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Abstract—Today, many sensor nodes are equipped with a
microSD slot to provide a cost effective way to store large
amounts of data. When using the FAT file system, data collected
by a node can be easily read by a PC without the need for any
special software or communication protocol. While several FAT
implementations for microcontrollers do exist, they are not suited
for real-time applications. For a WSN in an industrial scenario
where a node needs to run a closed loop control program, logging
to a non-real-time capable persistent storage system is not an
option.

In this paper we present RATFAT, an efficient implementation
of a flexible real-time capable FAT file system for Contiki, that
can be used for applications requiring real-time guarantees.

I. INTRODUCTION

For cost and energy efficiency reasons wireless sensor
networking applications are mostly built using relatively weak
hardware platforms. A common sensor node is often powered
by an 8 bit microprocessor and has a few kiB of RAM and a
few tens of kiB of flash storage available. The nodes usually
run cooperative multitasking runtime systems such as TinyOS'
or Contiki>. In many applications there is the requirement that
the system needs to be able to store data persistently. Using
a microSD card is a cost-effective and easy method to store
data: microSD cards are supported by modern sensor nodes,
they are cheap and provide almost “unlimited” storage from
the perspective of a small 8 bit microcontroller.

In several WSN applications, a sensor might be discon-
nected for long-term monitoring, and data will be gathered
by a ferry [6] later, or a node just caches sensed data during
temporary transient link failures. In addition, some systems
may collect data over a longer period (e.g., about link quality)
and store those information to persistent storage. Later, the
collected raw data can be processed en-bloc producing a short
summary that can be sent via the wireless interface [4].

Real-time capabilities are needed if a sensor network uses a
TDMA scheme for communication or if a node controls actors
in a closed loop control. This is usually the case for WSNs
deployed in industrial settings [3]. Another field with real-time
demands are healthcare applications. Here people often carry
small data loggers for long-term monitoring. These devices
must guarantee a stable sampling rate. In addition, medical

Uhttp://www.tinyos.net/
Zhttp://www.contiki-os.org/

devices might perform continuous classification of sensor data
to detect emergency situations such as people falling [2].
Logging data to persistent storage should not interfere with
these time-critical operations.

The Contiki operating system already provides the COFFEE
file system [7] which can be used for persistent storage of data.
COFFEE, however, cannot work in real time environments, as
its write times are unpredictable and Contiki does not preempt
its tasks. RFS, a real-time-capable file system for Contiki has
been presented in [5]. However, RFS was optimized for on-
board flash storages. RFS is a Ring File System designed
for logging purposes, also providing wear leveling features.
However, SD cards include a flash translation layer that deals
with wear leveling. Just like COFFEE, RFS is not a good fit for
huge SD cards, and the data stored by these file systems cannot
be read on a PC without developing specialized software.

There are several implementations of FAT for small embed-
ded systems available. For example FatF's® is a highly portable
FAT implementation for small microcontrollers such as AVR,
PIC or 8051 CPUs. For the popular Arduino project* tinyFAT?
allows reading and writing FAT volumes on standard SD cards.

In this paper we present RATFAT, a FAT implementation
for Contiki. RATFAT offers a similar API to COFFEE so
it can act as a drop-in replacement for many applications.
Due to its FAT compatibility, volumes written by RATFAT
can be read on common PCs using any operating system. In
contrast to other FAT implementations for microcontrollers,
RATFAT can be used in real-time applications, even when
using a cooperative multitasking systems such as Contiki. To
achieve this, RATFAT breaks up file system operations into
multiple atomic operations. This allows other processes to be
scheduled between the execution of these different substeps
that represent a file system operation. RATFAT has knowledge
about the duration of various operations, which allows it to
schedule the maximum number of substeps without violating
a predefined deadline. This enables the developer to use the
optimal tradeoff between file system throughput and real-time
constraints for a specific application.

We implemented RATFAT on the INGA sensor node [1]

3http://elm-chan.org/fsw/ff/00index_e.html
“http://www.arduino.cc
Shttp://henningkarlsen.com/electronics/library.php?id=37
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Figure 1. RATFAT Architecture

running Contiki. RATFAT should run on any node supported
by Contiki that offers a suitable storage.

The remainder of this paper is organized as follows: Sec-
tion II introduces RATFAT’s architecture. Section III sheds
some lights onto RATFAT’s real-time capabilities and in
section IV we compare RATFAT to COFFEE and quantify
how RATFAT improves the real-time capability of a system
and how much additional overhead is added by the real-time
capability. Finally, in section V we conclude and give some
final remarks.

II. RATFAT DESIGN

Figure 1 gives an overview of RATFAT’s architecture. The
grey blocks at the bottom are drivers for storage devices
that should be provided by the platform. For the RATFAT
implementation, the Contiki SD card driver for INGA was
extended to support SDHC cards and the functionality to
determine the size of the inserted card has been added. Above
the device driver layer RATFAT introduces a block abstraction
layer: As the FAT file system specification is based on the
device abstraction of a linear array of blocks, this is what the
Block IO layer provides. Closely related to the Block IO layer
is a component that can parse Master Boot Record (MBR)
style partition tables. It is common to use a partition table
when formatting SD cards on a PC. In this case the file
system resides on a device such as /dev/sdX in Linux,
indicating the first partition of device sdX. Alternatively, the
file system can be put directly on the device (/dev/sdX on
Linux) without using partitions. The MBR component uses
the Block IO layer to read the partition table from a device,
and the Block 10 layer uses the MBR component to determine
partition boundaries.

The actual implementation of the FAT file system sits on top
of the block layer. Both, the FAT16 and FAT32 variants are
supported. As FAT12 is not in widespread use anymore (it has
been used mainly on floppy disks), it is not supported. Due to
resource constraints, RATFAT handles only the classical DOS
8.3 naming scheme. However, since long names reside in an
extended attribute and all files on a valid FAT system always
possess an 8.3 alias, this is not a problem. If a file has a long
filename, that name will be ignored by the implementation.
The file can still be accessed by using its unique 8.3 name. As
most WSN nodes have constrained resources, RATFAT takes

the design choice of only using one 512 byte buffer for its
operations. This increases performance significantly compared
to a buffer-free FAT implementation. While this precludes
performance gains due to more advanced sector caching, it
is a reasonable tradeoff considering that a typical WSN node
only has limited amounts of RAM (16 kiB for an INGA node).

The FAT implementation supports Contiki’s Common File
System (CFS) API, which means it can be used as a drop-
in replacement for other CFS compatible file systems such as
COFFEE. Listing 1 shows the supported CFS API calls.

As the CFS API is the lowest common denominator, RAT-
FAT exports an extended API providing access to additional
functionality. This includes functions to format an SD Card
and the ability to create or remove directories. RATFAT’s
extended API is shown in Listing 2.

uint8_t cfs_fat_mount_device (struct
diskio_device_info xdev);

void cfs_fat_umount_device () ;

uintl6_t cfs_fat_get_last_date (int fd);

uintl6_t cfs_fat_get_last_time (int fd);

uintl6_t cfs_fat_get_create_date (int fd);

uintl6_t cfs_fat_get_create_time (int fd);

uint32_t cfs_fat_file_size (int fd);

int cfs_fat_rmdir (char x);

int cfs_fat_mkdir(char x);

void cfs_fat_sync_fats ();

int cfs_fat_mkfs(struct diskio_device_info x*
dev);

Listing 2. RATFAT extended API

Of special interest is the fat_sync function: A FAT
volume contains two copies of the File Allocation Table. The
rationale is that, should one of the tables get damaged, the
backup can still be used. However, since synchronizing both
FATs can be a very costly operation, especially when operating
with little buffer space, RATFAT chooses to only keep one
FAT up to date. The user can choose to sync FATs when it is
convenient, for example during unmounting of a volume. This
is not a compatibility problem, because in case of an error free
volume, PC FAT implementations will just choose the primary
FAT and ignore the state of the secondary FAT.

By using the APIs exposed by RATFAT, an application
can read and write FAT volumes. However, the resulting
application will not be real-time-capable. Depending on the
requested operation and the state of the volume, a read or write
operation will take varying amounts of times, which are not
predictable for the application. RATFAT’s real-time-capability
is provided by a special real-time management component, that
sits on top of the RATFAT core and that modifies the way
RATFAT is handling application requests.

III. REAL-TIME MANAGEMENT

A real-time system must guarantee certain response times
for an application. A file system operation such as creating
files, reading or writing data can take different amounts of
time, depending on whether the data is distributed across
different sectors, whether some meta data structures need to
be modified, and whether the operation can be performed



int cfs_open(const char xname, int flags) ;

void cfs_close(int fd);

int cfs_read(int fd, void xbuf, unsigned int len);

int cfs_write(int fd, const void xbuf, unsigned int len);
cfs_offset_t cfs_seek(int fd, cfs offset t offset, int whence);
int cfs_remove(const char xname);

int cfs_opendir(struct cfs dir xdirp, const char xname);

int cfs_readdir(struct cfs dir xdirp, struct cfs dirent xdirent);
void cfs_closedir(struct cfs dir *dirp);

Listing 1. Supported CFS API calls
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Figure 2. Queueing of file system requests

in the cache. When using RATFAT through the standard
API, the calling process is blocked until the file system
operation finishes. Thus, to guarantee real-time constraints, a
process must always expect worst-case latencies. This often
requires large time constants and precludes fulfilling applica-
tion requirements. The real-time management component of
RATFAT shifts file system operations to a separate process,
the file system process (FSP).

As Contiki, similar to most runtime environments for small
microcontrollers, only supports cooperative multitasking, not
much is gained by this strategy yet: Once a process is sched-
uled, it will run to completion before the next process can be
scheduled. Thus, the system is still blocked until an operation
completes. The FSP works around this limitation however: It
splits operations into smaller, atomic operations, which are
executed through Contiki’s scheduler. Thus, a write request
issued by an application will be translated to several smaller
operations that need to be performed. When an application
issues a request to the file system, this request will be queued
by RATFAT in constant time and the Contiki scheduler is
used to wake up the FSP. Queuing operations take constant
times and are not subject to any operations on the actual
medium. Once scheduled, the FSP will execute some steps of
pending operations and then reschedule itself. This gives other
applications the ability to run and allows real-time applications
to meet their deadline.

Based on this scenario the following requirements have been
defined for RATFAT’s real-time capabilities:

o Calls to RATFAT should never block.

e A cooperative-multitasking friendly file system process
(FSP) is used to perform RATFAT operations.

e The order of operations on the file system must be
retained.

« A calling process needs to be informed when an operation
on the file system finished.

o The time needed for RATFAT operations should be
deterministic.

The real-time version of RATFAT exports the same func-
tions as the normal RATFAT implementation. The functions
are prefixed with ccfs (concurrent cfs) instead of cfs. All
ccfs functions return immediately. They will just add an
entry representing the requested operation to the FSP’s queue,
and send the process a signal. An example for queuing a
read request is shown in Figure 2. The token parameter
will be filled by RATFAT with an identifier that allows
tracking of the operation’s state. A RATFAT request is in the
QUEUED state when it is added to the FSP queue. When the
FSP starts working on the request its entry transitions to the
INPROGRESS state. The caller of a ccfs function can query
the state of a dispatched file system request at any time. Once
a request is finished, the calling process will be sent an event
to inform it about the result of the operation.

Usually, sensor nodes will use the SPI interface of SD
cards. Since only one device can be active on the SPI bus,
the FSP should not be interrupted while performing any SPI
transactions. Doing so would result in undefined behavior and
has to be avoided. Therefore, RATFAT has SD block read
and write operations that are executed over SPI as atomic
operations that cannot be interrupted. File system operations
that require multiple block read and write operations are split
up into multiple atomic operations.

RATFAT has a user-configurable constant
FAT_COOP_SLOT_SIZE_MS that defines the maximum
amount of time in milliseconds that the FSP is allowed to
run for one invocation. The FSP has knowledge about the
duration of different operations such as reading a byte from
the SPI or writing a sector to the SD card. This enables the
FSP to reliably predict the duration of pending operations.
Based on this information, as many operations as possible
are performed during one invocation. The FSP will make
sure it yields the CPU before the next Contiki timer fires or
latest after FAT_COOP_SLOT_SIZE_MS ms. One iteration
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of the FSP process is shown in Figure 3. By configuring
FAT_COOP_SLOT_SIZE_MS the user can trade between
responsiveness of the system (smaller slot size) and less
overhead for context switching (longer slot size).

When the FSP process is scheduled, it will check whether
a request is currently in progress. If there is a request in state
INPROGRESS the FSP will execute the next step for that
process, otherwise it selects the first step from the next request
in the queue. The FSP will continue to execute steps if there
are still pending requests in the queue and as long as there
is still enough time left to execute the next step. When the
last step of a request has been executed the calling process is
signaled. If the current time slot does not allow execution of
the next step, the FSP will reschedule itself. And if the FSP
processed the last request in the queue it will terminate itself
until it is triggered again by an external application adding a
new request to the queue.

IV. EVALUATION

The evaluation was performed on a INGA sensor node [1].
The node features an Atmel ATmega 1284p processor with
16 kiB of integrated RAM and 128 kiB of integrated flash
storage. INGA supports micro SD cards attached via SPI,
which are used for RATFAT and COFFEE in this evaluation.
For the results shown here we used a 2GB microSD card from
Transcend. We found in our experiments, that writing data to
the SD card is the most critical operation since write times vary
and potentially involve writing (and reading) multiple blocks
for book keeping purposes. Moreover, the most convenient
reason for having FAT in a WSN is to be able to write data
”in the field” and easily read it on a PC afterwards. Therefore,
we concentrate solely on write operations in the evaluation.

A. Basic throughput and timing tests

As a baseline test, we did a very basic evaluation: For both
COFFEE and RATFAT we created a file system on the SD
card with default parameters and wrote 50 kiB data to a file.
We choose to write data in 8 bytes steps, as small writes are
common when logging sensor data. For COFFEE, we have
limited the file system size to 500 kiB since COFFEE does
not scale well with increasing file system sizes.

The results for COFFEE can be seen in Figure 4(a). Most
writes take around 20 ms, however every once in a while
writing takes significantly longer (up to 5500 ms in this test
case). This is due to the fact that we exceed the maximum
amount of reserved blocks for a file. In this case COFFEE
creates a new bigger file, and copies the complete data from
the old file to the new file. Once the new file’s size is exceeded
again, the data is duplicated once more, which will take longer
each time the file is extended, as there is more data to copy.
This is a limitation in COFFEE, which can only be overcome
if the developer knows the maximum size of a file before
creating it.

We performed the same test with RATFAT in non-real-
time mode by using the CFS API directly. The results can
be seen in Figure 4(b). Average write times are well below
1 ms. Most writes go directly to RATFAT’s 512 byte sector
cache. Once a sector is filled it needs to be written to the
SD card. This will take about 25 ms. The maximum time
to perform a write operation occurs at 32 kiB, taking 71 ms.
This is most probably due to housekeeping of the FAT. Overall
this shows, that for RATFAT maximum write times are more
tightly bounded whereas COFFEE shows a trend of increasing
write times.

When writing to the microSD card COFFEE reaches an over-
all transfer rate of 0.36 kiB/s. RATFAT reaches 10.9 kiB/s.
While RATFAT performance is more consistent compared
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to COFFEE, it can still not guarantee real-time requirements.
Occasionally a file system needs to perform some management
and clean-up tasks. The main problem is, that even in this
simple test case both file systems occasionally need a write
time that is two magnitudes higher than the median write time
to execute a write due to internal housekeeping procedures.
So, an approximation to deal with that would be to schedule
a time that is more than 2 orders of magnitude larger than the
average execution time for file system operations.

In the next section we will take a look how RATFAT’s
behavior influences a real-time process, and how the real-time
capability of the system is improved by using RATFATS real-
time management module.

B. Real-Time Performance

In this test we study the real-time capability of RATFAT.
For comparison we will use the RATFAT API directly. We
omit COFFEE from this comparison as the previous section
already showed that it is definitively unsuitable for real-time
operation.

To get an idea how much additional overhead the real-
time management adds, we performed the write tests again
with RATFAT’s real-time APIL Instead of writing using the
blocking API, write requests are queued and the FSP process
is triggered to perform the actual write. Only after RATFAT
signals the successful completion of the write request, the
next write will be queued. In Figure 5 the write times for
the blocking API are compared to the real-time API. The
overall throughput is decreased to 6.0 kiB/s which is still more
than 50 % of the non-RT version. The “RATFAT-rt queueing”
line shows the time it takes to enqueue a write request. This
operation will be in the critical path for a real-time process. It
should have a short and predictable runtime. In the experiment
the average queuing time is 0.12 £ 0.03 ms.

In the next experiment we evaluate how RATFAT performs
on a loaded system. The setup of this experiment is shown
in Figure 6. We assume that we have a real-time process
that needs to be triggered regularly to sample some data.
We assume a sampling interval of 7. Every n sampling
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Figure 6. RATFAT’s real-time managments splits long running file system
operations into multiple atomic operations

intervals the process will trigger a write to a file. In a real
application, the write operation might be used to log some
data or results calculated using the sampled data. First, we
perform this experiments using RATFAT’s blocking CFS API.
In this cases, if an operation on the file system takes longer
than the sampling interval 7T, the real-time process will miss
a deadline. In the second experiment, we use RATFAT’s real-
time management component. This should split the file system
operations into smaller parts, allowing the real-time process to
meet its deadline.

In this experiment we set n to 5 and write 80 bytes with each
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write request. We vary the sampling interval 7'. The process
runs for 2500 sample periods, writing a total of 40,000 kiB of
data to a file. Figure 7 shows how many deadlines the sampling
process is missing using either the blocking file system API or
RATFAT’s concurrent API. It can be seen that for sampling
rates higher than 16 Hz (T' =~ 62ms), the blocking API leads
to an increase in missed deadlines. In contrast the concurrent
API, queueing request to the FSP process, allows the sample
process to meet all deadlines up to a sampling interval of
64 Hz (T =~ 16ms). This represents a 4-fold increase for the
safe real-time operating area. With 7" below 16 ms, the interval
is too short compared to the duration of the SPI transfers to
the microSD card for RATFAT to guarantee the deadlines. In
such a case, software tricks will not help anymore, instead the
application demands more powerful hardware.

C. Memory Footprint

To give an impression about RATFAT resource usage, we
measured RAM and ROM footprint on the INGA node. RAT-
FAT does not use any dynamic RAM, so it can also be used
on platforms where dynamic RAM allocation is not available.
Table I shows RATFAT’s and COFFEE’s memory footprint in
their respective default configurations. For RATFAT, we also
show the resource usage without the real-time management.

RATFAT uses significantly more RAM than COFFEE. This
is mainly due to the sector cache, which is also responsible
for RATFAT’s high throughput. The real-time variant uses
even more RAM to manage the queue and additionally write
buffers. When the real-time features are enabled RATFAT’s
codesize is almost twice as large as COFFEE’s. For nodes such
as INGA, whose processor includes a relatively large onboard
flash of 128 kiB this should not be an issue, however for more
constrained devices such as the older T-Mote Sky platform
sporting only 48 kiB of flash this might prevent the usage of
RATFAT.

V. CONCLUSIONS

We presented RATFAT, an implementation of the FAT file
system for WSN nodes. In combination with a node that

Table 1
RATFAT MEMORY FOOTPRINT

[ COFFEE [ RATFAT-non-RT [ RATFAT-RT

10748 14772 19786
233 907 1556

ROM (.text)
RAM (.data & .bss)

supports cheap SD cards using the FAT file system eases
data exchange between sensor nodes and PCs, as FAT is
supported by virtually all PC operating systems. As RATFAT
also supports the Contiki CFS API it can be used as a drop-in
replacement for applications that have been using COFFEE or
other CFS compliant file systems so far. RATFAT is available
as open source in the public INGA GitS.

In contrast to existing FAT implementations RATFAT in-
cludes a real-time management component, that can split file
system requests into smaller operations that are scheduled
based on the maximum allotted time for the file system.
Using RATFAT, real-time constraints for a process can be
fulfilled even when using a cooperative multitasking system
like Contiki.

In the evaluation we have shown that the real-time manage-
ment allows to implement systems with higher polling rates
for real-time processes as longer running file system operations
are broken down into shorter atomic operations. In fact on the
evaluated INGA node, real-time poll rates of up to 64 Hz can
be used. This leaves 15.6 ms between two process invocations
for atomic file system operations which take up to 12 ms.
Therefore, applications demanding even higher polling rates
would need more powerful WSN hardware.
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