
Opportunistic Data Aggregation
in Delay Tolerant Networks

Wolf-Bastian Pöttner and Lars Wolf
Institute of Operating Systems and Computer Networks

Technische Universität Braunschweig, Braunschweig, Germany
Email: [poettner|wolf]@ibr.cs.tu-bs.de

Abstract—Delay Tolerant Networks are well suited for long-
term statistical data collection, where the installation of in-
frastructure is impossible or not worthwhile. Those scenarios
generally employ wireless links and are often based on limited en-
ergy resources such as batteries or battery-buffered solar power.
Hence, reducing energy consumption is of foremost importance.
In-network data aggregation reduces the amount of data that is
to be transferred and therefore lowers the energy consumption.

This paper presents an opportunistic, application-independent
data aggregation approach for Delay Tolerant Networks. By
employing a generic configuration mechanism, applications can
specify which bundles to aggregate. Using a standardized data
format for measurement values allows intermediate nodes to
aggregate a given set of bundles using so-called aggregation
functions. The evaluation shows significant reductions in terms
of energy consumption in two realistic, exemplary scenarios.

I. INTRODUCTION

Delay Tolerant Networks (DTNs) are based on the store,
carry and forward paradigm. They allow to transmit data
even in challenged networks with intermittent connectivity and
to exploit the mobility of nodes to transport data. The de-
facto standard in delay-tolerant communication is the address-
centric Bundle Protocol (BP) [1] which transports data in so-
called bundles. In literature, we find a significant amount of
DTNs that are used for long-term statistical data collection:
ZebraNET [2] is used to collect movement patterns of Zebras
in Kenya, Vineyard Computing [3] measures the exposure to
the sun of vineyards and OptraCom [4] collects air pollution
samples in the city. While those are just three examples, many
similar applications send small sensor samples in BP bundles.

The significant overhead of the BP impacts the efficiency of
such applications. Even if data rates are often small, the over-
head increases the network load and is, hence, not desirable.
Such networks often use low-power wireless links with nodes
operating on batteries. Reducing the overhead also decreases
the energy consumption and, thereby, increases network life-
time on batteries. Since low-power wireless links often provide
a low bandwidth only, lowering the overhead increases the
effective network capacity. Lowering the protocol overhead of
the BP is one possibility but would break compatibility with
existing BP implementations. In this paper we investigate, how
data aggregation techniques can be applied to bundles in the
BP to reduce the total amount of bundles in the network. In
many applications, data is send to one or multiple sink nodes
and statistically aggregated to allow drawing conclusions. Parts
of the data processing can also be moved into the network to
reduce the number of transmitted bundles and thereby also

the energy consumption. By data aggregation we refer to the
process of taking information from multiple bundles, combing
them using an aggregation function and to forward only a
single bundle to the next hop.

As we will show in the following Section II, existing
data aggregation approaches are often based on a specialized
network structure. However, in DTNs this type of structure
may not exist or is costly to maintain. We therefore use
an opportunistic, application-independent approach in which
multiple bundles are aggregated into one bundle if a node
happens to posses multiple bundles and the respective meta
information for aggregation. The design of our approach is
routing-protocol-agnostic (and thereby also structure-free) to
allow for independent routing decisions within the DTN even
when using data aggregation. We discuss the requirements
towards such an aggregation mechanism and outline how
configuration can be done in Section III. Our approach is
application independent (apart from the configuration) and
as BP-compliant as possible. We give insight into simulation
results obtained using The One [5] simulator in Section IV and
conclude the paper in Section V.

II. RELATED WORK

Research in the field of Wireless Sensor Networks (WSNs)
has produced a number of data aggregation approaches that can
be classified according to their location in the stack and their
topology requirements. Data aggregation can be performed in
layer 2, layers 3 and 4 as well as layer 5 (application layer).
Furthermore, aggregation protocols may require to set up a
specific (virtual) network topology to aggregate data at specific
points or be opportunistic in nature. In the following, repre-
sentatives of each class are given. A survey of Aggregation
Techniques for WSNs is given in [6].

AIDA [7] is an application-inspecific data aggregation
approach located on an intermediate layer between the existing
network- and data link-layer. Outgoing data is aggregated
while waiting in the output queue of a node and deaggregated
on the receiver node before being passed into the network
layer. This generic aggregation approach allows to achieve
certain reductions in overhead and does not rely on a spe-
cific network topology. However, the approach cannot be as
effective as an aggregation mechanism that understands the
application-specific data and protocols.

The authors of [8] aim at creating an aggregation tree with
optimally selected aggregation nodes within the tree. Data is
sent along the tree and aggregated at specific intermediate



nodes. Data aggregation is performed on layers 3 and 4 and
the evaluation shows significant reductions in energy consump-
tion. LEACH [9] is a cluster-based aggregation approach in
which nodes form clusters and information from the cluster
is routed over a so-called clusterhead. These clusterheads
are also the aggregation points for data coming from their
clusters. OPAG [10] is an opportunistic data aggregation
approach that exploits multi-path data transfer through the
network. By sending multiple copies of measurement values,
costly retransmission of individual packets can be avoided.
The approach computes an overlay spanning tree along which
data is aggregated. A commonality of all those approaches is,
that they construct a certain aggregation topology which is
not suitable for an intermittently-connected, dynamic DTN in
which a certain topology can never be guaranteed.

The authors of [11] explicitly avoid maintaining a network
structure to lower the management overhead. By employing
Data-Aware Anycast on the Medium Access Control (MAC)
layer as well as Randomized Waiting in the application,
potential for data aggregation is created. However, the solution
has strong requirements such as known location of nodes as
well as synchronized clocks that both cannot be guaranteed in
a DTN.

Thus, to the best of our knowledge, it seems that work
on opportunistic, application-inspecific data aggregation ap-
proaches for DTNs does not exist.

III. DESIGN

This section outlines the overall design as well as design
considerations for our BP data aggregation approach. The fore-
most goal is to aggregate multiple bundles into one to reduce
protocol overhead while remaining largely compatible with
the BP specification. More specifically, BP nodes that do not
support aggregation must be able to successfully forward ag-
gregated bundles. Furthermore, the aggregation approach shall
be application independent in its design to enable widespread
use. In general we assume, that data aggregation approaches
are used in networks deployed for one primary use case being
operated by one institution.

We realize this by using a standard data format (see
Figure 1) as well as a configuration mechanism that allows
to specify how to aggregate bundles. Our approach is oppor-
tunistic in so far, as nodes will reactively aggregate bundles if
more then one bundle in their storage can be aggregated. This
means, that if no opportunity for aggregation exists, bundles
are forwarded as usual. However, to increase the likelihood
of bundle to be aggregated, we introduce so-called delay
functions to increase the time a bundle is stored on a node
and hence increase the potential for aggregation.

In the context of data aggregation, we define the “aggrega-
tion degree” as the number of individual measurements that are
contained in a bundle. Bundles start with an aggregation degree
of 1 and if two bundles are aggregated together, the value
increases to 2. If at a later stage another bundle is aggregated
into the former bundle, then the aggregation degree is increased
to 3. Please note, that a higher aggregation degree is desirable
as it indicates how much overhead could be saved.

A. Aggregation Criteria

Aggregation-aware nodes check the bundles in their storage
for aggregation potential for each new bundle that is stored.
To check a pair of bundles to be aggregatable, the following
basic criteria have to be met: both bundles have to use the
standard data format so that the aggregation node knows what
information to combine. Furthermore, both bundles have to
share the same destination Endpoint Identifier (EID).

In addition, applications can configure a number of criteria
to specify if and how bundles shall be aggregated. The con-
figuration is always based on the destination EID and the data
type and also contains the aggregation- and delay-function to
use. Aggregation functions have to be known to all nodes in
advance.

Aggregation can further be configured based on the fol-
lowing properties of the bundle:

• Identity of the sender allows to aggregate only bundles
from a specific sender or a group of senders. Since the BP
is an address-centric protocol, nodes are also referenced
by their EID.

• The Time Window in which the measurements have been
taken. Based on the bundle creation timestamp, a maxi-
mum difference between the timestamps of bundles that
shall be aggregated can be defined. If more than two
bundles shall be aggregated, the minimum and maximum
respective creation timestamps may not differ by more
than the time window.

If two bundles are considered to be eligible for aggregation,
the measurement information is combined using the aggrega-
tion function (see Section III-C) according to the configuration.
If a bundle matches the configured aggregation criteria, the
delay function is applied to that bundle before it is forwarded
(see Section III-D).

A set of aggregation criteria is combined to the aggregation
configuration. This configuration is distributed in the network
using a multicast bundle.

B. BP compatibility

In BP terms, a bundle is created by the sender and
consumed by the receiver; the specification does not include
any means to alter a bundle in-flight apart from bundle
fragmentation. However, when taking two bundles with mea-
surement information that happen to be stored at the same
node at the same time, aggregating those bundles means to
combine the information from both bundles and only forward
one towards its destination. Hence, aggregating bundles is a
significant change to the handling of bundles outlined in the
BP specification [1].

When combining multiple bundles into one, a number of
the fields of the Primary Bundle Block (PBB) have to be
considered. First of all, two bundles can only be aggregated if
they share the same destination EID. Each bundle is uniquely
identified by the source EID, the creation timestamp and the
sequence number. Our approach stores the necessary infor-
mation to identify all bundles that are aggregated to allow
identifying all original bundles that have been aggregated into
any given bundle. The information identifying the original



Destination EID

Source EID 1

Creation Timestamp 1

Sequence Number 1

Lifetime 1

Data Type

Measurement Value 1

(a) Incoming Bundle 1

Destination EID

Source EID 2

Creation Timestamp 2

Sequence Number 2

Lifetime 2

Data Type

Measurement Value 2

(b) Incoming Bundle 2

Destination EID

Source EID 1

Creation Timestamp 1

Sequence Number 1

max(Lifetime1, Lifetime2)


Primary Bundle Block

Data Type

aggregate(M.V alue1,M.V alue2)

}
Bundle Payload Block

0 Source Creation Sequence

EID 2 Timestamp 2 Number 2

}
Aggregation Block

(c) Aggregated Bundle

Figure 1: Bundle aggregation example with two (the same principle applies for more than two input bundles) incoming bundles
and one outgoing bundle (shown bundles are simplified). Please note the matching Destination EID and Data Type fields.

bundles (source EID, timestamp, sequence number) is kept
in the aggregation extension block (see Figure 1) which
makes it compatible with all BP-compliant implementations.
On nodes that do not support aggregation, two bundles may be
considered to be identical due to a similar PBB since the nodes
do not know about the extension block. Upon aggregation of
two bundles, the header information of the outgoing bundle are
selected in a deterministic way based on the incoming bundles.

Other relevant header information in the PBB are the
lifetime and the bundle priorities. Our approach uses the
highest priority and highest lifetime of the incoming bundles
for the outgoing bundle. This does not harm the network, as
aggregation is usually only applied to a certain time window of
original messages. Therefore, it is guaranteed that aggregated
bundles have a bounded lifetime and will eventually expire.
Using the highest lifetime further ensures, that no aggregated
bundle is discarded before the original bundle would have been
expired. It may happen however, that a subset of the informa-
tion aggregated into a bundle is delivered to its destination after
the lifetime for the original bundle would have been expired.

1) Bundle Status Reports and Custody Transfer: Two el-
ements of the BP need special attention when combining
multiple bundles into one: bundle status reports and custody
transfer. Status reports may be requested by the sender and
may be send by any node on the path for events such as
receival, acceptance, forwarding, deletion and delivery. The
PBB contains a special “Report-To” field which specifies
the recipient of those reports. When combining two bundles,
the report-to information including the flags which reports
to send should be maintained. Furthermore, the report has
to reference the original bundle, so that the original EID
as well as creation timestamp and sequence number have
to be present as well. In the scope of this paper, bundles
requiring a report are not aggregated to circumvent problems
associated with aggregating such bundles. To provide some
level of functionality, nodes that aggregate multiple bundles
into one could act as the recipient of the bundle and send
all appropriate reports. However, we recommend not to use
reports when sending bundles that are potentially aggregated.

If the end-to-end characteristics of the reports have to be
kept at all cost, one would collect the report-related informa-
tion (EID and flags) in the aggregation block in the bundle.
An aggregation-aware destination or intermediate node can
then send reports to all report-to addresses contained in the
aggregation block. An aggregation-unaware node (standard BP
implementation) would only send a report to the report-to
EID contained in the PBB and not send reports to the other
interested parties.

Custody transfer is another issue when aggregating bun-
dles. The BP custody management involves a custodian for
each custody-enabled bundle and this custodian is responsible
for that particular bundle. This mechanism allows hop-by-hop
reliability by ensuring, that a bundle will only be deleted by
a custodian when another node has accepted custody for it.
Unfortunately, the BP specification contains many blind spots
with regard to custody transfer. It is rarely used in practice and
often argued about1. We therefore exclude support for custody
management in connection with bundle aggregation.

C. Aggregation Functions

To allow bundle aggregation, the measurement values con-
tained in multiple bundles have to be combined into one single
value that is then forwarded to the destination. The selection
of the suitable aggregation function is of course application-
specific. In general we provide a configuration mechanism
to adapt to the specific application needs. In the context of
this paper, we see an aggregation function aggregate(...)
as a mathematical function that takes ≥ 2 input values and
calculates 1 output value. Examples of such functions are the
minimum, maximum, average, standard deviation and the sum
among many others.

In the scope of this paper we differentiate two types
of aggregation functions: 1) duplicate-sensitive aggregation
functions which will produce a wrong result if the same input
value is put in twice. For the calculation of, e.g., a sum, putting

1http://www.ietf.org/mail-archive/web/dtn-interest/current/msg04337.
html



in the same input value twice will actually produce a different
(and wrong) result and has to be avoided. To avoid this, the
aggregation block is appended to all aggregated bundles and
allows to determine, if the measurement value of a bundle
has already been taken into account for the aggregation. On
the other hand, 2) duplicate-insensitive aggregation functions
which will produce the same correct result, no matter how
often a particular value has been repeated. When calculating,
e.g., the minimum, having the same argument twice does not
change the overall result.

D. Delay Functions

The approach of opportunistic data aggregation relies on
the properties of DTNs: bundles are stored on a node for a
certain amount of time which opens potential for aggregation.
The longer a bundle remains on a node, the higher the potential
for aggregation. Since DTNs are designed to handle potentially
long delays, artificially increasing the delay of a bundle is
legitimate (strictly speaking, this may depend in the specific
use case). Our approach is to use so-called delay functions to
keep bundles on a node for a certain amount of time. During
this delay period, the bundle is not forwarded but potentially
aggregated with more incoming bundles.

In particular, our approach uses the following three delay
functions:

• Static delay will delay the bundle for a fixed amount of
time on each node.

• Static delay if below threshold will delay bundles for a
fixed amount of time, if the aggregation degree is below a
threshold. If the aggregation degree increases to match or
exceed the threshold, the bundle may be forwarded before
the fixed delay has elapsed.

• Variable delay calculates the fixed delay per bundle by
dividing the static delay by the aggregation degree to
forward bundles that have already been aggregated faster.
delay = Static Delay

Aggregation Count

E. Aggregation Data Format

To enable intermediate nodes to aggregate bundles, a com-
mon data format has to be used. While we cannot standardize
a data format, we discuss the elements it has to contain. To
identify the type of the measurement value, a “data type” field
has to be included as shown in Figure 1. The content of this
field specifies the type of data (temperature, pressure, etc.) and
hence allows aggregating nodes to decide, whether two bundles
contain the same type of data. Also, the raw measurement
value has to be contained in each bundle. We argue, that in
terms of BP compatibility, the Bundle Payload Block (BPB)
is the proper place to store such information.

However, to know which bundles have already been aggre-
gated into a bundle at hand, those bundles have to be uniquely
identified. We therefore insert a custom aggregation block
into each aggregated bundle that contains the source EID,
the timestamp and the sequence number of all bundles that
have been aggregated into the bundle at hand (see Figure 1).
This allows aggregation-aware nodes to decide, whether two
bundles are carrying the same information even if the source
EID, the sequence number of the timestamp of the PBB are
identical.

If a node receives a bundle which is an aggregate of one or
multiple original bundles, the node has to check whether the
information contained in the bundle at hand is already present
in its storage. If all original bundles have been aggregated
into bundles that are currently stored on the node, then the
newly received bundle will be silently discarded. Otherwise,
the bundle may be aggregated with existing bundles if - and
only if - a duplicate-insensitive aggregation function is used.
Otherwise, multiple bundles have to be kept in the storage to
avoid producing erroneous results.

IV. EVALUATION

To evaluate the potential of opportunistic data aggregation
in DTNs we have conducted a series of simulations using
The One [5] simulator. The primary focus are the number of
bundle transmissions between nodes (correlating with band-
width utilization and energy consumption) and the end-to-end
bundle delivery rate. We expect, that enabling aggregation will
significantly reduce the number of transmissions while keeping
the original bundle delivery rate. We have furthermore focussed
on the aggregation degree per bundle as well as the end-to-end
delivery delay.

We modified the simulator to support our aggregation pro-
tocol. Namely, we have modified the sourceMessage class to
extend the data format and the bundle identification. Incoming
bundles are accepted only if previously unknown information
is contained. Furthermore, we have modified the bundle router
to perform reactive bundle aggregation.

A. Evaluation Scenarios

For the evaluation we have used two scenarios:

Scenario 1 is called “Vineyard” and contains 20 nodes that
are modelled after the scenario described in [3]. 16 nodes are
fixed in a vineyard and create one measurement bundle per
minute each. The bundle is addressed to a fixed sink node that
is out of range for all nodes on the vineyard. 3 worker nodes
are constantly moving over the vineyard and come into range
of the sink during breaks and after the work day is over. We
assume, that nodes are WSN nodes such as INGA [12] with a
range of 50m, a throughput of 250 kbit/s and storage capacity
of 1MBytes. The simulation time is 14 hours and we simulate
duplicate-sensitive and -insensitive aggregation functions.

Scenario 2 is called “Braunschweig” and is based on the
scenario used in [13], [14]. 28 nodes are following a realistic
mobility pattern of rail cars for inner-city transportation and
each generates one bundle every minute. All bundles are
addressed to a stationary sink node, where most of the rail
cars pass by from time to time. We assume nodes that are
equipped with IEEE 802.11 transceivers offering a range of
300m and a throughput of 11MBit/s. Buffers are configured to
2000MBytes which can easily be realized using an SD card.
The simulation was performed for 5 hours and we simulate
duplicate-sensitive and -insensitive aggregation functions.

B. Bundle Delivery Rate and Delay

The bundle delivery rate is the fraction of original bundles
that have been delivered to the sink node within the simulation
time compared to the total number of created bundles. In



0%	  
10%	  
20%	  
30%	  
40%	  
50%	  
60%	  
70%	  
80%	  
90%	  
100%	  

No	  Aggrega4on	   Duplicate-‐insensi4ve	  
Aggrega4on	  

Duplicate-‐sensi4ve	  
Aggrega4on	  

Bu
nd

le
	  D
el
iv
er
y	  
Ra

te
	  

Vineyard,	  Epidemic	   Vineyard,	  Prophet	  

Braunschweig,	  Epidemic	   Braunschweig,	  Prophet	  

Figure 2: Bundle delivery rate for two routing protocols and
two scenarios (higher is better).

Vineyard Braunschweig

No Aggregation 378.39 s 3168.40 s
Duplicate-insensitive Aggr. 379.29 s 3168.49 s
Duplicate-sensitive Aggr. 378.97 s 3164.83 s

Table I: Average end-to-end Delay for epidemic routing in two
scenarios (lower is better).

the context of bundle aggregation, we compare the number
of measurements delivered to the sink with the number of
measurement send by the nodes. Since measurements are
aggregated on the way, one incoming bundle may actually
include n measurements and then this is counted as n original
bundles.

The results in Figure 2 show, that 66.81% of the mea-
surements are delivered when using Epidemic routing in the
vineyard scenario without aggregation. Enabling aggregation
increases the ratio of delivered bundles slightly to 66.86%.
All bundles that have not been delivered are still stuck in the
bundle storage of the nodes. Due to the movement pattern
of the workers on the vineyard, bundles that are generated
after the workers have finished their work will not be picked
up during the simulation time and hence cannot be delivered.
While the delivery ratio for the Braunschweig scenario is sig-
nificantly higher (98.42% with Epidemic routing), aggregation
also does not impact the delivery ratio significantly. Using
Prophet routing slightly decreases the delivery ratio to 97.85%
independent whether aggregation is used or not.

The end-to-end delay is the time between creation of a
bundle and its delivery to the sink node. In the context of
data aggregation, we again look at the delay of individual
measurements, even if those are delivered to the sink in
aggregated form. If a measurement is delivered multiple times
to the sink, we count the earliest delivery (the lowest delay)
as delay for that particular measurement.

The results in Table I show the average end-to-end delay.
As we learn, data aggregation has no significant impact on the
end-to-end delay of bundles.

The results confirm, that data aggregation has no significant

0%	  
10%	  
20%	  
30%	  
40%	  
50%	  
60%	  
70%	  
80%	  
90%	  
100%	  

No	  Aggrega4on	   Duplicate-‐insensi4ve	  
Aggrega4on	  

Duplicate-‐sensi4ve	  
Aggrega4on	  

N
or
m
al
iz
ed

	  N
um

be
r	  o

f	  T
ra
ns
m
is
si
on

s	  

Vineyard,	  Epidemic	   Vineyard,	  Prophet	  

Braunschweig,	  Epidemic	   Braunschweig,	  Prophet	  

Figure 3: Total number of bundle transmissions for two routing
protocols and two scenarios, normalized to “No Aggregation”
(lower is better).

effect on the bundle delivery ratio and the end-to-end delay.
This is the expected behaviour in networks operating below
the network capacity limit. Only if storage or link capacity
become the limiting factor, data aggregation is expected to
increase bundle delivery ratio and decrease end-to-end delay
by lowering the overall network load.

C. Number of Transmissions and Aggregation Degree

The number of bundle transmissions in the network are
an approximation for energy consumption and bandwidth
utilization of the nodes as transmitting more bundles (or radio
frames) consumes more energy. Unfortunately, the number of
transmissions is no accurate measure for energy consumption,
as also the length of packets has to be considered. However,
The One offers no means to count the amount of transmitted
bytes as the BP overhead is not modelled properly. Although
BP data aggregation increases the packet size (see Figure 1),
one aggregated bundle is still significantly smaller than two
original bundles. Hence we can conclude, that decreasing the
number of transmissions also reduces energy consumption.

We have summed up all bundle transmissions in the
network and plot the results in Figure 3. The transmissions
are normalized to the respective combination of scenario and
routing protocol without using aggregation (“No Aggrega-
tion”). The results show, that data aggregation with a duplicate-
insensitive aggregation function has the highest potential in
terms of energy savings. When looking at the vineyard scenario
with Epidemic routing, our data aggregation approach reduces
the number of transmissions to 36.14% (reduced from 177209
to 64501 transmissions). When using epidemic routing, the
reduction to 28.26% (down to 69409 transmissions from
245637 transmissions) is even more striking when looking at
the Braunschweig scenario. The numbers show, that duplicate-
insensitive aggregation together with Epidemic routing reduces
energy consumption significantly.

The reduction is lower when using Prophet routing in
both scenarios (down from 51501 to 31625 for vineyard and
down from 179270 to 86685 transmissions for Braunschweig
respectively). The reason is, that Prophet produces less bundle



0	  

2	  

4	  

6	  

8	  

10	  

12	  

14	  

No	  Aggrega/on	   Duplicate-‐insensi/ve	  
Aggrega/on	  

Duplicate-‐sensi/ve	  
Aggrega/on	  

Av
er
ag
e	  
Ag

gr
eg
a(

on
	  D
eg
re
e	  

Vineyard	   Braunschweig	  

Figure 4: Average aggregation Degree for epidemic routing in
two scenarios (higher is better).

copies and hence less potential for aggregation. In a duplicate-
sensitive setting (such as the sum of all values), the benefits
are lower but still significant. The reason is, that if two bundles
with aggregation degree higher than 1 (and non-disjoint origi-
nal bundles) are stored at the same node, those bundles cannot
be aggregated using a duplicate-sensitive aggregation function
to avoid corrupting the data. Therefore, duplicate-insensitive
data aggregation can produce more utility from the aggregation
potential and hence less transmissions are required.

The aggregation degree is the number of original bundles
that have been aggregated into a given bundle. The results in
Figure 4 show the average aggregation degree for all bundles
that are delivered to the sink for Epidemic routing in our two
scenarios. The graph confirms, that the aggregation degree for
all bundles delivered to the sink is 1 when using no data ag-
gregation. Enabling duplicate-insensitive aggregation increases
the aggregation degree to 12.39 and 13.03 for the Vineyard
and Braunschweig scenario respectively. However, as we have
seen before, duplicate-sensitive aggregation functions have less
potential for aggregation and, hence, feature a lower bit still
significant aggregation degree of 6.99 and 8.40 respectively.

V. CONCLUSIONS

DTNs are increasingly popular for long-term statistical
data collection, especially in the context of low-power WSN
nodes [15]. However, the protocol overhead of the BP is
significant when small sensor measurements are transferred.
For a bundle with 4 bytes of payload, at least 18 bytes are added
for the BP header. While the overhead is a clear disadvantage
of the BP, the interoperability with existing DTN networks and
implementations make its use still worthwhile. To reduce the
impact of the overhead, we have proposed and investigated an
opportunistic approach for BP data aggregation in this paper.

A generic and application-independent configuration mech-
anism allows applications to configure which bundles shall
be aggregated on nodes in the network based on source
EID, data type and time window. Applications can specify
which aggregation function to use and if bundles shall be
delayed in intermediate nodes to increase their likelihood
of being aggregated. The specific protocol to configure the

aggregation mechanism is out of scope of this paper due to
space constraints.

Simulations in The One have shown, that data aggregation
significantly reduces the number of bundle transmissions in
the network. Since transmitted data costs energy, employing
data aggregation also reduces the consumed energy. The sim-
ulations have furthermore revealed, that aggregating bundles
does not have significant effects on the end-to-end delay and
the bundle delivery rate. Finally, in two exemplary scenarios,
an average aggregation degree between 6.99 and 13.03 could
be achieved.

REFERENCES

[1] K. Scott and S. Burleigh, “Bundle Protocol Specification,” RFC 5050
(Experimental), Internet Engineering Task Force, Nov. 2007. [Online].
Available: http://www.ietf.org/rfc/rfc5050.txt

[2] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein,
“Energy-efficient computing for wildlife tracking: design tradeoffs and
early experiences with ZebraNet,” SIGPLAN Not., vol. 37, pp. 96–107,
Oct. 2002.

[3] J. Burrell, T. Brooke, and R. Beckwith, “Vineyard computing: sen-
sor networks in agricultural production,” Pervasive Computing, IEEE,
vol. 3, no. 1, pp. 38 – 45, Jan. 2004.

[4] S. Lahde, M. Doering, W.-B. Pöttner, G. Lammert, and L. Wolf, “A
practical analysis of communication characteristics for mobile and dis-
tributed pollution measurements on the road,” Wireless Communications
and Mobile Computing, vol. 7, no. 10, pp. 1209–1218, Dec. 2007.

[5] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator for
DTN Protocol Evaluation,” in SIMUTools ’09: Proceedings of the 2nd
International Conference on Simulation Tools and Techniques. New
York, NY, USA: ICST, 2009.

[6] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network Aggre-
gation Techniques for Wireless Sensor Networks: A Survey,” Wireless
Commun., vol. 14, no. 2, pp. 70–87, Apr. 2007.

[7] T. He, B. M. Blum, J. A. Stankovic, and T. Abdelzaher, “AIDA:
Adaptive Application-independent Data Aggregation in Wireless Sensor
Networks,” ACM Trans. Embed. Comput. Syst., vol. 3, no. 2, pp. 426–
457, May 2004.

[8] D. Hoang, R. Kumar, and S. Panda, “Optimal data aggregation tree in
wireless sensor networks based on intelligent water drops algorithm,”
Wireless Sensor Systems, IET, vol. 2, no. 3, pp. 282–292, Sep. 2012.

[9] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “An
application-specific protocol architecture for wireless microsensor net-
works,” Wireless Communications, IEEE Transactions on, vol. 1, no. 4,
pp. 660–670, Oct. 2002.

[10] Z. Chen and K. Shin, “OPAG: Opportunistic Data Aggregation in
Wireless Sensor Networks,” in Real-Time Systems Symposium, 2008,
Nov. 2008, pp. 345–354.

[11] K.-W. Fan, S. Liu, and P. Sinha, “Structure-Free Data Aggregation in
Sensor Networks,” Mobile Computing, IEEE Transactions on, vol. 6,
no. 8, pp. 929–942, Aug. 2007.

[12] F. Büsching, U. Kulau, and L. Wolf, “Architecture and Evaluation of
INGA - An Inexpensive Node for General Applications,” in Sensors,
2012 IEEE. Taipei, Taiwan: IEEE, Oct. 2012, pp. 842–845.

[13] M. Doering, T. Pögel, and L. Wolf, “DTN Routing in Urban Public
Transport Systems,” in Proceedings of the 5th ACM Workshop on
Challenged Networks, ser. CHANTS ’10. New York, NY, USA: ACM,
2010, pp. 55–62.

[14] T. Pögel, “Optimized DTN-Routing for Urban Public Transport Sys-
tems,” in 17th GI/ITG Conference on Communication in Distributed
Systems (KiVS 2011), ser. OpenAccess Series in Informatics (OASIcs),
vol. 17. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2011, pp. 227–232.

[15] W.-B. Pöttner, F. Büsching, G. von Zengen, and L. Wolf, “Data
Elevators: Applying the Bundle Protocol in Delay Tolerant Wireless
Sensor Networks,” in The Ninth IEEE International Conference on
Mobile Ad-hoc and Sensor Systems (IEEE MASS 2012), Las Vegas,
Nevada, USA, Oct. 2012.


