
NASDI - Naming and Service Discovery
for DTNs in Internet Backbones

Sebastian Schildt, Wolf-Bastian Pöttner, Oliver Ohneiser, and Lars Wolf

Institute of Operating Systems and Computer Networks,
Technische Universität Braunschweig, Germany

[schildt|poettner|ohneiser|wolf]@ibr.cs.tu-bs.de

Summary. Delay Tolerant Networking (DTN) approaches based on the
Bundle Protocol are commonly used within mobile IP based networks.
Instead of being isolated applications, the Internet is often used to pro-
vide additional services or to route through other parts of the DTN
network. A major drawback is that current DTN routing and discovery
protocols are not generally applicable in the Internet as there is no com-
mon protocol to resolve DTN node names to convergence layer addresses
outside a local network.
We present Nasdi, an approach based on Distributed Hash Tables which
can support naming, routing, notifications and service discovery in a
heterogeneous DTN linked by the Internet. We present the architecture
and initial evaluations of a Nasdi prototype system we built for the
IBR-DTN software.

1 Introduction

Delay Tolerant Networking (DTN) approaches replace the end-to-end semantics
of common protocols such as IP with a hop-by-hop store and forward archi-
tecture [1]. Originally devised for interplanetary networks where nodes might
see each other only occasionally, this approach has also been widely applied for
ad-hoc networks with high mobility such as vehicular networks [2]. The Bundle
Protocol [3] is a standardized widely used DTN protocol. It supports optional
end-to-end acknowledgements on top of the hop-by-hop approach. In fact, the
Bundle Protocol can be seen as a superset of IP (and TCP, as it includes el-
ements from both the networking and the transport layer): In a continuously
connected network it works much like the former, while in addition it is able to
deal with disruptions of the network. This leads to the use of the Bundle Proto-
col in networks with mobile IP devices such as smartphones, which are regularly
connected to the Internet [4] [5].

However, the Bundle Protocol ecosystem has a major shortcoming when it
comes to operating in large-scale fully interconnected networks such as the In-
ternet: There is no standard mechanism to find a node or the next hop for a
specific DTN nodename. Compared to the standard IP architecture there is no
standardized naming system such as DNS and there is no usable routing protocol
to find the next hop to a destination if that hop is located in a so far unknown

2 Sebastian Schildt, Wolf-Bastian Pöttner, Oliver Ohneiser, and Lars Wolf

network across the Internet. The various proposed routing protocols for DTNs
normally assume an ad-hoc scenario relying on different forms of flooding and
network discovery, both of which are not applicable in the Internet.

In fact the “DTNBone” [6], which is a collection of DTN nodes operated in
the Internet by different institutions for DTN testing purposes, consists mainly of
a webpage. This page contains (often inaccurate) information about which node
can be reached at which IP address using which transport protocols. A DTN
administrator who wants to connect with the DTNBone takes this information
in order to configure a static route within his DTN server.

Therefore, we propose Nasdi, a mechanism that allows for naming, service
discovery and routing between DTN nodes operated in a large backbone network
such as the Internet. Nasdi is able to integrate peripheral networks and nodes
which are only intermittently connected to the backbone and it allows nodes
which are unaware of the approach to take advantage of the benefits. As DTNs
contain intermittently connected nodes that may enter or leave the network at
any time, it is our goal to be notified about such events even if the node in ques-
tion is not located in our direct network neighborhood. To facilitate this Nasdi
offers an asynchronous notification mechanism. Nasdi is based on Distributed
Hash Tables (DHT) and is specifically adapted to the needs of DTNs.

In Section 2 we present some related work. Section 3 describes our system
architecture followed by Section 4 describing the proposed algorithms. Section 5
introduces our implementation. Finally, in section 6 we wrap up our experiences
with Nasdi and line out future work.

2 Related work

For LAN or small-scale ad-hoc DTNs there exists a standard mechanism to de-
tect neighboring nodes and services: IP Neighbor Discovery (IPND) [7]. IPND
works by regularly broadcasting beacons and thus it does not scale to the In-
ternet. In [8] Waldhorst sketches Arriba, a general architecture for routing in
overlay networks spanning heterogeneous technologies based on generic node
ids. That work focusses on routing, but it does not specify how to create unique
node ids and assign them to device names or underlay addresses. Closely related
to the problem of node discovery is the problem of routing: Most general routing
protocols proposed for DTNs are designed for ad-hoc type scenarios and as such
are often variants of flooding like Epidemic routing [9] or PROPHET [10]. Other
approaches exploit domain specific knowledge [11] and are thus not generally
applicable.

Earlier DTN specifications included the concept of “regions”. DTN regions
were a hierarchical naming concept for DTN nodes based on their network affilia-
tion [12]. Current DTN specifications have abandoned this concept in favour of a
more flexible flat URI based namespace. The idea is, that different networks can
be identified by different URI schemes, but generally the usage of URIs is meant
to be much more open. The specification suggests things such as “expressions of
interest” based URIs [1].

NASDI - Naming and Service Discovery for DTNs in Internet Backbones 3

To allow hosts to find out the network layer address for a host name in
the Internet the Domain Name System [13] is used. In addition to a number of
shortcomings of traditional DNS in the Internet [14], it is also not optimal in a
DTN. DNS systems are partitioned assuming a hierarchy of hostnames, which
does not exist in the flat URI based namespace of DTNs. Furthermore DNS is
not self-organizing but instead it involves significant organizational overhead.
Also, DNS assumes that the network of servers is static and rather stable - a
property, which can not necessarily be found in DTN. To overcome some of these
problems, DDNS [15] has been proposed. It is based on a DHT as data storage
and embeds a hierarchical namespace in the flat key space of a hash table. DDNS
tries to mimic the behavior of DNS and is destined to be a DNS replacement.
Although it is also based on a DHT, it has some significant differences to our
approach. It just transfers DNS semantics to a distributed DHT store and thus
lacks an asynchronous notification mechanism and support for groups.

As suggested in [4], DHTs might be a feasible way to tackle the naming
problem in DTNs. DHTs are a robust way to store data in a distributed fashion.
A DHT is a key-value store which is distributing the load evenly across par-
ticipant nodes while still providing good lookup performance. Generally DHTs
are resilient against node failure, have excellent scalability and support a flat
name space. DHT implementations differ in the topology in which they organize
participant nodes, and in the metric used to determine which key belongs to
which node. One of the earliest well-known DHT is Chord introduced in the
seminal paper by Stoica et al. [16]. Chord uses a ring topology. In addition to
successor information, each node has a routing table which enables O(log(n))
communication complexity while searching for a key. Among other well known
DHT variants are Pastry [17], which tries to exploit local neighborhood informa-
tion and CAN [18] which organizes data in a d-dimensional grid. A more recent
DHT is Kademlia [19] which is widely used in the EMule and BitTorrent P2P
networks. Thus, from all DHTs Kademlia has best proven the DHT’s alleged
scalability and performance in real world scenarios [20]. For a more thorough
DHT introduction see [21].

As lined out above, one of Nasdi’s goals is to provide an asynchronous event
notification mechanism. Several papers about publish-subscribe solutions based
on DHTs have been published, such as the SCRIBE [22] system. It is based
on Pastry [17] and allows topic-based subscriptions. The XEvent [23] publish-
subscribe system is based on Bamboo [24] and allows either topic-based or event-
content-based subscription using XPath expressions as filter. Both approaches
target networks with a large number of subscribers and events and are there-
fore focused on strategies to efficiently and reliably deliver these events. Our
use case has only a limited number of events that does not need such sophisti-
cated structure. In addition, neither SCRIBE nor XEvent support the notion of
asynchronous, cached events that will be delivered whenever a node rejoins the
network.

4 Sebastian Schildt, Wolf-Bastian Pöttner, Oliver Ohneiser, and Lars Wolf

3 System architecture

We propose Nasdi, a distributed system that can provide naming, routing and
service discovery for Internet connected DTNs. Nasdi’s goal is to help connecting
to other DTN nodes from which only the name is known. As we will show,
Nasdi does not necessarily find the destination itself, but possibly only a suitable
next hop that can be used to route to the destination. Due to the various,
sometimes very application specific, routing protocols available for DTNs, unlike
[8], Nasdi does not try to replace former routing protocols in DTNs. It rather
augments them by bridging the gap between separate DTN networks connected
through the Internet that cannot discover each offer by the conventional link local
discovery mechanisms. For example, to reach a so far unknown node in another
network, Nasdi provides the connectivity information of a suitable node. This
node can then be contacted and sent the bundle. Additionally routing packets for
a mechanism such as PRoPHET might be exchanged with the newly discovered
node to learn about the network behind it.

Masqueraded

IP based

Network

IP based

Network

Non IP based

Network

dtn://gw_x.dtn

dtn://gw.y.dtn

dtn://gw_z.dtn

dtn://sensornode1.dtn

dtn://mobile1.y.dtn

dtn://mobile1.y.dtn

DHT Member Node

NASDI Aware Node

NASDI Unaware Node

Fig. 1. Scenario Overview.

An overview of a Nasdi System is depicted in Figure 1. Apart from pro-
viding naming services to well connected IP capable DTN nodes, the Nasdi
architecture also allows to integrate peripheral networks that are not directly
reachable or which use a non-IP transport layer for the Bundle protocol. These
networks can be transparently proxied by gateway routers as explained in sec-
tion 3.2. Additionally Nasdi can also improve the connectivity of legacy nodes
not supporting Nasdi.

3.1 Assumptions

The following standard DTN terminology is required to understand the infor-
mation managed by Nasdi: Each DTN Node has one or more EIDs (Endpoint
Identifier). EIDs identify a node or a service and have the form of URIs [1]. To
connect to an EID within a DTN it is necessary to know which convergence
layer, and which convergence layer address can be used to connect with the

NASDI - Naming and Service Discovery for DTNs in Internet Backbones 5

node. Common convergence layers are TCP [25] and UDP [26] or the Licklider
Transport Protocol [27].

Generally, any DHT structure can be used. For the notification we do however
assume, that the location of a node in the DHT topology is deterministic, and
that this position can be determined by any DHT member. For example a node’s
location within the DHT’s topology can be determined by that nodes name. More
specifically, for the notification to work we assume that each DHT member is
responsible for a range in keyspace containing its own node id.

As mentioned before the EIDs used in Bundle Protocol [3] have the form
of an URI. Commonly the dtn:// schema is used. An example EID would be
dtn://node1/echo which identifies the application “echo” on the node “node1”.
For the remainder of the text we assume that we use the EID’s scheme and
authority parts [28] as keys for the DHT, i.e. dtn://node1 represents a node id
and is used as key for the DHT. Other schemes might use a different mechanism
to derive the DHT keys depending on the scheme’s semantics.

3.2 DTN Node roles

When Nasdi is deployed each node can assume different roles in the Nasdi
system. The different roles are depicted in figure 1. First, it is to be expected
that not all nodes will support Nasdi:

– Nasdi aware nodes: Nodes, which implement Nasdi (filled circles and dia-
monds in figure 1). These nodes can be DHT members, i.e. storing information
for the DHT or query the DHT.

– Nasdi unaware nodes: Nodes, which do not know about the Nasdi mech-
anism (empty circles in figure 1). Lots of unaware nodes are to be expected
before this approach is widely adopted within the DTN community. Nasdi
unaware nodes can still be announced or proxied within the DHT by a DHT
member. They cannot, however, query the DHT for information. They can
benefit from Nasdi by routing through a DHT member.

Nasdi aware nodes can choose to become a DHT member (diamonds in
figure 1). A DHT member is responsible for storing data which is assigned to it by
the DHT implementation. Additionally it is responsible for regularly refreshing
the DHT information of nodes it proxies or announces in the DHT. Therefore a
node with high mobility or insufficient network connection might choose not to
join the DHT. For nodes which have contact information in the DHT, two kinds
of information can be stored in the DHT:

– Announced nodes: Announced nodes are nodes, whose convergence layer in-
formation is stored within the DHT. The convergence layer information stored
in the DHT points to the node itself, i.e. contains its current IP address. A
node can announce itself in the DHT if it is a DHT member, or it can ask a
DHT member to announce it.

– Proxied node: Nodes in networks that are not accessible via IP from the
Internet. They need a DTN router in order to participate in the global network.

6 Sebastian Schildt, Wolf-Bastian Pöttner, Oliver Ohneiser, and Lars Wolf

Reasons for unreachable nodes might be firewall or NAT router. Proxied nodes
are nodes which have the convergence layer information of another DTN node
stored in the DHT. The proxy can also be used as a gateway between different
underlying network technologies such as IP and ZigBee. Another rationale
behind proxying nodes is, that a node might only be intermittently available
which leads to frequent DHT updates and inaccurate information. Instead,
storing the convergence layer information of a node that is more likely to be
online, allows other DTN members to route bundles in the correct direction
while the proxy node is in a good position to relay the information to the
target as soon as it is available.

Please note, that a node may be announced directly and at the same is being
proxied by others.

4 DHT Information Management

This section details the information stored in the DHT and the steps needed
to maintain and query the DHT. We assume that the DHT provides a method
dht route(msg, key, value) which delivers a message of type msg with con-
tent value to the node(s) responsible for the partition of key space containing
key.

4.1 Information stored in the DHT

valstored

Key ABBC2134

Value

time_to_live

type_information_list

time_since_last_seen

time_refresh_passive

type_entry

1000

TCP, UDP

200

100

SINGLE

(a) val stored single entry

notifypend

Key 0F43014C

Value

number_of_notifications

interest

1

reoccur

AB21

event

(b) notifypend entry

Fig. 2. Data stored in the DHT

The storage at DHT member nodes is assumed to be a set valstored of
(key, value) tuples. For a given key a number of values can be concatenated,
which is needed for group management and is also a way to deal with duplicate
names: As the Bundle Protocol forces no structure on the EID naming space, it
is valid and to be expected that for example multiple dtn://test nodes will join
the network. Replacing is not an option because we do not want malicious or
similarly named nodes to expunge valid entries from the DHT. Security critical
applications which need to certify the identity of the other node, can use the

NASDI - Naming and Service Discovery for DTNs in Internet Backbones 7

Bundle Protocol Security extension [29]. Therefore, spoofing other nodes in the
DHT does not pose an additional risk.

Figures 2a shows an example entry for a stored node. The key is the key used
as address in the DHT and it is derived from a node’s id by SHA-1 hashing it.
The type entry field denotes whether this is a group or single node entry (the
Bundle Protocol allows the same form of id to be used for either a group or
a node). The type information list contains the IP address and port numbers
of the TCP and/or UDP convergence layer for a single node entry, or a list of
hashed node ids for a group entry.

Different timers are used to determine when to expunge an entry and to
assess the freshness of the data:

– time to live (ttl): This timer determines how long this entry is considered to
be valid. The initial value is determined by the node publishing the key into
the DHT. The node that stores this entry decrements it. This entry is measure
how long the contact information in this entry is assumed to be valid

– time since last seen (tls): Even if the the ttl is very high (e.g. for announcing
a stationary node), the entry should be refreshed periodically. The tls counts
how many seconds have past since the entry was last updated.

– time refresh passive (trp): The trp value is constant and indicates how often
the publishing nodes intends to refresh the entry. If tls > trp this means that
an entry was not refreshed within the expected time. This can indicate that
the publishing node has connectivity problems.

4.2 DHT RPCs

On top of the DHT the following message types have to be implemented by DHT
members. We assume that a key (which is used for DHT routing) and a value
is associated with each message.

– GET: Standard DHT operation. Returns all entries for key. The value pa-
rameter is ignored for this call.

– STORE: Standard DHT store. Stores value associated with key. Existing
entries for key are extended.

– JOIN GROUP: Allows to augment information stored for a key describing a
group. Creates a new valstored group entry if the group does not exist so far.

– LEAVE GROUP: Deletes the node in value from the group entry designated
by key. Does not touch other entries for key.

– NOTIFY REQUEST: Indicates that the node id contained in value wants to
be notified when a modification is done to key key. A user should be able to
specify whether this should be a “one-shot” notify, i.e. whether the notification
request should be cleared after the notification is fired the first time or whether
this should be a permanent notification request. See also section 4.3.

– NOTIFICATION: This message contains a notification for the key key. If the
current node’s id is key, the notification is forwarded to the application layer.
Otherwise the (key, value) tuple is stored.

The processing of these messages is shown in algorithm 1.

8 Sebastian Schildt, Wolf-Bastian Pöttner, Oliver Ohneiser, and Lars Wolf

Algorithm 1 Process messages

1: procedure processMessage(msg, key, value)
2: if msg = GET then
3: return {(k, v) | (k, v) ∈ valstored ∧ k = key}
4: else if msg = STORE then
5: entry ← (key, v) | (key, v) ∈ valstored
6: if entry == ∅ then
7: entry ← {(key, value)}
8: else
9: merge single(entry, value)

10: end if
11: valstored ← valstored \ {(k, v) | k = key}
12: valstored ← valstored ∪ entry
13: else if msg = JOIN GROUP then
14: entry ← (key, v) | (key, v) ∈ valstored
15: if entry == ∅ then
16: entry ← {(key, value)}
17: else
18: merge group(entry, value)
19: end if
20: valstored ← valstored \ {(k, v) | k = key}
21: valstored ← valstored ∪ entry
22: else if msg = LEAVE GROUP then
23: entry ← (key, v) | (key, v) ∈ valstored
24: if entry 6= ∅ then
25: entry ← remove from group(entry,value)
26: valstored ← valstored \ {(k, v) | k = key}
27: valstored ← valstored ∪ entry
28: end if
29: else if msg = NOTIFY REQUEST then
30: notifypend ← notifypend ∪ {(key, value)}
31: else if msg = NOTIFICATION then
32: if key = my id then
33: notify app(value)
34: else . Indirect notification
35: valstored ← valstored ∪ {(key, value)}
36: end if
37: end if
38: if msg 6= NOTIFY
39: and msg 6= NOTIFICATION then
40: check notify(key) . See algorithm 2
41: end if
42: end procedure

4.3 Asynchronous Notification

In a mobility enabled DTN network nodes might not be reachable at all times.
This is a standard case in DTN networks and participating nodes keep bundles

NASDI - Naming and Service Discovery for DTNs in Internet Backbones 9

for an unreachable destination until a suitable next hop becomes available or the
bundle expires. However, it is beneficial if the node storing the bundle is notified
as soon as the destination becomes available again. This can be implemented
using the DHT. To support notifications a DHT member node maintains a sec-
ond set notifypend. A notifypend entry is depicted in figure 2b containing the
following items:

– key: This is the DHT key of the node, we want to receive notifications about
– number of notifications: How often this notification should fire. Typical values

are 1 or ∞. For 1 the event fires once, and afterwards the notifypend entry
will be deleted, for ∞ the event will fire every time its triggering conditions
are met.

– event: Defines, which kind of event triggers this notification. Possible triggers
are the reappearance of a node, the change of any value in the val stored entry
for key, or the change of a specific value.

– interest: The key of the node that wants to receive a notification when this
events fires.

To demonstrate the different steps of establishing a notification request and
the further processing, we will look at an example from figure 1:

Assume that in Figure 1 the node dtn://mobile1.y.dtn is proxied by
dtn://gw.y.dtn. When mobile1.y.dtn becomes unavailable this will be detected by
gw.y.dtn and the corresponding entry will expire in the DHT. However, foreign
nodes might still be sending bundles for mobile1.y.dtn to gw.y.dtn because they
used a cached older entry with a higher ttl, or the bundles have been send before
the DHT entry expired. Thus gw.y.dtn stores a NOTIFICATION REQUEST
for mobile1.y.dtn into the DHT, issuing the DHT command

DHT ROUTE(NOTIFY REQUEST, dtn://mobile1.y.dtn, dtn://gw.y.dtn)

This request will be routed to the same node that is responsible for the key
dtn://mobile1.y.dtn in the DHT keyspace. Whenever a DHT member receives
a call that creates or modifies tuples in its valstored it will check whether there
are any notification requests pending for the modified key (see algorithm 2).
In our example mobile1.y.dtn joins another network and gets itself proxied by
dtn://gw z.dtn. This means dtn://gw z.dtn will issue a STORE to the DHT:

DHT ROUTE(STORE, dtn://mobile1.y.dtn, conv layer(dtn://gw z.dtn))

The node responsible for the key dtn://mobile1.y.dtn will check its pending
notifications for this key and finds gw.y.dtn. Instead of directly trying to contact
gw.y.dtn it will use the DHT:

DHT ROUTE(NOTIFICATION, dtn://gw.y.dtn, conv layer(dtn://gw z.dtn))

If gw.y.dtn is online, this has the same effect as contacting gw.y.dtn directly,
because we assumed that we use a DHT where each node is responsible for
a range in keyspace containing its own node id (see sect. 3.1). If gw.y.dtn is
currently not available, the notification is stored on another node currently re-
sponsible for the key dtn://gw.y.dtn. Once gw.y.dtn becomes available again and
rejoins the DHT, depending on the DHT, the mechanism of the underlying DHT
will hand over the data for its chunk of the keyspace, including the notification.
This ensures, that receivers are notified as early as possible.

10 Sebastian Schildt, Wolf-Bastian Pöttner, Oliver Ohneiser, and Lars Wolf

Algorithm 2 Check and transmit pending notifications

Check whether there are pending notifications for EID

1: procedure check notify(EID)
2: targets← {target | (EID, target) ∈ notifypend}
3: data← {(k, v) | (k, v) ∈ valstored ∧ k = EID}
4: for all target in targets do
5: dht route(NOTIFICATION,target,(EID, data))
6: end for
7: end procedure

5 Implementation

While Nasdi is not a routing protocol in a strict sense, it could be implemented
as such using the routing module interface of DTN2 [31]. For IBR-DTN [30]
a new discovery module is the best choice for integration. IBR-DTN allows
different submodules to plug into its event-based core. DTN2 offers an XML
based interface for external routing implementations. In our implementation we
opted to use the Maidsafe library1 which provides a Kademlia implementation
including NAT traversal capabilities. The Nasdi implementation is an external
program using Maidsafe which communicates via TCP IP with a new IBR DTN
discovery module that acts as a wrapper for the external Nasdi implementation.
This setup allows for great flexibility while developing Nasdi and should make
it relatively easy to connect Nasdi to DTN2’s external interfaces later.

5.1 DHT functionality tests

While the performance of large scale Kademlia deployments has already been
examined, e.g. in [32] we performed some small scale tests, to verify that the
Nasdi implementation is performing as expected. We used virtual machines
running instances of Nasdi and IBR-DTN. The first Nasdi instance is always
started standalone, while the following instance get one of the running instances
as booststrap partner.

Lookup Test Figure 3 shows the time to lookup a value in the DHT. The
diagram includes the min max and median values as well as the Q0.25 and Q0.75

quantiles. We modifed the number of Nasdi nodes and the amount of tuples
stored in the DHT. When the number of stored elements is increased from 1 to
1000 the average response time goes up from ∼ 70 ms to ∼ 90 ms, which shows
the additional processing overhead in the Nasdi instances. The variance for each
measurement is due to the fact, that the DHT structure is different between runs,
so that the responding Maidsafe instance might be nearer or further away. The
rightmost plot shows the situation, when a node can answer the query from its
local storage without the need to contact other DHT members.

1 http:/code.google.com/p/maidsafe-dht

NASDI - Naming and Service Discovery for DTNs in Internet Backbones 11

0

50

100

150

200

250

3 Nasdi nodes
1 stored entry

9 Nasdi nodes
1 stored entry

9 Nasdi nodes
100 stored entries

9 Nasdi nodes
1000 stored entries

9 Nasdi nodes
1 locally stored entry

t /
 m

s

Fig. 3. Lookup times

Notification Delay Test For this test we used 9 Nasdi instances. The IBR-
DTN node node1 was started sending a bundle to node2, which was currently
not available. This leads Nasdi to store a notification request. Subsequently
we started IBR DTN node node2. The Nasdi instance for node2 announces its
contact information in the DHT, which leads to a notification being dispatched
to node1, which in turn connects to node2, delivering the stored bundle. We
measured the time between starting of node2 and the reception of the bundle.
This took around 3 seconds. A breakdown of the used time can be seen in figure
4. As can be seen in this case the notification itself is nearly instant, while the

DHT

Processing
34 ms

IBR-DTN
Node 2

Store
 1 ms

IBR-DTN
Node 1

send to node 2

Notify 1 ms

Processing
2988 ms Transfer bundle 2 ms

Processing
61 ms

NotifyRequest

Establish TCP connection

received bundle

Fig. 4. Notification latencies

biggest amount of time is spent in the IBR-DTN daemon getting the cached
bundle from storage and preparing it for transmission.

6 Conclusions and Future Work

We presented Nasdi, an approach that allows DTN nodes connected to the Inter-
net to efficiently store and retrieve convergence layer information of other DTN

12 Sebastian Schildt, Wolf-Bastian Pöttner, Oliver Ohneiser, and Lars Wolf

nodes in a distributed manner. Nasdi supports building groups and integrates
an asynchronous event notification mechanism. While Nasdi’s DHT member
nodes should be located in the Internet and should be chosen in such a way
that a long uptime can be expected, peripheral, possibly non-IP, intermittently
connected networks can benefit from Nasdi whenever they have a connection to
the backbone. Those peripheral networks can be transparently bridged through
the Internet. Nasdi can be easily implemented as a routing module for widely
used DTN implementations. Deploying Nasdi is simple, because it can coexist
with Nasdi unaware nodes and still provide its benefits.

During the implementation and evaluation of Nasdi we identified some areas
for further improvement: We think that the services offered by Nasdi can be
very beneficial when they are used on a large scale in DTN implementations. To
reach this goal, Nasdi functionality should be shipped and enabled by default
in Bundle Protocol implementations. We choose Maidsafe as basis for our DHT,
which proved to be a very versatile library. However, its huge size and various
dependencies may be a negative point when trying to integrate it with IBR-
DTN or DTN2. This is especially a problem for IBR-DTN which is optimized
for embedded devices. Therefore, we are currently looking into more lightweight
DHT implementations.

We have only been able to perform tests with 9 nodes. While this shows the
systems works as advertised, it makes it hard to predict how the system would
perform with thousands of nodes. This also reveals a problem when the system is
deployed initially: If there are only a few nodes operating in the Nasdi DHT the
overall resilience and reliability of the system might be less than in our controlled
lab experiments. To solve this, we are currently looking into the possibility of
leveraging the DHT subsystems of popular filesharing applications such as Bit-
Torrent or the eMule network for Nasdi. This means having less control over the
DHT implementation, which could mean that some Nasdi functionalities can
not be implemented as efficiently or fully featured as outlined in this paper. On
the other hand at any given time thousands of nodes will be online and available
in the DHT, which should make the overall system very robust.

Acknowledgments

This work has been supported by the NTH School for IT Ecosystems.

References

1. S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, and H. Weiss,
“RFC4838 - Delay-Tolerant Networking Architecture,” RFC, 2007. [Online].
Available: http://tools.ietf.org/pdf/rfc4838.pdf

2. S. Lahde, M. Doering, W.-B. Pöttner, G. Lammert, and L. Wolf, “A practical
analysis of communication characteristics for mobile and distributed pollution mea-
surements on the road,” Wireless Communications and Mobile Computing, vol. 7,
no. 10, pp. 1209–1218, Jan 2007.

NASDI - Naming and Service Discovery for DTNs in Internet Backbones 13

3. K. Scott and S. Burleigh, “RFC5050 - Bundle Protocol Specification,” RFC, 2007.
[Online]. Available: http://tools.ietf.org/pdf/rfc5050.pdf

4. J. Ott, “Application protocol design considerations for a mobile internet,” in Pro-
ceedings of first ACM/IEEE international workshop on Mobility in the evolving
internet architecture (MobiArch), 2006.

5. C. Caini, P. Cornice, R. Firrincieli, M. Livini, and D. Lacamera, “DTN meets
smartphones: Future prospects and tests,” in 5th IEEE International Symposium
on Wireless Pervasive Computing (ISWPC), 2010.

6. Delay Tolerant Networking Research Group, “DTN-Bone.” [Online]. Available:
http://www.dtnrg.org/wiki/DtnBone

7. D. Ellard and D. Brown, “DTN IP Neighbor Discovery (IPND),” Internet-Draft,
2010. [Online]. Available: http://tools.ietf.org/pdf/draft-irtf-dtnrg-ipnd-01.pdf

8. O. P. Waldhorst, “On Overlay-Based Addressing and Routing in Heterogeneous
Future Networks,” in Computer Communications and Networks (ICCCN), 2010
Proceedings of 19th International Conference on, 2010, pp. 1–8.

9. A. Vahdat and D. Becker, “Epidemic Routing for Partially-Connected Ad Hoc
Networks,” Duke University, Tech. Rep. CS-200006, May 2000.

10. L. Anders, D. Avri, and S. Olov, “Probabilistic Routing in Intermittently Con-
nected Networks,” SIGMOBILE Mobile Computing and Communication Review,
vol. 7, no. 3, pp. 19–20, Jan 2004.

11. M. Doering, T. Pögel, and L. C. Wolf, “DTN Routing in Urban Public Transport
Systems,” in ACM MobiCom 2010 Workshop on Challenged Networks (CHANTS),
Chicago, USA, Sep 2010.

12. K. Fall, “A delay-tolerant network architecture for challenged internets,” in Pro-
ceedings of the conference on Applications, technologies, architectures, and protocols
for computer communications (SIGCOMM), Aug 2003.

13. P. Mockapetris and K. J. Dunlap, “Development of the domain name system,”
SIGCOMM Computer Communication Review, vol. 18, no. 4, pp. 123–133, 1988.

14. H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy, S. Shenker, I. Stoica, and
M. Walfish, “A Layered Naming Architecture for the Internet,” in Proceedings
of the conference on Applications, technologies, architectures, and protocols for
computer communications (SIGCOMM), Aug 2004.

15. R. Cox, A. Muthitacharoen, and R. Morris, “Serving DNS Using a Peer-to-Peer
Lookup Service,” in Revised Papers from the First International Workshop on
Peer-to-Peer Systems (IPTPS), 2002, pp. 155–165.

16. I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. Dabek, and
H. Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications,” IEEE/ACM Transactions on Networking (TON), vol. 11, no. 1, pp.
17–32, Feb 2003.

17. A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object Loca-
tion, and Routing for Large-Scale Peer-to-Peer Systems,” in Proceedings of the
IFIP/ACM International Conference on Distributed Systems Platforms Heidelberg
(Middleware), Nov 2001.

18. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable
content-addressable network,” in Proceedings of the conference on Applications,
technologies, architectures, and protocols for computer communications (SIG-
COMM), Aug 2001.

19. P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer Information System
Based on the XOR Metric,” in Peer-to-Peer Systems, ser. Lecture Notes in Com-
puter Science, P. Druschel, F. Kaashoek, and A. Rowstron, Eds. Springer Berlin
/ Heidelberg, 2002, vol. 2429, pp. 53–65.

14 Sebastian Schildt, Wolf-Bastian Pöttner, Oliver Ohneiser, and Lars Wolf

20. C. Wang, N. Yang, and H. Chen;, “Improving Lookup Performance Based on
Kademlia,” in Proceedings of Second International Conference on Networks Secu-
rity Wireless Communications and Trusted Computing (NSWCTC), vol. 1, 2010.

21. R. Steinmetz and K. Wehrle, Peer-to-peer systems and applications, R. Steinmetz
and K. Wehrle, Eds. Secaucus, NJ, USA: Springer-Verlag New York, Inc., Jan
2005.

22. M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “SCRIBE: A large-
scale and decentralized application-level multicast infrastructure,” IEEE Journal
on Selected Areas in Communications, vol. 20, no. 8, pp. 1489 – 1499, 2002.

23. R. Wang, W. Rao, and C. Zhang, “XEvent: An Event Notification System over
Distributed Hash Table (DHT) Networks,” IEEE Intelligent Informatics Bulletin,
vol. 6, no. 2, pp. 19–25, 2006.

24. S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in a DHT,” in
Proceedings of the USENIX Annual Technical Conference (USENIX), Jun 2004.

25. M. Demmer, U. Berkeley, and J. Ott, “Delay Tolerant Networking TCP
Convergence Layer Protocol,” IETF Draft, 2008. [Online]. Available: http:
//tools.ietf.org/pdf/draft-irtf-dtnrg-tcp-clayer-02.pdf

26. H. Kruse and S. Ostermann, “UDP Convergence Layers for the DTN
Bundle and LTP Protocols,” IETF Draft, 2008. [Online]. Available: http:
//tools.ietf.org/pdf/draft-irtf-dtnrg-udp-clayer-00.pdf

27. M. Ramadas, S. Burleigh, and S. Farrell, “Licklider Transmission Protocol -
Specification,” Experimental RFC, 2008. [Online]. Available: http://tools.ietf.org/
pdf/rfc5326.pdf

28. T. Berners-Lee, R. Fielding, and L. Masinter, “RFC3986 - Uniform Resource
Identifier (URI): Generic Syntax,” RFC, 2005. [Online]. Available: http:
//tools.ietf.org/pdf/rfc3986.pdf

29. S. Symington, S. Farrell, H. Weiss, and P. Lovell, “Bundle Security Protocol
Specification,” IETF Draft, 2010. [Online]. Available: http://tools.ietf.org/pdf/
draft-irtf-dtnrg-bundle-security-17.pdf

30. S. Schildt, J. Morgenroth, W.-B. Pöttner, and L. Wolf, “IBR-DTN: A lightweight,
modular and highly portable Bundle Protocol implementation,” Electronic Com-
munications of the EASST, vol. 37, pp. 1–11, Jan. 2011.

31. “DTN2 implementation.” [Online]. Available: http://sourceforge.net/projects/
dtn/

32. Z. Ou, E. Harjula, O. Kassinen, and M. Ylianttila, “Performance evaluation of
a Kademlia-based communication-oriented P2P system under churn,” Computer
Networks, vol. 54, no. 5, pp. 689–705, Apr. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.comnet.2009.09.022

