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Abstract: In this paper we present IBR-DTN, a lightweight, modular and portable
Bundle Protocol implementation and DTN daemon. IBR-DTN is especially suited
for embedded platforms, which allows to leverage the benefits of a fully compliant
Bundle Protocol daemon in cost sensitive distributed sensing applications. We line out
IBR-DTN’s extensible software architecture and introduce the modules included in the
standard IBR-DTN distribution. To give an impression of the performance that can
be expected when using IBR-DTN, we perform a series of benchmarks and compare
the outcome with DTN2 performance, the reference implementation of the Bundle
Protocol.
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1 Introduction

Today it is accepted within the networking community that continuous end-to-end connectivity
will not be available all the time, not even in wired networks. Especially in MANETs with low-
powered devices the need for a store-and-forward architecture can not be ignored. In recent years
the approach of Delay Tolerant Networking gained interest in the community for coping with the
challenges of intermittently connected networks.

DTNs are a good choice for distributed data sensing and aggregation as presented in [8]. The
standard protocol used in DTNs is the Bundle Protocol [11]. Unfortunately the Bundle Protocol ref-
erence implementation DTN2 is not suited for Embedded Systems, which precludes its deployment
in many applications that are constrained by costs or energy. In this paper we present IBR-DTN
which aims to be a fully compliant Bundle Protocol daemon and is designed to run on OpenWRT1,
which is a Linux distribution specifically built to run on embedded hardware (see section 3). An
early precursor of IBR-DTN has been introduced in [4].

This paper will detail the overall software architecture of IBR-DTN. We also give some basic
benchmarks comparing the performance with the DTN2 reference implementation.

1 http://openwrt.org/

1 / 10 Volume 37 (2011)

http://openwrt.org/


IBR-DTN: A lightweight, modular and highly portable Bundle Protocol implementation

2 Related Work

In [8] Lahde et. al. presented a system that relies on DTN for the distributed sensing of air pollution
in urban environments. A DTN based sensor network for lake water quality monitoring or urban
noise monitoring was presented in [9]. While using embedded Linux nodes the authors did not use
a Bundle Protocol compliant DTN implementation.

The most well known implementation of the Bundle Protocol is the DTN2 reference implemen-
tation2. It provides a flexible framework for DTN related experiments and can be configured and
managed by a TCL console and configuration files. Extensions for routing, storage and convergence
layers are easily attachable through XML interfaces. However, the extensive use of external libraries
makes it difficult to port the DTN2 software to embedded systems. ION (Interplanetary Overlay
Network) [2], is another implementation of the Bundle Protocol that has been written by the JPL
and is intended to be used in spacecrafts. It has been developed for VxWorks but can run on
Unix-like systems such as Linux as well. There has also been some research about using DTN
in low-power sensor networks, where nodes are only equipped with a few kByte of RAM and a
small microcontroller [10]. However, due to resource constraints those approaches only aim at
supporting basic DTN and Bundle Protocol concepts in WSNs and usually these implementations
are not interoperable with the Bundle Protocol.

Several other implementations are currently in development. ByteWalla3 is a Java implementation
designed for Android devices. Other implementations for Android and Symbian devices and for
Python exist, but those only implement limited functionality and do not provide the features of a
full DTN daemon.

3 Supported Platforms

IBR-DTN is specifically designed for and tested against uClibc.uClibc is a streamlined C standard
library for resource constrained systems. While the concrete amount of memory needed for operation
depends on the configuration and usage scenario, we will give two exemplary numbers: On an
x86 machine running IBR-DTN under Ubuntu for several days the resident set size (RSS) of the
IBR-DTN daemon process is 3244 KiB, for a MIPS node with OpenWRT under similar conditions
the RSS is 2428 KiB.

Currently IBR-DTN is targeting Linux plattforms. It is 64 bit safe and porting to other POSIX
compliant OS’s should be feasible with minimal effort. Besides a standard Linux desktop/server
distribution, the main platform for IBR-DTN deployment is a Ubiquiti RouterStation Pro board
running OpenWRT. The RSPro is based on an Atheros AR7161 SoC (MIPS 24K) running at
680MHz with 128MiB RAM and 16MiB Flash. The (physically) smallest node known to run
IBR-DTN is a Memsic (formerly CrossBow) IMote 2 sensor node. This node is based on a Marvell
PXA271 (StrongARM) CPU running at 416 MHz with 32 MiB RAM and 32 MiB Flash. The node
runs OpenEmbeddedand includes a TI ChipCon 2420 IEEE 802.15.4 compliant transceiver. The
public DTNBone node of the IBR is a Buffalo TeraStation Pro NAS running a proprietary Buffalo
firmware based on kernel 2.4. It is based on a Freescale MPC8241 SoC (MPC603e PPC) running
at 266 MHz with 128 MiB RAM. IBR-DTN runs inside a OpenWRT chroot providing the needed

2 https://sourceforge.net/projects/dtn/
3 http://sourceforge.net/projects/bytewalla/
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Figure 1: IBR-DTN architecture overview

libraries. Another NAS IBR-DTN has been sucessfully tested on is a QNAP TS-219P NAS using
a QNAP proprietary Linux distribution running kernel 2.6. It is based on the Marvell Kirkwood
88F628 SoC (ARM11) and includes 512 MiB RAM. Additionally the Technologic systems TS-7500
SBC running OpenWRT is supported. This board uses a Cavium networks CNS2132 SoC (ARM 9)
running at 250 MHz and includes 64 MiB RAM.

4 Architecture

Figure 1 shows an architectural overview of IBR DTN. As IBR-DTN is targeted for embedded
platforms, it is fully compatible with uClibc, a system library specifically tailored for embedded
systems. Two general guidelines have been followed developing for IBR-DTN: One goal is to
keep external requirements (e.g. libraries), to a minimum. Often these are not available on certain
platforms because there are not ported, or because the space needed for all dependencies would be
prohibitive. A small set of external dependencies also makes sure that porting IBR-DTN to new
platforms is relatively easy. Another goal is to keep the software as modularized as possible. The
functionality in IBR-DTN is implemented in loosely coupled modules that communicate using an
event mechanism. Thus at compile time IBR-DTN can be specifically tailored to the capabilities
of the used target platform. Also if some functionality is dependent on external libraries (i.e. IBR-
DTN’s upcoming Bundle Protocol Security Extensions are based on OpenSSL) , the dependency
applies to the optional module only.

In the following sections we will discuss IBR-DTN’s standard modules.

4.1 Event Switch

At the core of IBR-DTN is the Event Switch. We have defined a set of standard events which the
Event Switch dispatches to all relevant sub-modules. Events that trigger extensive processing in the
module can be queued in a private work queue of the module’s thread. This allows IBR-DTN to
achieve a high degree of concurrency between the daemons modules. Existing and new IBR-DTN
modules can receive and raise events to communicate with other parts of the daemon. Of course
custom IBR-DTN modules can introduce new application-specific events. There exist standard
events related to routing of bundles, operation of the storage and the availability of nodes.

3 / 10 Volume 37 (2011)



IBR-DTN: A lightweight, modular and highly portable Bundle Protocol implementation

4.2 Discovery Agent

The Discovery Agent supports node discovery through pluggable discovery modules. Currently
we implement DTN IP Neighbor Discovery (IPND) version one and two as specified in [5] and
IP-Discovery frames compatible to DTN2. The Discovery Agent generates Node Events related to
the discovery or disappearance of neighbors. When a new neighbour is detected by the Discovery
Agent, the Routing modules will check whether there are any Bundles that have to be transferred to
the new found contact.

4.3 Connection Manager

Lower level protocols which provide connectivity between DTN daemons are called convergence
layers (see [11]). In IBR-DTN, convergence layers are implemented as modules. The Connection
Manager manages the instances of these modules based on the daemon configuration. Each
convergence layer provides an interface to transfer bundles to neighboring nodes. If such a transfer
succeeds or fails, an event is generated. Incoming bundles are also announced via a global event and
stored in the Bundle Storage. IBR-DTN comes with four built-in convergence layers listed below:

• TCPCL: The TCP convergence layer compatible with IETF draft [3]. TCPCL uses a hand-
shake mechanism between DTN daemons and includes the ability to split bundles into
segments which are acknowledged by the receiving daemon.

• UDPCL: UDP convergence layer compatible with IETF draft [7]. UDPCL provides a very
simple way of transfer bundles to other daemons. Since it requires that a bundle fits into a
single UDP datagram, the maximum bundle size is limited.

• HTTPCL: A convergence layer that can use an HTTP server to send and receive bundles.
This convergence layer is based on libcurl4.

• LowPANCL: This convergence layer supports the 802.15.4 MAC protocol [6] commonly
used in sensor networks. Currently LowPANCL works with transceivers supported by the
Linux ZigBee stack5. This convergence layer has been successfully used with iMote2 sensor
nodes (see section 3).

4.4 Bundle Storage

As DTN’s use a store-and-forward paradigm, a DTN node needs the capability to buffer bundles for
an extended period of time. A Bundle Storage module provides an interface to store and retrieve
bundles by different parameters, e.g. the bundles unique id or the destination. IBR-DTN supports
three different types of bundle storage listed below:

• Memory: This is a non-persistent bundle storage and is used by default if no storage path is set.
All bundles are kept in RAM in this case. The maximum amount of RAM used for bundles
can be limited. The OpenWRT distribution of IBR-DTN includes measures to fallback to

4 http://curl.haxx.se/
5 http://sourceforge.net/apps/trac/linux-zigbee/
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memory storage if there is a system failure that prevents the usage of on-disk storage. This
enables a node to operate with reduced capabilities in case of a problem so it is still reachable
for diagnostic and maintenance purposes.

• File based storage: If a storage path is set in the configuration, IBR-DTN will use a persistent
storage based on simple files. The functionality is equal to the memory-based storage, but all
bundles are serialized to disk. Thus bundles will survive scheduled daemon restarts as well
as power failures. Since the bundles are no longer hold in memory, the amount of memory
required by the daemon is reduced.

• SQLite: This storage uses an SQLite database as backend. The SQLite storage is currently in
beta. It can store more meta information for bundles and is useful for more complex routing
modules.

The base interface for all these modules ensures that all storage engines implement a basic set of
functions and can be transparently interchanged without modifying other parts of the daemon. The
Memory and File storages are examples of basic storages. The SQLite storage also can be used as a
drop-in replacement for the File or Memory storage, but if the SQLite storage’s advanced features
are used by some module, this module will not be able to work with the basic storages.

4.5 Base Router

The Base Router manages different routing modules, which can operate concurrently. The routing
modules receive events about arriving or departing nodes from the Discovery Agent and they are
informed whenever new bundles arrive in the storage. If a routing module considers itself responsible
for a given bundle, it can contact the Connection Manager and request the appropriate convergence
layer to transfer the bundle to the next hop. IBR-DTN includes the following routing modules:

• Static: Routes and available links are configured statically, i.e. the convergence layer informa-
tion for a given EID is supplied a priori through the configuration file. This module assumes
that configured links are available permanently.

• Neighbor: The Neighbor routing module routes packets to nodes discovered by a Discovery
Agent. When using IPND, nodes within the same subnet are reachable.

• Epidemic: IBR-DTN contains an epidemic routing [13] implementation. Epidemic routing
is a variant of flooding. It aims to transfer all bundles to all nodes participating in epidemic
routing and thus given unlimited resources it can guarantee the eventual delivery of a given
bundle. Instead of using summary vectors, IBR-DTN uses a more efficient Bloom-Filter[1]
mechanism which has been proposed as an optimization in [13]. As an extension to epidemic
routing IBR-DTN manages a purge vector which will be distributed to all neighbors ensuring
that delivered bundles are deleted throughout the network.

• Retransmission: When a convergence layer signals an error transmitting a bundle to the next
hop, the bundle will be requeued and stays in the storage. Depending on the type of error
(permanent, temporary) and the convergence layer the Retransmission module will try to
repeat the transmission.
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Routing modules receive events from the Discovery Agent and interact with the storage. Currently
all shipped routing modules can be combined with any of IBR-DTNs bundle storages.

4.6 Wall Clock

The Wall Clock module determines the current global time in the DTN by evaluating the local host’s
clock. Unlike in other network protocols the timestamps used in Bundle Protocol count the seconds
since 1/1/2000. In addition to basic time querying functionality this module provides a global time
tick event, which is dispatched every second through the Event Switch to all other modules. This
event is used by simple modules to initiate recurring tasks.

4.7 IBR-DTN API

Currently IBR-DTN reuses the bundle streaming protocol (part of the TCP convergence layer) to
provide a socket based API interface. This can either be a TCP socket which allows to run the
daemon and DTN applications on different machines, or a Unix Domain Socket, which is more
efficient when operating locally.

To avoid reimplementing the complex bundle streaming protocol in each application, an IBR-
DTN library can be linked to applications simplifying the creation of bundles. This approach has
the advantage that all supported DTN features of the daemon are immediately available as they
can be enabled by setting the appropriate bundle headers. However, since this interface does not
support out-of-band messages, runtime configuration of e.g. routing modules is not possible. Also it
is difficult to use this API from other environments than C++.

4.8 Extensions & Customization

One aim of IBR-DTN is to provide an easy and non-invasive method for the extension of core
functionalities like storage, routing and connectivity. To achieve this, we introduced the Event
Switch and used an threaded environment which allows a loose coupling between the different
modules IBR-DTN consists of.

Only two steps are necessary to introduce a new module into IBR-DTN: Firstly, the new module
needs to implement the base class of the correct family of modules (depending on whether the new
module is for example a Routing Module or a Discovery Agent). Each module can choose to run
as a separate thread or not by implementing the corresponding Component class. Secondly, the
configuration in the main() method has to be extended to reflect the existence of the new module.
The basic services a module has to provide are defined by the interface of the base module class.
The access to other modules (e.g. wall clock, storage or convergence layer) is supported through
global singleton objects. Asynchronous and one-to-many interaction is supported by events using
the Event Switch.

4.9 Tools

For basic usage several standard shell tools are provided with the IBR-DTN distribution. dtnsend
and dtnrecv can send and receive files and standard in-/output. The ping application dtnping
sends out bundles to a DTN Endpoint Identifier and waits for a bundle with the same payload as
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reply. The response time is measured and printed out. With dtntracepath the path of a bundle
can be discovered using “bundle forwarded” reports from each hop as defined in [11]. dtntunnel
is an experimental tool that tunnels IP traffic through a DTN connection. Additionally, there
are dtninbox and dtnoutbox which can transfer files between two directories on different
computers. For simple applications the dtntrigger application provides a lightweight alternative
to the API.

5 Evaluation

In this section we compare the performance of IBR-DTN to the DTN2 reference implementation.
Both implementations have been measured using their respective default configuration. Additional
configuration was only performed insofar it was necessary for the experiment. For this evaluation
we used computers equipped with a Pentium IV 3.2 GHz including 2 GiB RAM running Ubuntu
Linux. For the network experiments the nodes were connected using a full-duplex 1 GBit Ethernet
link. The peak bandwidth of this configuration transferring raw TCP data is 480 MBit. We used
the standard tools dtnsend and dtnrecv available for both IBR-DTN as well as DTN2. The
IBR-DTN version used was 0.4.3, the DTN2 version was 2.70.

5.1 API and bundle storage performance

This experiment focuses on API and bundle storage performance and did not involve any network
transfers. On each node we measured the time to store and receive 100 bundles of varying payload
size. The 100 bundles were send one-by-one using the dtnsend application and subsequently
retrieved en-bloc using the dtnrecv application. For IBR-DTN we used the Memory and File
storage subsystem. For DTN2 we used the BerkelyDB storage which resides in the filesystem
and the Memory storage which resides in RAM. For each test and storage we performed ten runs.
The IBR-DTN daemon was running continuously and has not been restarted between subsequent
runs. The DTN2 daemon had to be restarted between different bundle sizes, because we observed
continuously deteriorating performance for each run. Test runs were not running in parallel: We
made sure to receive all bundles of a previous run before starting to send new bundles. The results
of this test can be seen in figures 2 and 3 with logarithmically scaled axes. We plot the arithmetic
mean and standard deviation for each payload size.

For the store performance (figure 2) it can be seen, that IBR-DTN significantly outperforms
DTN2 when using disk based storage and small payload sizes. IBR-DTNs store performance using
disk-based storage is almost similar to the memory-based performance. As DTN2’s performance
improves when operating in memory it outperforms IBR-DTN in this testcase for very small bundle
sizes. For bigger bundle sizes performance between DTN2’s and IBR-DTN’s RAM based storages is
virtually identical. Also the non-increasing time for small bundle sizes shows that both IBR-DTN’s
and DTN2’s performance is limited by the attainable bundle frequency and not by a bandwidth limit
of the storage, i.e. the processing overhead per bundle is the limiting factor.

For the receive case (figure 3) IBR-DTN again shows similar performance in the file and memory
storage cases. For Bundle sizes ≥ 5kByte IBR-DTN significantly outperforms DTN2 in both cases.
For bundle sizes up to 500 bytes (DTN2) or up to 5000 bytes (IBR-DTN) performance is limited by
the bundle frequency.
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Figure 2: API store performance
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Figure 3: API receive performance

5.2 Networking performance

In this experiment we measure the network performance of IBR-DTN and DTN2. Two nodes are
connected via Ethernet, but connectivity is blocked. On the sender node we use dtnsend to inject
1000 bundles destined for the receiver. After the bundles have been received by the sending daemon
we open the connection and measure the time until all bundles have arrived at the receiver. This is a
good indicate of the network performance of a daemon as this approach eliminates the influence of
the API and the storage write performance on the sender. However this test still includes the time
spent in the the sender’s storage retrieval functions and the receivers storage writing functions. For
IBR-DTN we used iptables for connection handling for DTN2 we used the builtin TCP API to add
or remove the corresponding route on the fly.

We repeated this experiment with varying bundle payload sizes ranging from 5 bytes to 500
kBytes. Test runs were not running in parallel: We made sure that all bundles of a previous run have
been received before starting to send new bundles. In this experiment we use the TCP convergence
layer. For each bundle payload size and storage type we performed 10 runs.

The IBR-DTN daemon was running continuously and has not been restarted between subsequent
runs. The DTN2 daemon had to be restarted between different bundle sizes, because we observed
continuously deteriorating performance for each run when using the Memory storage. This effect
manifests itself as high standard deviations in the DTN2 Memory test, as the test for each bundle
size is repeated 10 times.

The results of this experiment can be seen in figure 4 with a logarithmically scaled x-axis. We
plot the arithmetic mean and standard deviation for each payload size. First it can be seen that even
with 500kByte bundle size neither DTN2 nor IBR-DTN were able to saturate the used link (480
MBit). IBR-DTN achieves an average speed of ∼ 310 MBit while DTN2 tops at only ∼ 245 MBit
for the memory based storage and significantly slower (∼ 98 MBit ) for the more praxis relevant
disk based storage. This is especially an issue for DTNs, where it is a goal to transfer as much
data as possible during a possibly short contact. For IBR-DTN the reason is, that default TCP and
Bundle Protocol parameters are adapted for wireless links with smaller bandwidth. We assume
the same is true for DTN2. In all testcases IBR-DTN outperforms DTN2 in both the memory and
disk-based storage cases. Even more IBR-DTNs disk based storage outperforms DTN2’s memory
based storage for all tested bundle sizes.
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5.3 IBR-DTN embedded performance

In this section we want to give a small insight into what performance can be expected running
IBR-DTN on embedded hardware. For this experiment we used the Routerstation Pro platform (see
sec. 3) running OpenWRT. As only IBR-DTN runs on this platforms there is no comparision with
DTN2 or ION. For each test we did 10 runs with 100 Bundles of 1 MByte. We used disk storage
on an SD Card. The RSPro are connected using a GBit LAN Port. Using this setup the peak iPerf
performance between two RSpro boards using TCP is 251 MBit/s.

The total data throughput of IBR-DTN between two RouterStaion Pro’s is 33.85 MBit/s (±
5.44 MBit/s). The throughput from and to the PC is with 45.36 MBit/s (± 12.10 MBit/s) slightly
faster. The achieved performance is significantly lower than raw TCP throughput, as the Bundle
Protcol is used on top of TCP, i.e. in addition to the TCP overhead the Bundle Protocol overhead
comes into play. Also the speed of the used storage can limit the throughput, as all bundles have to
be written to the SD Card. Still the result show, that it would be possible to saturate a 54 MBit/s
802.11g WiFi link (net data rate 22.5 MBit/s).

6 Conclusions and Future Work

We presented IBR-DTN, a lightweight, modular and highly portable DTN stack. IBR-DTN has a
small memory footprint and can be used on virtually every platform supporting Linux, especially
embedded platforms based on uClibc. This enables the deployment of a full featured DTN solution
in wireless sensor networks. IBR-DTN is interoperable with DTN2, the Bundle Protocol reference
implementation. In most cases its speed supersedes that of DTN2, although both implementations
were not able to saturate the provided link using their respective default configurations.

Currently we are working on support for the Bundle Protocol security extensions [12]. In the
future we will include optimizations for high bandwidth links into IBR-DTN. Also we intend
to augment the IBR-DTN TCPCL API with a lightweight and ubiquitous alternative such as an
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XML-RPC based API. The most recent IBR-DTN version can be found on the project page at
http://www.ibr.cs.tu-bs.de/projects/ibr-dtn/.
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