
IBR

Contiki Ring File System for Real-Time Applications

Sebastian Schildt, Wolf-Bastian Pöttner, Lars Wolf

PWSN 2012

Introduction State of the Art RFS Conclusions

GINSENG Project
3'%#-H*)&J")&<'b+'#E&I'$%W',&

4>$$".#)2#'#")
•  [UVV&R[&;->'#',&*#'*&

•  ^h&$'+$-#$&cY-F&i&X#'$$(#'d&
•  ^&Y-F&$'+$-#&F"%D&*;%(*%-#&
•  ^&$"+`&"+$",'&X-#%*W)'&-g;'&
;-+%*"+'#&c"+;)8&W*;`'+,&3:$d&

!('.."1)+.)#:")."'$)?>#>$")
•  TUVV&R[&;->'#',&*#'*&
•  ^h&*,,"2-+*)&+-,'$&i&$'+$-#$&

[\8V]8^^& 3.=O&[V^^6&1*#;')-+*6&=X*"+& U&

!"#
!$#!%#&'#

()*#+,-).#

/0+).1#%2!'#3)4)56)7#&'!'# 8#

Developing a WSN for
industrial applications

Petrogal oil refinery as testbed

Deterministic performance and
topology

Ability to run closed-loop
control applications

Real Time capable system required

Sebastian Schildt | Contiki Ring File System for Real-Time Applications | 2

IBR

Introduction State of the Art RFS Conclusions

GinMAC: GINSENG Communication

Fixed Tree Topology TDMA MAC

Static tree toplogy

GinMAC epoch schedules transmission slots

Each node has some unused slots for processing

  
 


   

 


   
     



  









 



  
 

   
     



  


 
 




Wolf-Bastian Pöttner | WSN MAC | Page 1 / 64

Basic Upstream Schedule

Basic + Retransmissions and Downstream Broadcast Slots

Basic + Retransmission and Downstream Broad- and Unicast Slots

GinMAC: Example Schedules

C A B Sleep
960 ms

B
B S S S

t

C A B
Sleep

B A B B C
S B S S B S S S

t

S B C

Sender
Receiver

Sender
Receiver

Sink

B C

A

C A B Sleep
860 ms

B A B B C
S B S S B S S S

t

S B C Sender
Receiver

S S
B C

B
A

Sebastian Schildt | Contiki Ring File System for Real-Time Applications | 3

IBR

Introduction State of the Art RFS Conclusions

Storing data in WSNs

Many application want to use persistent data storage

Usually directly on EEPROM, flash ICs
→ Page based, can only “program” bits of a clean page, not reset
them, potentially big erase blocks

Long term data logging

Operational data and statistics not directly related to the
applications

Configuration settings

Contiki provides the Coffee filesystem

Sebastian Schildt | Contiki Ring File System for Real-Time Applications | 4

IBR

Introduction State of the Art RFS Conclusions

COFFEE Write Times

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000 6000

tim
e/

m
s

n'th write

91 ms 179 ms
357 ms

711 ms

Average writing time
Median writing time

: 0.43 ms
: 0.24 ms

Writing time for 8 byte
Cummulative writing time

Write 6000 x 8 bytes with a TMoteSky to a M25P80 flash memory

Sebastian Schildt | Contiki Ring File System for Real-Time Applications | 5

IBR

Introduction State of the Art RFS Conclusions

COFFEE and Real-Time

log structured, using per-file logs instead of a global log

needs all files to be stored sequentially in flash

can only transparently extend files by copying their complete
contents to a new file

→ If you do not know exactly what and how much you you are going to
write, Coffee introduces long and hard to predict write delays

Sebastian Schildt | Contiki Ring File System for Real-Time Applications | 6

IBR

Introduction State of the Art RFS Conclusions

RFS Design Goals

Real-Time capabilities

Abstraction of a FIFO: Writes append data, reads consume data

Efficient, even if file sizes and access patterns are not known
beforehand

Minmize copying of user data

Adherence to CFS API

Wear leveling

Sebastian Schildt | Contiki Ring File System for Real-Time Applications | 7

IBR

Introduction State of the Art RFS Conclusions

RFS Architecture

Sector 0 / Metadata Sector 1 / Virtual 0 Sector 2 / Virtual 1

Sector 3 / Virtual 2 Sector 4 / Virtual 3 Sector 5 / Garbage Collection

File Header 0

File Header 1

...

File Header n

RFS Block

RFS Block

RFS Block

RFS Block
RFS Block

RFS Block

Flash Page

Data Header

GC Sector

RFS sector infoRFS sector info

RFS sector infoRFS sector info

Sebastian Schildt | Contiki Ring File System for Real-Time Applications | 8

IBR

Introduction State of the Art RFS Conclusions

RFS Write Times

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000 6000

tim
e/

m
s

n'th write

Average writing time
Median writing time
Maximum writing time

: 0.42 ms
: 0.37ms
: 6.47ms

Writing time for 8 byte
Cummulative writing time

Sebastian Schildt | Contiki Ring File System for Real-Time Applications | 9

IBR

Introduction State of the Art RFS Conclusions

RFS Write Times: A closer look

 0.1

 1

 10

 100

 1000

 0 1000 2000 3000 4000 5000 6000

tim
e/

m
s

n'th write

Average writing time
Median writing time
Maximum writing time

: 0.42 ms
: 0.37ms
: 6.47ms

Writing time for 8 byte
Cummulative writing time

Higher delays, when needing to allocate a new RFS block

Sebastian Schildt | Contiki Ring File System for Real-Time Applications | 10

IBR

Introduction State of the Art RFS Conclusions

RFS Write and Real-Time

Normal write times already much more bounded than in Coffee

Extending files by adding another RFS block costs some extra time

→ RFS can be configured to never extend a file. Instead the user can
query the remaining bytes in the current RFS block and schedule the
extension when convenient

Sebastian Schildt | Contiki Ring File System for Real-Time Applications | 11

IBR

Introduction State of the Art RFS Conclusions

RFS Garbage Collection

flash can only be erased in blocks, single bytes cannot be
overwritten

garbage collection is needed to free up used flash areas

Metadata Sector
Copy life entries from header sector to garbage collection sector. Erase
old sector and mark it as new garbage collection sector

Data Sector
Copy RFS blocks with active data from data sector to garbage collection
sector. Erase old sector and mark as the new garbage collection sector

Sebastian Schildt | Contiki Ring File System for Real-Time Applications | 12

IBR

Introduction State of the Art RFS Conclusions

RFS Virtual Sector Mapping

0

1

2

3

4

5

0

1

2

3

4

5

6

7

0

1

2

3

4

5

0

1

2

3

5

6

7

4

v
irtu

a
l s

e
c
to

rs

v
irtu

a
l s

e
c
to

rs

p
h

y
s

ic
a

l s
e

c
to

rs

p
h

y
s

ic
a

l s
e

c
to

rs

Garbage Collection

Metadata
Sector

Garbage Collection
sector

Data
Sector

Sebastian Schildt | Contiki Ring File System for Real-Time Applications | 13

IBR

Introduction State of the Art RFS Conclusions

Garbage Collection Times

 0

 500

 1000

 1500

 2000

 2 4 6 8 10 12 14 16

Ti
m

e
/ m

s

Relocated blocks

Erasing full sector (256 pages)
Copying 1 RFS block (15 pages)

: 678 ms
: 77 ms

Garbage collection time

Sebastian Schildt | Contiki Ring File System for Real-Time Applications | 14

IBR

Introduction State of the Art RFS Conclusions

RFS Garbage Collection and Real-Time

Garbage collection takes a long time compared to other operations

It will not occur very often.

→ Automatic garbage collection can be disabled. The application can
schedule the garbage collection when appropriate.

Sebastian Schildt | Contiki Ring File System for Real-Time Applications | 15

IBR

Introduction State of the Art RFS Conclusions

Advertisement: The INGA Node

The fully open-sourced Inexpensive Node
for General Applications (INGA) node has
been developed with the motivation to fill
in as a more modern, versatile successor to
the TMoteSky platform

ATmega 1284p uC with 128 kiB Flash, 16 kiB SRAM, 4 kiB
EEPROM

AT86RF231 IEEE 802.15.4 Transceiver

Various sensors: Accelerometer, Gyroscope, Pressure Sensor,
Temperature Sensor

MicroSD Card Slot, LiPo charge controller

Sebastian Schildt | Contiki Ring File System for Real-Time Applications | 16

IBR

Introduction State of the Art RFS Conclusions

Future Work and Conclusions

RFS provides a Real-Time capable filesystem for buffering tasks

Allowing the user to schedule potentially long running tasks, allows
applications to meet harder real-time constraints

Some Opportunities for future work:

Allow data to stay valid after being read (configuration, OTA updates)
More features: Directories, multi-GB scalability?
→ Stay tuned: Real-Time Capable FAT implementation on its way

谢谢! Thank you!

Sebastian Schildt | Contiki Ring File System for Real-Time Applications | 17

IBR

	Introduction
	State of the Art
	RFS
	Conclusions

