Institute of Operating Systems and Computer Networks

Technische Universität Braunschweig

Amphisbaena: A Two-Platform DTN Node

Stephan Rottmann, Robert Hartung, Jan Käberich, Lars Wolf, October 13, 2016

Use Case

Scenario

- Battery-powered node outdoors
- Several MB of data per day on SD card
- At unknown time, tractor arrives for short contact to collect data via DTN

Use Case

Scenario

- Battery-powered node outdoors
- Several MB of data per day on SD card
- At unknown time, tractor arrives for short contact to collect data via DTN

Two-Platform Approach

- Low-power Board, 32 Bit MCU
 - IEEE 802.15.4
- Raspberry Pi Single-Board Computer
 - Wireless LAN

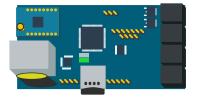
Use Case

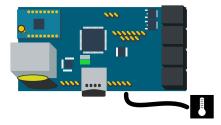
Scenario

- Battery-powered node outdoors
- Several MB of data per day on SD card
- At unknown time, tractor arrives for short contact to collect data via DTN

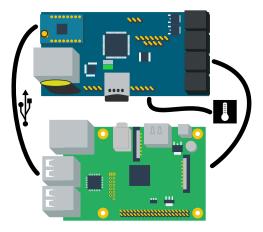
Two-Platform Approach

- Low-power Board, 32 Bit MCU
 - IEEE 802.15.4
- Raspberry Pi Single-Board Computer
 - Wireless LAN
- SBC only powered up when needed

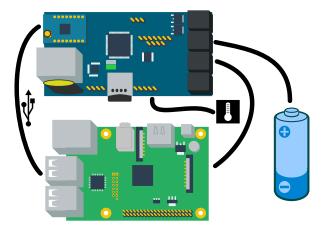




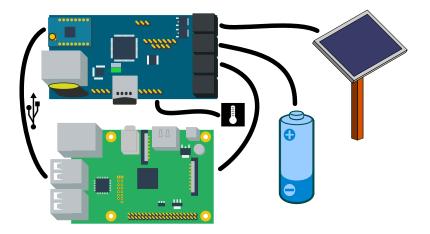
October 13, 2016 **| Stephan Rottmann**, Robert Hartung, Jan Käberich, Lars Wolf | Page 3 Amphisbaena: A Two-Platform DTN Node



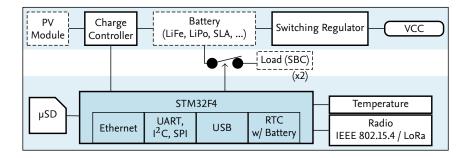
October 13, 2016 **| Stephan Rottmann**, Robert Hartung, Jan Käberich, Lars Wolf | Page 3 Amphisbaena: A Two-Platform DTN Node



October 13, 2016 **| Stephan Rottmann**, Robert Hartung, Jan Käberich, Lars Wolf | Page 3 Amphisbaena: A Two-Platform DTN Node

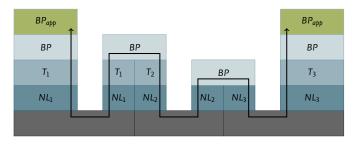


October 13, 2016 **| Stephan Rottmann**, Robert Hartung, Jan Käberich, Lars Wolf | Page 3 Amphisbaena: A Two-Platform DTN Node


October 13, 2016 **| Stephan Rottmann**, Robert Hartung, Jan Käberich, Lars Wolf | Page 3 Amphisbaena: A Two-Platform DTN Node

October 13, 2016 **| Stephan Rottmann**, Robert Hartung, Jan Käberich, Lars Wolf | Page 3 Amphisbaena: A Two-Platform DTN Node

Hardware Details



October 13, 2016 **| Stephan Rottmann**, Robert Hartung, Jan Käberich, Lars Wolf | Page 4 Amphisbaena: A Two-Platform DTN Node

Bundle Protocol

- Overlay network
- Delay/Disruption Tolerant Network
- Multiple network/transport layers supported at single node
- RFC4838, RFC5050

October 13, 2016 **| Stephan Rottmann**, Robert Hartung, Jan Käberich, Lars Wolf | Page 5 Amphisbaena: A Two-Platform DTN Node

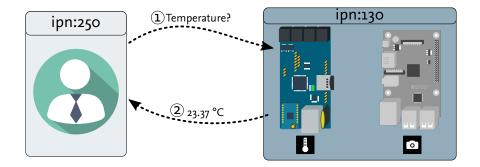
Communication Aspects

Two Platforms

- Both platforms are running a DTN stack
 - miniDTN on MCU platform
 - IBR-DTN on Raspberry Pi
- Communication stacks compatible to each other

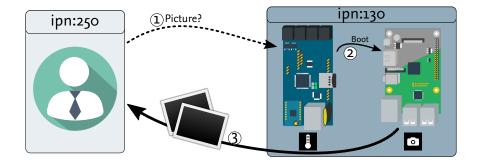
Communication Aspects

Two Platforms


- Both platforms are running a DTN stack
 - miniDTN on MCU platform
 - IBR-DTN on Raspberry Pi
- Communication stacks compatible to each other
- Both appear as single node

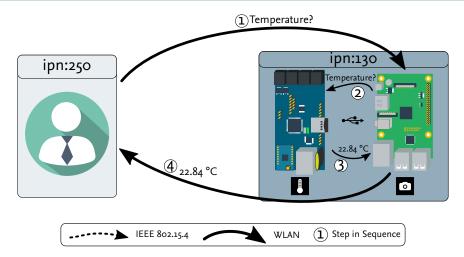
October 13, 2016 | Stephan Rottmann, Robert Hartung, Jan Käberich, Lars Wolf | Page 6 Amphisbaena: A Two-Platform DTN Node

Use Case: Client sends all Bundles to ipn: 130 (1)



October 13, 2016 | Stephan Rottmann, Robert Hartung, Jan Käberich, Lars Wolf | Page 7 Amphisbaena: A Two-Platform DTN Node

Use Case: Client sends all Bundles to ipn: 130 (2)



October 13, 2016 **| Stephan Rottmann**, Robert Hartung, Jan Käberich, Lars Wolf | Page 8 Amphisbaena: A Two-Platform DTN Node

Use Case: Client sends all Bundles to ipn: 130 (3)

October 13, 2016 **| Stephan Rottmann**, Robert Hartung, Jan Käberich, Lars Wolf | Page 9 Amphisbaena: A Two-Platform DTN Node

Other Options

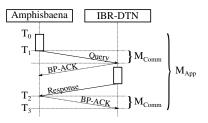
Applications Besides (inter)active Scenarios

- "Typical" DTN scenarios:
 - Disasters, after which infrastructure is broken
 - Battlefield communications
 - Simple relay node
 - Large data transfers via IEEE 802.15.4, interrupted and resumed via WiFi
- Bringing kind of Internet to rural areas
 - Ferry node (bus, boat, drone, ...)
 - Checks, if data is available and Raspberry Pi should be powered up
- For short-term operation, energy harvesting not necessary

Other Options

Applications Besides (inter)active Scenarios

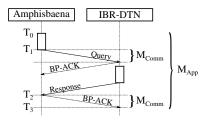
- "Typical" DTN scenarios:
 - Disasters, after which infrastructure is broken
 - Battlefield communications
 - Simple relay node
 - Large data transfers via IEEE 802.15.4, interrupted and resumed via WiFi
- Bringing kind of Internet to rural areas
 - Ferry node (bus, boat, drone, ...)
 - Checks, if data is available and Raspberry Pi should be powered up
- For short-term operation, energy harvesting not necessary


Beneficial in every scenario where whole processing or communication power is not needed continuously

Evaluation: Protocol

Query-Response Protocol

- Different sizes of data
- Small request, large response
 - Take a picture
- Large request, small response
 - E.g., transfer new software to station
 - Store-and-Forward approach:
 - Store data for other node temporarily

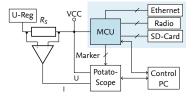

Evaluation: Protocol

Query-Response Protocol

- Different sizes of data
- Small request, large response
 - Take a picture
- Large request, small response
 - E.g., transfer new software to station
 - Store-and-Forward approach:
 - Store data for other node temporarily

Large Data transfers

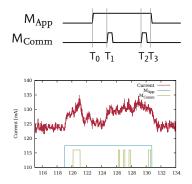
Collect sensor data from the day



Evaluation: Setup

Measurement Setup

- Setup similar as in Demo yesterday
- Energy measurements
 - Current and voltage
 - 100 kHz sample rate
 - Markers for synchronization



Evaluation: Protocol

Timing

- T₀: Amphisbaena prepares Query
- T1: Query is being sent on wire
- T₂: **Response** from *IBR-DTN* ack'd
- T₃: Transfer finished

October 13, 2016 **| Stephan Rottmann**, Robert Hartung, Jan Käberich, Lars Wolf | Page 13 Amphisbaena: A Two-Platform DTN Node

Evaluation

Optimization Goals

- Energy demand and time depend on...
 - Communication Interface
 - IEEE 802.15.4, Ethernet, WLAN
 - CPU clock
- Both have influence on time needed for transmission
- Both have influence on energy needed for transmission
- What should be optimized, energy **OR** time?

$$\mathbf{C}(s_{tx}, s_{rx}, M_i, f_{CPUj}) = (E, T)(s_{tx}, s_{rx}, M_i, f_{CPUj})$$

 s_{tx} , s_{rx} : Size of data to be sent/received M_i : Communication medium (Ethernet, IEEE 802.15.4) f_{CPU_i} : Clock frequency of CPU

Technische Universität Braunschweig

October 13, 2016 **| Stephan Rottmann**, Robert Hartung, Jan Käberich, Lars Wolf | Page 14 Amphisbaena: A Two-Platform DTN Node

Communication Interfaces

- IEEE 802.15.4
- WLAN (from Linux Board)
- (Ethernet)

Communication Interfaces

- IEEE 802.15.4
- WLAN (from Linux Board)
- (Ethernet)

Clock frequencies f_{CPU}

- 24 MHz
- 30 MHz
- 80 MHz
- 144 MHz

Communication Interfaces

- IEEE 802.15.4
- WLAN (from Linux Board)
- (Ethernet)

Clock frequencies f_{CPU}

- 24 MHz
- 30 MHz
- 80 MHz
- 144 MHz

Bundle Sizes

• 64 Byte and 1024 Byte in any combination for s_{tx} and s_{rx}

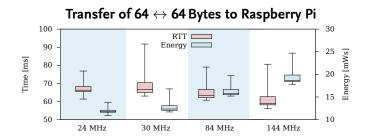
Communication Interfaces

- IEEE 802.15.4
- WLAN (from Linux Board)
- (Ethernet)

Clock frequencies f_{CPU}

- 24 MHz
- 30 MHz
- 80 MHz
- 144 MHz

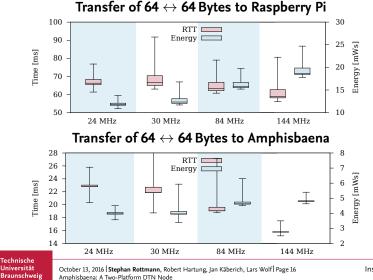
Bundle Sizes


• 64 Byte and 1024 Byte in any combination for s_{tx} and s_{rx}

Communication Partner

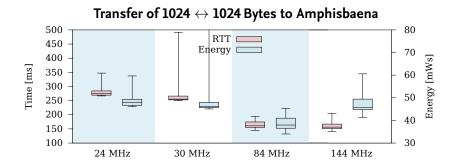
- Amphisbaena
- IBR-DTN running on Raspberry Pi
- (IBR-DTN running on Intel Core i7-3770 based Computer)

Technische Universität Braunschweig


Results: Small Bundles via IEEE 802.15.4

October 13, 2016 **| Stephan Rottmann**, Robert Hartung, Jan Käberich, Lars Wolf | Page 16 Amphisbaena: A Two-Platform DTN Node

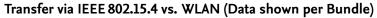
Results: Small Bundles via IEEE 802.15.4

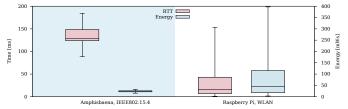

Findings

Small Bundles via IEEE 802.15.4

Increasing f_{CPU} not useful when communicating with RPi

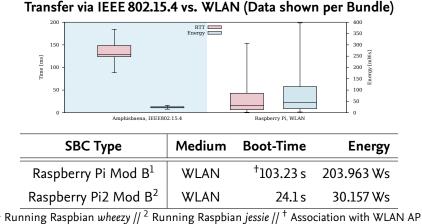
Results: Large Bundles via IEEE 802.15.4


October 13, 2016 | Stephan Rottmann, Robert Hartung, Jan Käberich, Lars Wolf | Page 18 Amphisbaena: A Two-Platform DTN Node


Findings

- Small Bundles via IEEE 802.15.4
 - Increasing f_{CPU} not useful when communicating with RPi
- Optimum may not be at bounds of parameters

Results: Many large Bundles in a Row



October 13, 2016 **| Stephan Rottmann**, Robert Hartung, Jan Käberich, Lars Wolf | Page 20 Amphisbaena: A Two-Platform DTN Node

Results: Many large Bundles in a Row

may take very long

Findings

- Small Bundles via IEEE 802.15.4
 - Increasing *f*_{CPU} not useful when communicating with RPi
- Optimum may not be at bounds of parameters
- Large differences in speed between WLAN and IEEE 802.15.4
 - But: Booting costs energy, too!

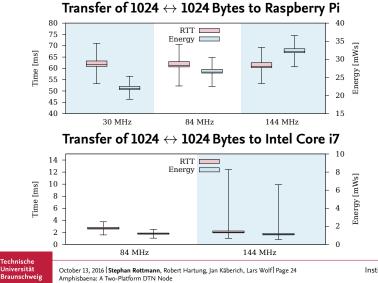
Conclusions

- Two-Platform DTN node
 - MCU-based board, Raspberry Pi
- Both parts appear as a single node
- Energy demand depends on
 - Communication medium
 - Communication partner
 - Clock frequency
- Large delays for IBR-DTN on platforms like Raspberry Pi
- Tradeoff between energy demand and time has to be found

Conclusions

- Two-Platform DTN node
 - MCU-based board, Raspberry Pi
- Both parts appear as a single node
- Energy demand depends on
 - Communication medium
 - Communication partner
 - Clock frequency
- Large delays for IBR-DTN on platforms like Raspberry Pi
- Tradeoff between energy demand and time has to be found

Thank you! Any Questions? rottmann@ibr.cs.tu-bs.de



In Greek mythology, Amphisbaena is a serpent with two heads.

October 13, 2016 **| Stephan Rottmann**, Robert Hartung, Jan Käberich, Lars Wolf **|** Page 22 Amphisbaena: A Two-Platform DTN Node

Results: Large Bundles via Ethernet

Findings

- Small Bundles via IEEE 802.15.4
 - Increasing *f*_{CPU} not useful when communicating with RPi
- Optimum may not be at extrema of parameters
- Ethernet
 - Strongly dependent on Communication Partner
 - Large delays on Raspberry Pi ightarrow low f_{CPU}

Cooperation

Cooperation of DTN implementations

- DTN stacks know of each others applications
- If a bundle for the other one is received, it will be forwarded
 - Linux platform may be powered up
- Amphisbaena may decide to boot Linux if bundle is too big
- Cooperation is transparent to neighbors
- Information is exchanged via USB between miniDTN and IBR-DTN

Power Supply

- Efficient Switching Regulator LM43603
 - Provides 3.3 V
- Charge Controller LT3652HV
 - Charges Li-Ion/LiPo/LiFePO₄ /Lead-Acid
- Photovoltaic Module

Processing Unit

- STM32F407VGT MCU
 - Ethernet, USB
 - SD Card
 - I²C, SPI, UART, ...
 - RTC with Backup-Battery
- Two Outputs for Load
 - MOSFET High Side Switches
- Low Power Radio
 - IEEE 802.15.4
 - LoRa
- I-wire Temperature Sensors DS18B20

