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Abstract

In recent years, Delay Tolerant Networking (DTN) has received a lot of interest from the
networking community. Today the Bundle Protocol (RFC 5050) is the standard communication
protocol in DTNs and three major implementations are available. Since DTN is still a young
research area, specifications as well as implementations have not yet reached the same state of
maturity as e.g. TCP protocol stacks.

As of now no quantitative analysis of the different implementation’s performance or a struc-
tured evaluation of interoperability has been undertaken. In this paper we present an interop-
erability check and perform an extensive quantitative performance analysis of the three main
Bundle Protocol implementations.

While the overall results show that all implementations provide some baseline compatibility
with each other, the stability and achieved performance under stress situations varies widely
between implementations.

1 Introduction

Implementing Delay Tolerant Networking (DTN) as a way to cope with intermittently connected
networks has gained a lot of interest in the research community lately. The standard DTN protocol
is the Bundle Protocol defined in RFC 5050 [12]. Today several Bundle Protocol implementations
exist, focusing on different use cases.

As of now, no quantitative analysis of the different implementations’ performance or a struc-
tured evaluation of interoperability has been undertaken. In this work we measure and compare
the performance of three open-source Bundle Protocol implementations for Linux systems: DTN2,
IBR-DTN and ION. We also report compatibility and interoperability results between the different
implementations.

When implementing a new protocol stack for data transmission, the possible throughput is one
of the most important quantities to determine. Especially in DTNs, with short contacts between
the nodes, the utilization of the available bandwidth determines the efficiency of the whole network.
The performance of DTN setups is often analysed only theoretically through the use of specialised
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simulators such as The ONE [7]. As these simulators only use approximations of the Bundle Pro-
tocol, the observed performance might not be in line with the performance achieved by real DTN
implementations in a deployed application.

As of now, the performance of the three main Bundle Protocol implementations has only been
measured punctually and due to different setups the results are not directly comparable. There has
not been a comprehensive comparison of the three implementations with a well defined experimental
setup. In this paper, we systematically investigate the performance over the omnipresent TCP
convergence layer.

The remainder of this document is organized as follows: In section 2 we present related work.
Section 3 introduces the three Bundle Protocol implementations and sheds some light on the spe-
cialities of each implementation relevant to our experiments. In section 4 we evaluate the network
performance of the implementations and examine the interoperability when using the implementa-
tions in heterogeneous environments. Finally, in section 5 we summarize our findings and conclude.

2 Related Work

E. Oliver and H. Falaki [9] have built a testbed for DTN2 evaluation on low-power, low-cost com-
puters. Their performance analysis considers wired and wireless links between four nodes in the
experiments and discloses a correlation between the size of a bundle and the possible throughput.

A short comparison of the throughput of ION to the DTN2 implementation is done in [1]. The
authors report bandwidths of over 800MBit/s with a RAM based setup, but omit many important
details of the measurement setup.

In [11] IBR-DTN is introduced and some basic tests are presented comparing the performance
of the IBR-DTN implementation to DTN2.

The Jet Propulsion Laboratory evaluated the readiness of ION for space missions in the DINET
Experiment [13]. During a period of 27 days, some 300 images were transmitted from JPL nodes
located on the earth to a spacecraft in the orbit. Then they were automatically forwarded from
the spacecraft back to the JPL nodes. This experiment was exercising DTN’s bundle origination,
transmission, acquisition, dynamic route computation, congestion control, prioritization, custody
transfer, and automatic retransmission procedures, both on the spacecraft and on the ground.

3 Bundle Protocol Implementations

This work evaluates the three open-source Bundle Protocol implementations for Linux sytems:
DTN2, IBR-DTN and ION. Since these implementations focus on different applications, certain
design decisions for routing, storage or API differ widely. The following section briefly introduces
the implementations and outlines notable design features and highlight some of the characteristics
of each daemon which have been proven relevant to our evaluation.

In this paper we use the term “disk” storage to refer to bundles being stored persistently on a
medium such as a hard drive or flash storage while we refer to storage relying on volatile system
memory such as RAM as “memory” storage
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3.1 DTN2

DTN2 [3] is the reference implementation of the Bundle Protocol by the Delay Tolerant Networking
Research Group (DTNRG). It provides a flexible framework for DTN related experiments and can
be configured and managed by a TCL console and configuration files. Extensions for routing, storage
and convergence layers are easily attachable through XML interfaces. DTN2 features two different
built-in modules for bundle storage: A memory based storage and a disk based storage relying on
the Berkeley DB library.

3.2 IBR-DTN

IBR-DTN [11] is a lightweight, modular and highly portable Bundle Protocol implementation de-
signed for embedded systems. The included DTN daemon provides different routing schemes as well
as a discovery mechanism.

The IBR-DTN implementation has several flavours of disk storage. Since it has to deal with
potentially large blocks as part of a bundle, a BLOB management unit provides a transparent access
to container objects that store the data in memory or on disk based on the runtime configuration.
These containers are used to store all potentially large blocks (e.g. payload blocks) and avoid the
usage of RAM for raw data, if configured properly. Bundle objects composed of several blocks are
stored in a bundle storage module for later usage. By default all bundles are held non-persistent in
data structures and depending on the BLOB configuration raw data is stored on disk or in memory.
If the storage is configured to use disk storage for bundles, all bundle objects are serialized into
files and the corresponding object is destroyed, freeing the RAM occupied by this bundle until it is
needed again. In this case the store mechanism is persistent and survives reboots or power-fails. As
an alternative, IBR-DTN also offers a disk-based storage that is based on the SQLite library.

3.3 ION

Interplanetary Overlay Network (ION) [1] is a Bundle Protocol implementation from the Jet Propul-
sion Laboratory (JPL) specifically developed to run in robotic spacecrafts on a Real-time operating
systems (RTOS). However, besides VxWorks, it also runs in x86 Linux distributions.

ION is designed much like a database and the bundle storage is based on the Simple Data
Recorder (SDR), a component that already runs in spacecrafts. It can be configured to store data
on disk, in memory or to use both media. The SDR supports a transaction mechanism that ensures
database integrity in case of failing database operations. ION allows configuring, which combination
of storage mechanisms should be used. This also allows using disk and memory storage at the time,
although the outcome is not documented.

The whole system is based on a shared-memory concept that is also used to communicate with
sender and receiver processes. Instead of supporting discovery of neighbors, it relies on scheduled
wireless contacts. It is optimized for links with small available bandwidths and supports Compressed
Bundle Header Encoding [2] (CBHE) for the Bundle Protocol Headers as well as the Licklider
Transmission Protocol [10] (LTP). The authors state, that the main purpose of ION is to use CBHE
and the LTP, whereas this paper focuses on standard Bundle Protocol with TCPCL to enable
comparability and interoperability with DTN2 and IBR-DTN.
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4 Evaluation

In networks with intermittent connections the throughput is especially important, as the goal is to
take as much benefit from transient connections as possible. In this evaluation we have concentrated
on the throughput that can be achieved in different scenarios. We have evaluated the raw throughput
using a GBit LAN connection, the throughput in a bandwidth-limited opportunistic scenario, the
possible performance that can be achieved when using different implementations as sender and
receiver and finally the effect of the TCPCL segment length onto the throughput.

4.1 Experimental Setup

All experiments were conducted in a controlled environment. As target for all implementations we
used computers equipped with an Athlon II X4 IV 2.8GHz including 4GiB RAM running Ubuntu
Linux. The computers are equipped with a Samsung F3 500GB (HD502HJ) hard drive connected to
the on-board SATA controller. The computers are connected using 1GBit Ethernet. For the basic
throughput tests we did not simulate bandwidth-constrained links or disruption, as our goal was
to test the raw performance of DTN implementations rather than their functionality in disrupted
networks.

On the PCs we used different physical Ethernet ports for the Bundle Protocol traffic and the
traffic used for controlling and monitoring the experiments. The GBit NICs for Bundle Protocol
traffic used a Realtek (RTL8111 / 8168B) controller. The raw TCP throughput achieved by this
setup is ∼940MBit/s which has been measured using iperf1. In this work we used DTN2 version
2.7, IBR-DTN version 0.6.3 and ION version 2.4.0. All implementations have been measured using
their respective default configuration unless otherwise noted.

For ION, we have removed the artificial rate limit for the TCPCL that otherwise prevents ION
from exceeding 90MBit/s. To prevent missing bundles, we had to enable reversible transactions in
IONs storage system.

4.2 API and bundle storage performance

This experiment focuses on API and bundle storage performance and did not involve any network
transfers. While in classical networking protocols there exists a code path from the application to the
hardware driver with probably only simple and small ring buffers between the layers, a DTN imple-
mentation has to provide some form of (semi)permanent storage, which keeps and manages bundle
data and accompanying meta information. Therefore, submitting packets from the application layer
to the network is a more heavyweight operation in DTN protocol implementations compared to other
networking protocols. It is clear that the speed at which a DTN implementation can put bundles
into the storage or retrieve them will also fundamentally limit the maximum bandwidth the daemon
can sustain under ideal conditions.

On each node we measured the time to store and receive 1000 bundles of varying payload size. For
each payload size we performed 10 runs. The plots show the arithmetic mean bandwidth and bundle
frequency of all ten runs including the standard deviation. The daemons have been restarted after
performing the 10 runs for each payload size, to prevent that old runs can influence the following
measurements. For DTN2 we used dtnsend for sending and dtncat for retrieving bundles. For
IBR-DTN we use dtnsend and dtnrecv. For ION we use bpsendfile and bprecvfile. The tools

1http://iperf.sourceforge.net/
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were used (IBR-DTN) or modified (ION, DTN2) in such a way, that a single call was sufficient to
create or retrieve the 1000 bundles en-bloc so we do not measure the overhead of starting the tools
over and over again.

For each implementation we measured the different available storage backends. This experiment
gives a good upper bound on the performance an implementation can reach: A DTN implementation
can not sustain linespeeds larger than its maximum performance receiving new data locally through
its API. While for “common” networking protocols such as TCP the API (bsdsockets) normally is
only a small layer of code which ties directly to the kernel via syscalls, and thus is only speed limited
by the hardware, all tested implementations in this work are pure user space implementations. IBR-
DTN and DTN2 use a socket based API to connect applications to the daemon. IBR-DTN can
use Unix socket instead of a TCP socket when operating locally, but both approaches are more
costly than using a syscall interface. ION uses a shared memory approach to facilitate IPC between
applications and the core components. Independent from the API all implementations have to store
received bundles in some kind of storage, which means that API performance can be IO-bound.
This is different from protocols such as TCP, where only a relatively small amount of in-flight data
is cached and applications are blocked when the internal buffers are filled.
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Figure 1: DTN2 API send performance

The results of these tests can be seen in Figures 1, and 2 (DTN2), in Figures 3 and 4 (IBR-DTN),
and in Figures 5 and 6 (ION). The logarithmic x-axis shows the size of the bundle payload. Solid
lines indicate the number of bundles processed per second, dashed lines indicate the throughput to
or from the daemon in MBit/s. Each figure is presented twice, either with linear or logarithmic
y-axis.

For the send case it can be seen, that for small bundle sizes all implementations are limited by
the bundle frequency, i.e. the overhead for processing the individual bundles. Figure 1 shows that
DTN2 reaches a bundle frequency of around 407 bundles/s for bundles ≤ 10 000 bytes and memory
storage. For larger bundles, the frequency decreases as expected since now the tests are limited
by the bandwidth provided by the storage backend. DTN2 reaches a maximum send throughput
of 1140.1MBit/s for memory based storage with disk storage being gradually slower. In Figure 3,
IBR-DTN shows a similar behaviour whereas the bundle frequency starts to decrease for bundles
≥ 1000 bytes. However, the overall frequency is significantly higher for smaller bundles while the
frequency for larger bundles is almost the same because the bandwidth of the hard drive or memory
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Figure 2: DTN2 API receive performance

is the limiting factor. IBR-DTN shows in interesting behaviour since the throughput reaches its
maximum for bundles of 2 000 000 bytes. This is caused by disk caching mechanisms and is a side
effect of the 4GiB of RAM in our test machines. ION’s bundle send frequency in Figure 7 is
comparable to DTN2 for smaller bundle sizes. However, ION can sustain the frequency even for
larger bundles and consequently reaches a throughput of more than 7000MBit/s. All in all, IBR-
DTN has the highest bundle frequency for smaller bundle sizes while ION reaches the highest
throughput for larger bundles.
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Figure 3: IBR-DTN API send performance

The receive test shows comparable results: DTN2 (fig. 2) and IBR-DTN (fig. 4) are bundle
frequency limited for small bundles. However in contrast to the sending case here DTN2 achieves
significantly higher bundle frequencies compared to IBR-DTN. In both cases throughput raises,
reaches a maximum and falls back to lower speeds. The initial increase followed by a decrease in
throughput can again be explained by caching: For smaller bundle sizes, all received bundles fit into
the file system cache and can thus be retrieved very fast. For larger amount of data performance
is again limited by available disk bandwidth. This can be seen by the IBR-DTN memory storage
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Figure 4: IBR-DTN API receive performance

performance that does not write anything to disk and thus does not fall back to disk bandwidth.
ION (fig. 6) again has a significantly lower bundle frequency with an interesting behaviour. The
frequency is the highest for bundles between 1000 bytes and 100 000 bytes whereas it is lower for
smaller and larger bundles. For the receive case, ION is not able to sustain the bundle frequency for
larger bundles and reaches a maximum throughput of slightly above 1000MBit/s.
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Figure 5: ION API send performance

A direct comparison of the send and retrieve performance of the disk based storages is given in
fig. 7 and fig. 8. Furthermore, figures 9 and 10 show a comparison of the API send and receive
performance for memory based storages.

In summary it can be seen that when dealing with large amounts of data the underlying storage
limits the bandwidth a DTN daemon can sustain over a period of time. A low bundle processing
overhead is important to deal efficiently with small bundle sizes and a low amount of total data.
For the storing case IBR-DTN outperforms DTN2 and ION in this test, for the retrieve case it is
vice versa. However, since the bundle frequency DTN2 achieves when storing bundles is lower than
IBR-DTN’s bundle frequency upon retrieving, it is to be expected that in a situation where bundles
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Figure 6: ION API receive performance

are continuously being generated, transmitted and consumed a IBR-DTN setup should outperform
a DTN2 setup, while a combination of an IBR-DTN sender and an DTN2 receiver might reach
even higher performance. This is based on the assumption that both implementations perform
equivalently well with regard to performance and efficiency when transmitting bundles. We will
look into the network throughput in sec. 4.3. We analysed different combinations of daemons in our
interoperability tests in sec. 4.8.2.

The extremely high bandwidth achieved by ION in the sending case can be explained by the
ION architecture that uses a shared memory approach for communication between different parts
of the implementation. We assume that ION has not touched the disk for the Memory and Hybrid
storages, as the achieved throughput by the hybrid storage for large bundles is well above even the
streaming capability of the used hard drive.
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Figure 7: API send performance comparison with disk storage
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Figure 8: API receive performance comparison with disk storage
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Figure 9: API send performance comparison with memory storage

4.3 Network Throughput

In this experiment we measured the network performance of the different implementations. We
measured throughput between two nodes that are connected via GBit Ethernet. While a GBit link
might be uncommon for typical DTN applications it shows the daemons ability to saturate a given
link. Failing to reach high bandwidths in this experiment indicates that bundle processing overhead
in a given daemon might be too high. This will not only pose a problem with a high bandwidth
link, but it could also preclude a resource-constrained node to saturate a lower bandwidth link.

On the sender node we injected 1000 bundles for the receiver. After the bundles had been
received by the sending daemon we opened the connection and measured the time until all bundles
have arrived at the receiver. For each payload size we performed 10 runs. The plots in Figures 11,
12 and 13 show the average of all ten runs as well as the standard deviation. The bandwidth plotted
is application layer bandwidth, i.e. it only considers the size of the payload, not protocol overhead.
The daemons have been restarted after performing the 10 runs for each payload size, to prevent any
influence that old runs might have on the following measurements. This experiment uses the TCP
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Figure 10: API receive performance comparison with memory storage

Convergence Layer.
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Figure 11: DTN2 network throughput

It can be seen, that IBR-DTN comes close to the theoretical limit of the link (940MBit/s) for
large bundle sizes with a throughput of up to 843.341MBit/s for disk storage. DTN2 reaches a
maximum of 719.977MBit/s with memory storage and ION falls short with 448.833MBit/s.

In fact all storages perform very similar for ION, which indicates that the responsible bottleneck
is not located in a specific storage module.

For small bundle sizes DTN2’s (fig. 11) disk and memory storage achieve almost the same
throughput, which indicates that the throughput is bounded by processing overhead. For bundles
≥ 10 kByte DTN2’s disk storage achieves lower performance than memory storage, which indicates
that for these sizes the throughput of the storage engine limits performance. The variances for
DTN2’s memory storage are extremely high. Upon further investigation, we discovered that after
each run using memory storage DTN2 gets gradually slower. More details on this issue can be found
in sec. 4.5.

IBR-DTN (fig. 12) shows a similar behaviour where the throughput increases with larger bundle
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Figure 12: IBR-DTN network throughput
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Figure 13: ION network throughput (with transactions)

sizes, however in absolute terms throughput is always significantly higher than DTN2’s. In IBR-DTN
the performance is more consistent between different storage backends, while DTN2 performance is
much higher when using the memory-based storage compared to its disk based storage. Interestingly,
IBR-DTN shows higher throughputs for disk-based storage compared to memory storage. After
further investigation this turned out to be caused by the respective implementation of the storage
modules. Disk-based storage uses multiple threads and makes good use of the multiple CPU cores
in our test machines while memory-based storage only uses one thread and subsequently only one
core. The SQLite storage of IBR-DTN is the slowest for smaller bundles but then picks up and is
only gradually slower than the disk-based storage for bundles ≥ 1 000 000 bytes.

ION (fig. 13) shows a performance between the two storage backends of DTN2. It is noteworthy,
that the two ION storage backends have comparable performance for all bundle sizes. This fact
implies that the bottleneck in ION is not within the storage module but in the processing of the
daemon. While DTN2’s memory-based storage is significantly faster than ION, DTN2’s disk-based
storage is also significantly slower than ION.
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A comparison of the throughput of all disk based storages can be seen in fig. 14. Clearly in the
network throughput test IBR-DTN is the winner, while the picture between DTN2 and ION is not
so clear.
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Figure 14: Network throughput comparison

4.4 TCPCL Segment Length
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Figure 15: Impact of TCPCL segment length onto Throughput for IBR-DTN

As seen in section 4.3 neither implementation was able to saturate the maximum bandwidth of
the link. Apart from performance limits in the daemons, unsuitable parameters used in the Bundle
Protocol can have an effect on throughput. As DTNs are mostly deployed in wireless networks
it can be assumed that the implementations have been tested in such setups, where the available
bandwidth is much lower than in our test cases.

The parameter which is most likely to influence throughput is the TCP Convergence Layer
(TCPCL)[4] segment length. Essentially, a larger segment length means less processing overhead:
Executing fewer TCP send syscalls saves processing overhead in the daemon and avoids unnecessary
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switches between userspace and the kernel. Also, since every segment is acknowledged by the receiver,
for larger segment lengths there is less overhead processing the TCPCL acknowledgements.

The TCPCL segment length defines how many bytes the TCPCL will transmit as a single block.
This defines the amount of data that is acknowledged by a single Ack and also influences the
granularity of reactive fragmentation. It is to be expected that by using a larger TCPCL segment
size a daemon can saturate a higher bandwidth. Both DTN2 and IBR-DTN use 4096 kBytes as
default segment length, while ION does not segment bundles at all. To show the influence of the
TCPCL segment length, we have measured the achievable throughput with the default value of
4096 bytes and an extreme value of 2.5MB.

Figure 15 shows the influence of the segment length for IBR-DTN. It can be seen, that for bundles
larger than the default segment length of 4096 bytes the performance is increased significantly. The
fastest measured throughput was for memory-storage with the increased segment length of 2.5MB
and a bundle size of 1MB. In this setting, IBR-DTN reaches a speed of 935.200MBit/s which is
99.489% of the theoretical maximum of the link.

This measurement has clearly shown that tweaking the TCPCL segment length can significantly
increase the throughput of a Bundle Protocol implementation.

4.5 DTN2 Throughput Variances

As shown in sec. 4.3, DTN2 exhibits high variances between different runs of the same bundle size
and storage, especially for medium-sized bundles when using memory storage. Figure 16 shows the
throughput over different measurement runs. Especially for the smaller bundle size a clear trend of
decreasing speed in each measurement run can be seen. For the big bundle sizes the behaviour gets
more erratic.
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Figure 16: DTN2 throughput with different payload sizes over multiple measurement runs.

This behaviour might indicate some resource management problems within DTN2, i.e. some
resources might not be freed when not needed anymore. As we restarted all daemons for each new
set of parameters, the results presented before are not influenced by the order of the experiments.
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Figure 17: ION comparison of the API performance for different storage configurations.

4.6 ION Storage Variants

ION allows configuring the underlying storage using a number of flags that enable or disable storage
types. This enables the user to use multiple storage options at the same time. Figure 17 shows
the performance of the ION API with different storage configurations and bundle sizes. It can
be seen, that memory storage has the highest throughput in bundles and bytes with significant
benefits for bundles sizes below 1000 bytes. Also, the combination of disk and memory storage
(denoted as hybrid) is significantly faster than normal disk storage. When we have enabled reversible
transactions, the performance drops at least an order of magnitude, but still memory storage is faster
than hybrid that is still faster than disk storage.

Although this high performance is promising, we were unable to run our throughput tests without
reversible transactions enabled, as we experienced severe bundle loss without any error messages
under these conditions. Therefore, for our experiments we had to resort to the slower alternative.

4.7 Opportunistic Throughput

The goal of the scenario in sec. 4.3 was a clean throughput test to reveal the maximum performance
of each implementation. In this second scenario the goal is to get realistic throughput values in a
network with opportunistic contacts. Based on a scenario for public transport systems published in
[8], we have two fixed nodes which are out of range of each other and a mobile node that commutes
between them. The timing is based on measurements published in [5]. In each cycle, the mobile
node first makes contact with the sender for 72 s, then has no contact for 30 s to make contact with
the receiver for 72 s afterwards. After another 30 s without contact, the cycle starts again with the
whole experiment lasting 30minutes. The contacts are simulated using iptables. We limited the
TCP throughput to 12.7MBit/s based on the results presented in [5] using a Token Bucket Filter
(tbf) based on the Linux Classless Queuing Disciplines (qdisc). The bundle creation speed is fixed
and ensures that always enough bundles for the next contact are present on the sender node. Under
optimal conditions this setup would allow transmitting a total of 1000.59MByte of raw TCP data
in 30minutes.

The hardware used is the same as described in section 4.1. Each experiment is repeated five
times for different bundle sizes with DTN2 and IBR-DTN using the memory storage backends. ION
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is not able to compete in this test, since it does not support opportunistic contacts. We used flooding
as routing module for DTN2 and epidemic routing for IBR-DTN, since they are virtually identical
in functionality. The total amount of payload that could be transferred is listed in table 1, while
the values represent the average and the standard deviation of 5 measurement runs.

250 kB 500 kB 1 MB 2 MB
DTN2 918.2MB 917.3MB 917.6MB 908MB

± 4.18MB ± 2.28MB ± 2.30MB ± 6.63MB

IBR-DTN 841.3MB 913.1MB 912.6MB 902
± 2.96MB ± 0.65MB ± 1.52MB ± 0.00MB

Table 1: Transmitted data and standard deviation in the opportunistic scenario

The results show, that in these tests DTN2 slightly outperforms IBR-DTN, with the difference
being more pronounced for smaller bundle sizes. The slightly lower performance of IBR-DTN was
expected, since the memory-based storage produces a lower throughput as already stated in Fig-
ure 12. Also, IBR-DTN has a higher processing overhead when the storage subsystem keeps track
of a high number of bundles. Another influencing factor is the fact that DTN2 supports reactive
bundle fragmentation that is helpful whenever a bundle has been partially transferred. IBR-DTN
does not yet support this feature, so that incomplete bundles are dropped and have to be completely
retransmitted upon the next contact.

4.8 Interoperability

Interoperability is an important issue as the DTN community is rather small and the Bundle Pro-
tocol quite young. Not only can incompatibilities expose bugs in the respective daemons but also
more importantly they might also highlight ambiguities or undefined areas in the Bundle Protocol
specification. For the interoperability tests we check whether the daemons can discover each other,
which is important for applications relying on opportunistic contacts. However, the most impor-
tant thing is Bundle Protocol compatibility: If all daemons adhere to the Bundle Protocol [12] and
TCPCL [4] specification they should be able to exchange bundles. For the working combinations we
will measure the data throughput to give an estimate of the performance that can be expected in
heterogeneous environments.

4.8.1 Discovery

Typically, discovery mechanisms are used to detect an available link between two daemons. The
IPND draft [6] is a specification for such a mechanism. However, DTN2 implements a proprietary
IP-Discovery mechanism using TCP or UDP announcements for IPv4 address/port pairs while IBR-
DTN supports IPND in versions 0 and 1 in addition to the DTN2 IP-Discovery mechanism. The
ION implementation is strictly focussed on scheduled contacts and does not possess a discovery
mechanism.

To prove the interoperability between the three implementations, we used a setup with the
standard TCP convergence layer and did a simple test by forwarding a single bundle from one
implementation to another using default settings. Before forwarding the bundles, the daemons had
to discover each other and setup a TCP connection. We have found out that DTN2 and IBR-DTN
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are basically compliant and can dynamically discover each other. However, configuration is necessary
to specify the common discovery mechanism and UDP port to use.

4.8.2 Throughput

PPPPPPPPPTX
RX

DTN2 IBR-DTN ION

DTN2 197.231MBit/s 193.202MBit/s 71.574MBit/s
±210.016MBit/s ±198.240MBit/s ±9.456MBit/s

IBR-DTN 677.153MBit/s 542.337MBit/s 76.161MBit/s
±173.756MBit/s ±21.533MBit/s ±0.623MBit/s

ION 454.513MBit/s 420.743MBit/s 267.832MBit/s
±53.763MBit/s ±11.640MBit/s ±2.028MBit/s

(a) 100 KBytes payload size

PPPPPPPPPTX
RX

DTN2 IBR-DTN ION

DTN2 687.329MBit/s 635.088MBit/s 93.116MBit/s
±139.590MBit/s ±49.902MBit/s ±0.568MBit/s

IBR-DTN 881.463MBit/s 679.45MBit/s 89.915MBit/s
±72.149MBit/s ±64.362MBit/s ±4.561MBit/s

ION 871.677MBit/s 926.005MBit/s 448.833MBit/s
±76.428MBit/s ±4.009MBit/s ±3.592MBit/s

(b) 1 MBytes payload size

Table 2: Average Interoperability Throughputs using memory-based Storage

To determine, how the interaction between different implementations impacts throughput, we
conducted some additional performance tests. We created 1000 bundles on the sender node and then
measured the time it takes to transfer these bundles to the receiver node. We used the TCPCL in
its respective default configuration and opted to use memory storage to preclude any performance
impacts due to disk caching and similar issues. We set up static routing and opened and closed
connection between daemons using either built-in methods such as a command line interface or an
admin interface (ION, DTN2) or iptables (IBR-DTN). We ran these measurements for all 9 possible
pairs of implementations and the results are stated in table 2a for 100KByte payload size and in
table 2b for 1MByte payload. Each test was performed 10 times and the tables show the average
throughput and the standard deviation of these runs.

The results for DTN2 show that it can send 100KByte bundles with up to 197.231MBit/s, while
it can receive such bundles with up to 677.153MBit/s. Also, DTN2 can send 1MByte bundles
with up to 687.329MBit/s while it can receive them with up to 881.463MBit/s. This allows the
conclusion that DTN2 has a bottleneck in the sending components that limits the amount of bundles
that can be processed per time interval.

IBR-DTN is able to send 100KByte bundles with up to 677.153MBit/s while it can receive
such bundles with up to 542.337MBit/s. For 1MByte bundles, IBR-DTN can transmit with up to
881.463MBit/s and receive with up to 926.005MBit/s. This leads to the conclusion that IBR-DTN
has a bottleneck in the transmitting component limiting the throughput of this implementation.
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However, since IBR-DTN is the fastest sender and receiver in both experiments when communication
with other implementations, it is surprising that IBR-DTN does not produce higher throughput with
another instance of IBR-DTN. This does not allow a clear conclusion.

Finally, ION transmitted bundles of 100KByte with up to 454.513MBit/s while it received
such bundles with up to 267.832MBit/s. Also, ION transmitted bundles of 1MByte with up to
926.005MBit/s and received such bundles with up to 448.833MBit/s. While the transmit values
are competitive to DTN2 and IBR-DTN, the receive performance falls short reaching less than half
the throughput of the highest measured value.

An interesting result of the interoperability throughput tests is, that for smaller payload sizes,
the fastest sender and receiver combination is IBR-DTN and DTN2, while for larger bundles the
fastest combination is ION and IBR-DTN. Intuitively one would have expected to find the highest
performance between a sender and receiver of the same implementation. However, this confirms the
result that DTN2 is restrained by a bottleneck in the sending component. It can also be concluded,
that for bundle transfer between the same implementation DTN2 reaches the highest throughput
for 1MByte payload size, slightly ahead of IBR-DTN with ION far below. However, for 100KByte
bundles, IBR-DTN significantly outperforms the two competitors.

5 Conclusions

To the best of our knowledge, we have performed the first extensive study of performance and
interoperability of the three relevant Bundle Protocol implementations. We have looked at the
throughput that can be achieved using TCPCL as well as the effects of the storage systems available
for the implementations. Further, we have investigated which performance can be achieved in an
opportunistic scenario and how the different implementations interact with each other. Finally, we
have evaluated the effects of the TCP segment length onto throughput.

Generally the three implementations are interoperable. The achievable performance depends
on a significant number of factors and cannot be predicted easily. This becomes especially clear
when looking at the result that the fastest way of transmitting bundles is to use ION as sender and
IBR-DTN as receiver.

One of the major influencing factors is the underlying storage system that effectively limits the
achievable throughput for links with high bandwidth. Disk storage can be considered the default
option for DTNs and is not only influenced by the throughput of the disk but also by the concrete
implementation and caching mechanisms of the underlying operating system. Especially when the
total amount of bundles exceeds the available RAM, this can be a bottleneck.

Evaluating the performance and interoperability of Bundle Protocol implementations is impor-
tant for users and developers of DTNs alike. DTN users want to choose their implementation wisely
based on their usage scenario. Developers want to tune their implementations to achieve the best
usability for a specific target scenario.
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O. Pajonk, H. G. Matthies

Direct Bayesian update of polynomial chaos
representations

2011-03 H. G. Matthies White Noise Analysis for Stochastic Partial Differential
Equations

2011-04 O. Pajonk, B. Rosić, A. Litvinenko,
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