-in radio. According to the data

sheet, AT86RF231 provides a “True Random Number
Generation for Security Application” [43]. This RNG
provides a two bit random value every 1 µs. This corre-
sponds to a theoretical maximum data rate of approx.
244.1KiB/s. In our test setup using the Contiki oper-
ating system, a maximum data rate of 10.1KiB/s has
been reached. Because the SPI bus, which is connected
to the sensor node, runs with a maximum of 4MHz6,
the maximum possible data rate is already limited to
approx. 61.0KiB/s. Taking into account the additional
overhead of the Contiki operating system, this explains
the real-world data rate.

Looking at Figure 8c and the results from Dieharder,
this RNG has serious problems. All 15 tests of Dieharder
‘fail’. The probability distribution shows that values
which contain many ‘0’s in their binary representation,
have a much higher probability of occurrence. For ex-
ample, all values containing no or only one ‘1’ in their
binary representation (0, 1, 2, 4, 8, 16, 32, 128) can be
seen easily by looking at Figure 8c. We were not able
to find the definitive cause of the bad result.

6 The ATmega1284P [44] of the INGA platform runs with
8MHz and supports a maximum SPI data rate of f/2.
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4.4.4 AT86RF233 RNG

Using the same firmware on the current version of the
INGA platform, which is based on a new revision of
the radio, the AT86RF233 [45], does not exhibit this
problem.

The results from Dieharder as well as the probability
distribution shown in Figure 8d demonstrate a nearly
similar quality as /dev/random. 13/15 (Measurement
1) and 12/15 (Measurement 2) ‘passed’ Dieharder tests
and only one ‘weak’ test result, show — with high prob-
ability — that this RNG can be used for cryptographic
applications with good confidence.

4.4.5 Summary

Based on the discussed results of three different RNGs
available on the INGA platform running the Contiki op-
erating system, only AT86RF233 provides random num-
bers with a quality, which can be used for cryptographic
applications. The other two RNGs, the AT86RF231
RNG and the one based on the noise of the A/D con-
verter, must not be used for cryptography because their
output exhibit patterns. Thus, parts of their output
could be guessed with certain probability, which would
break the usage of cryptographic algorithms.

5 Conclusion

We presented µDTNSec, an extension to the BP imple-
mentation µDTN for Contiki OS. We provide a Public
Key Infrastructure with lightweight certificates that are
exchanged via IPND. Due to the performance and en-
ergy impact of ECC, the required security level must
be chosen carefully. For example, if only authenticity
is required, µDTNSec’s signature mode should be used
without encryption. We evaluated the Random Number
Generators for our cryptographic operations provided
by the AT86RF231 radio, its successor AT86RF233,
and one based on the noise of the A/D converter. We
found several issues making only AT86RF233 suitable
for cryptographic applications.

µDTNSec is licensed as open-source and can be down-
loaded at https://www.ibr.cs.tu-bs.de/projects/mudtn/.
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