

Investigation of Angle Dependent Errors in Phase-based Ranging with Different Antennas

EWSN 2020, Lyon, France

Yannic Schröder, Til Koke, Christoph Thomas, and Lars Wolf Institute of Operating Systems and Computer Networks, TU Braunschweig, Germany

Motivation

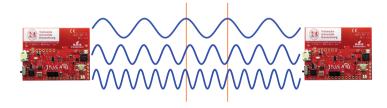
Antenna orientation cannot be controlled in localization scenarios

Motivation

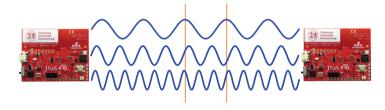
- Antenna orientation cannot be controlled in localization scenarios
- Most localization research ignores device orientation

Motivation

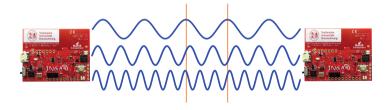
- Antenna orientation cannot be controlled in localization scenarios
- Most localization research ignores device orientation
- Antenna orientation and type influence phase-based ranging

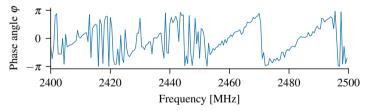


- Antenna orientation cannot be controlled in localization scenarios
- Most localization research ignores device orientation
- Antenna orientation and type influence phase-based ranging
- Radiation patterns do not contain phase information

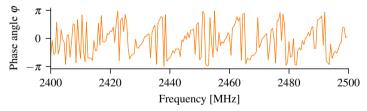

Phase-based Ranging

Obtain distance in meters between two wireless sensor nodes

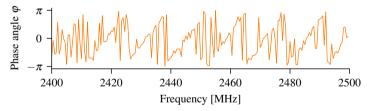

- Obtain distance in meters between two wireless sensor nodes
- Radio transceivers with Phase Measurement Units (e.g. AT86RF233)


Phase-based Ranging

- Obtain distance in meters between two wireless sensor nodes.
- Radio transceivers with Phase Measurement Units (e.g. AT86RF233)
- Measure phase response of radio channel between nodes



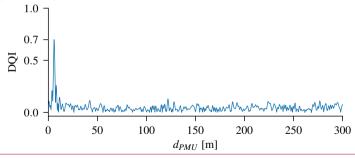
- Obtain distance in meters between two wireless sensor nodes.
- Radio transceivers with Phase Measurement Units (e.g. AT86RF233)
- Measure phase response of radio channel between nodes
- Exemplary phase data for 5 meter distance:



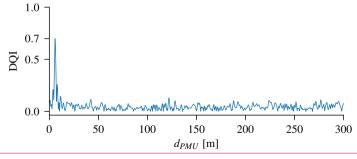
- Obtain distance in meters between two wireless sensor nodes.
- Radio transceivers with Phase Measurement Units (e.g. AT86RF233)
- Measure phase response of radio channel between nodes
- Exemplary phase data for 10 meter distance:

- Obtain distance in meters between two wireless sensor nodes
- Radio transceivers with Phase Measurement Units (e.g. AT86RF233)
- Measure phase response of radio channel between nodes
- Exemplary phase data for 10 meter distance:

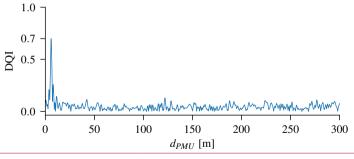
Distance is proportional to slope/frequency of phase response


Complex-valued Distance Estimation (CDE)

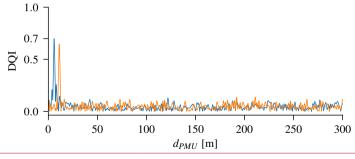
■ Compute Fast Fourier Transform (FFT) from complex signal


- Compute Fast Fourier Transform (FFT) from complex signal
- Result is the **time-domain impulse response** of the radio channel

• Exemplary impulse response for 5 meter distance:



- Compute Fast Fourier Transform (FFT) from complex signal
- Result is the **time-domain impulse response** of the radio channel
- Maximum peak indicates the distance (via propagation speed c)
- Exemplary impulse response for 5 meter distance:



- Compute Fast Fourier Transform (FFT) from complex signal
- Result is the time-domain impulse response of the radio channel
- Maximum peak indicates the distance (via propagation speed c)
 - Peak height = Distance Quality Indicator (DQI)
- Exemplary impulse response for 5 meter distance:

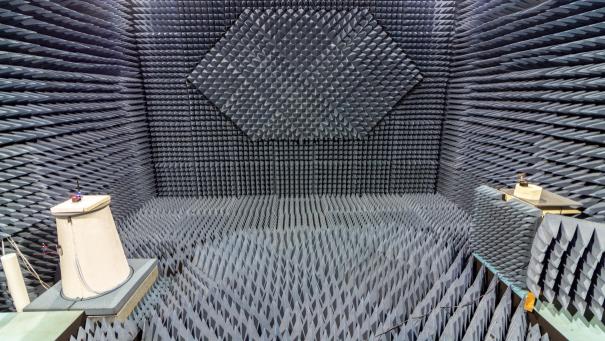
- Compute Fast Fourier Transform (FFT) from complex signal
- Result is the **time-domain impulse response** of the radio channel
- Maximum peak indicates the distance (via propagation speed c)
 - Peak height = Distance Quality Indicator (DQI)
- Exemplary impulse response for 5 and 10 meter distance:

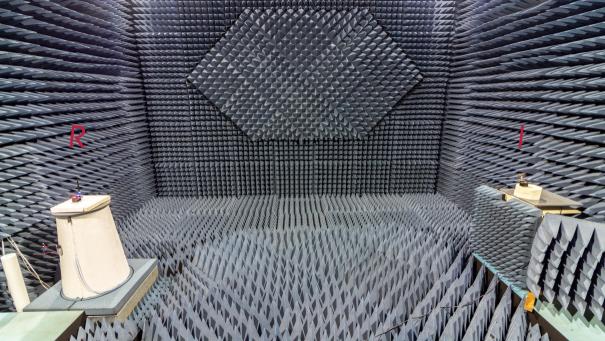
Research Questions

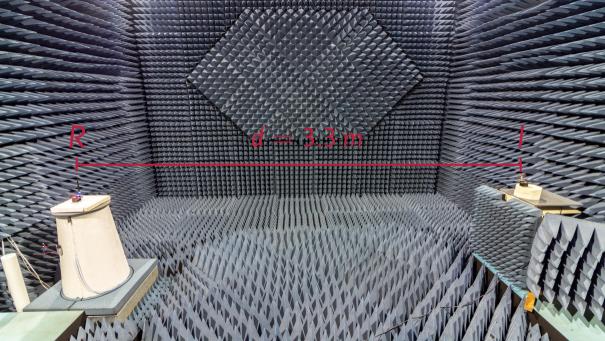
How does antenna orientation influence phase-based ranging?

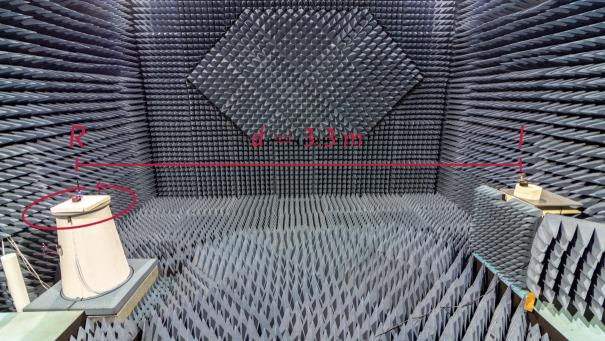
Research Questions

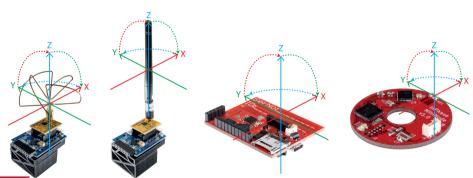
- How does antenna orientation influence phase-based ranging?
- Which angle dependent error can be expected for different antenna designs?



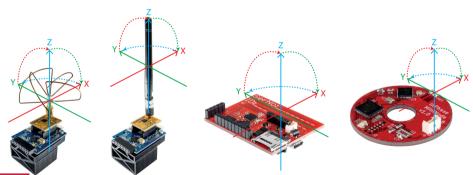

Research Questions


- How does antenna orientation influence phase-based ranging?
- Which angle dependent error can be expected for different antenna designs?
- How to measure this error in a controlled environment?

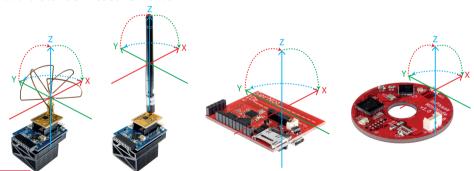



Experiment in Anechoic Chamber

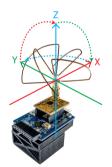
• 4 types of antennas evaluated in 6 combinations

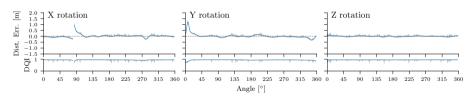


- 4 types of antennas evaluated in 6 combinations
- Reflector rotated 360° around 3 axes in 1° steps


- **4 types of antennas** evaluated in 6 combinations
- Reflector rotated 360° around 3 axes in 1° steps
- 50 measurements per angle

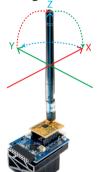
Experiment in Anechoic Chamber

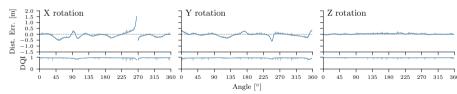

- **4 types of antennas** evaluated in 6 combinations
- Reflector rotated 360° around 3 axes in 1° steps
- 50 measurements per angle
- 324000 distance measurements



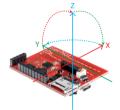
Two Skew-Planar Wheel Antennas

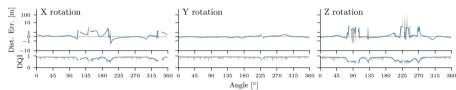
- Lowest maximum error
- Lowest angle dependent error





Two Monopole Antennas


- Low error when rotated around Z-axis
- Higher errors in other directions



- Low error when rotated around Y-axis.
- High errors in other directions

■ Angle Dependent Errors exist in Phase-based Ranging

- Angle Dependent Errors exist in Phase-based Ranging
- Error patterns are largely different between antennas

- Angle Dependent Errors exist in Phase-based Ranging
- Error patterns are largely different between antennas
- Skew-Planar Wheel Antenna exhibits lowest error.

- Angle Dependent Errors exist in Phase-based Ranging
- Error patterns are largely different between antennas
- Skew-Planar Wheel Antenna exhibits lowest error.

Whats more in the paper?

- Angle Dependent Errors exist in Phase-based Ranging
- Error patterns are largely different between antennas
- Skew-Planar Wheel Antenna exhibits lowest error.

Whats more in the paper?

Detailed description of evaluation setup

- Angle Dependent Errors exist in Phase-based Ranging
- Error patterns are largely different between antennas
- Skew-Planar Wheel Antenna exhibits lowest error.

Whats more in the paper?

- Detailed description of evaluation setup
- Results for three other antenna combinations.

- Angle Dependent Errors exist in Phase-based Ranging
- Error patterns are largely different between antennas
- Skew-Planar Wheel Antenna exhibits lowest error.

Whats more in the paper?

- Detailed description of evaluation setup
- Results for three other antenna combinations.
- Discussion of the results

- Angle Dependent Errors exist in Phase-based Ranging
- Error patterns are largely different between antennas
- Skew-Planar Wheel Antenna exhibits lowest error

Whats more in the paper?

- Detailed description of evaluation setup
- Results for three other antenna combinations
- Discussion of the results

Thank you for your attention!

schroeder@ibr.cs.tu-bs.de

