
IEEE 802.15.4 packet analysis with Wireshark
and off-the-shelf hardware

Wolf-Bastian Pöttner, and Lars Wolf

Abstract—The ability to overhear and analyse packets is es-
sential for the development of protocols for IEEE 802.15.4-based
Wireless Sensor Networks. Besides a number of commercial
hardware and software offers, only very few projects put effort in
developing such solutions. This demonstration shows a simple yet
powerful approach to that problem. By using a T-Mote Sky sensor
node with the Contiki operating system, radio packets can be
overheard and then analysed in Wireshark on an attached Linux
PC. By creating custom dissector components for Wireshark, new
protocols can easily be analysed and problems in the network
can be debugged.

Index Terms—CC2420, Packet Sniffer, Contiki, Wireshark,
IEEE 802.15.4

I. INTRODUCTION

For the development of protocols, it is essential to have a
good and powerful protocol analyzer at hand. For networking
protocols based on IP, which are used over Ethernet, there are
numerous tools to switch the Ethernet card into promiscuous
mode and subsequently sniff and analyse all packets that come
along.

When it comes to developing low-level protocols for Wire-
less Sensor Networks using IEEE 802.15.4-based [1] radios for
communication, the choice of such tools is limited. Simulators
like Cooja [2] offer a bit of help by providing a hex-dump
output of all packets that are transmitted between nodes. This
can help verifying the correct creation of protocol messages
but is for the simulated world only and does not scale when it
comes to more complex scenarios with hundreds of packets.

For nodes in the real world, one can buy hardware from
different manufacturers to sniff packets in the air and sub-
sequently display them. However, the hardware is expensive
and never available when you need it. In addition, the provided
tools are usually closed source and cannot be adapted to the
format of an individual protocol.

In this demo we present a very practical approach to sniffing
radio packets with off-the-shelf hardware. By using the Contiki
Operating System [3] on a standard T-Mote Sky [4], radio
packets can be overheard and then transported to a standard
Linux PC that is connected to the USB port. On the PC,
the overheard packets are fed into Wireshark [5] for further
protocol analysis. Custom dissectors in Wireshark allow the
intuitive and efficient analysis of protocol message and thereby
the diagnosis of potential problems. The contributions of this
demonstration are as follows:

W. Pöttner and L. Wolf are with the Institute of Operating Systems and
Computer Networks, Technische Universität Braunschweig, Germany. Email:
[poettner|wolf]@ibr.cs.tu-bs.de

This work has been partially supported by the European Commission under
the contract FP7-ICT-224282 (GINSENG).

Figure 1. Chipcon Packet Sniffer.

• Packet sniffer implementation for Contiki 2.4
• Live sniffing interface to Wireshark with correct frame

check sequence (FCS) checksum
• Implementation of a Wireshark dissector for GinMAC
• Evaluation of the performance and reliability of the

presented sniffer

The remainder of this paper is organised as follows. In
section II, related research efforts as well as available products
are presented and discussed. Section III gives an overview over
the features and possibilities of Wireshark that are relevant
for this demonstration. Subsequently, section IV shows how
our sniffing system works and what components it uses.
Section V shows our custom dissector for Wireshark, whereas
section VI shows the performance evaluation of our system.
Finally, section VII lists the limitations of our approach and
section VIII concludes the demonstration.

II. RELATED WORK

Chipcon offers the RF Studio software as well as the
Chipcon Packet Sniffer software that can be used together
with specific evaluation boards that are also sold by Chipcon
resp. Texas Instruments. The tool offers support for sniffing
radio packets on specific channels. The sniffed data can be
displayed and then analysed by the user as shown in Fig. 1.
To support this task, the program highlights the different fields
of the header and potentially the payload. The main advantage
of the Chipcon Packet Sniffer is that the packets are accurately
time stamped and that the tool presents a timeline. The main
disadvantages are the price for the evaluation board as well as



the closed source tool that handles only very limited payload
formats and is not extendible.

Besides the Chipcon solution, a number of different com-
panies also manufacture radio-sniffing hardware for IEEE
802.15.4-based networks. The hardware is usually an USB
stick and comes with custom software to analyse the radio
packets. Examples of such solutions are the WiSens Classic
Packet Sniffer [6] and the Daintree Sensor Network Ana-
lyzer [7]. However, the disadvantages of the Chipcon solution
also apply to these offers.

In addition to the commercial offers, Scheers et. al [8] have
created a packet sniffer that is based on the same concept
as our solution. A T-Mote Sky is flashed with the Contiki
operating system. Subsequently, received radio packets are
transferred over the serial port to the PC where a dedicated
application saves the packets to a file in the pcap format. This
file is then directly readable using Wireshark. The disadvan-
tage of their approach is that the pcap file can only be analysed
by Wireshark after the file has been completely written, so
no online analysis of the network is possible. In addition, the
authors write about slow speed of the serial port, which causes
packets to be queued on the node. This does not only break
the timing but may also cause an overload of the node.

Ban et. al [9] have created an IEEE 802.15.4 packet sniffer
that uses custom hardware and is attached to the PC using an
Ethernet connection. This allows remote debugging of sensor
networks. However, the authors have implemented custom
software that analyses the incoming packets and therefore is
also limited in the number of payload packets format that can
be handled.

Besides these efforts, TinyOS [10] also has tools to capture
packets with standard sensor nodes and then analyse them
in Wireshark. However, to the best of our knowledge, these
components are currently unmaintained and do not work with
the latest version of the operating system.

III. WIRESHARK

Wireshark is a versatile and flexible network protocol ana-
lyzer that can be extended using plugins and dissectors. Since
it is open-source and freely available, it can be adapted to
the needs of specific applications. Wireshark can be attached
to local network interfaces, thereby overhearing incoming
packets that are subsequently analysed and presented to the
user. It allows to save packets into files for later analysis and
to filter the displayed data. In addition, it allows colorizing
the output to ease the interpretation. One specific advantage
of Wireshark is that multiple dissectors can analyse the same
packet. If a UDP packet is found, the payload of the packet
can be passed on to the next dissector for further analysis.
This is especially helpful if IPv6 packets are wrapped in
IEEE 802.15.4 frames. At the moment, Wireshark supports
dissecting IEEE 802.15.4, Zigbee, IPv4, IPv6 and a large
number of other protocols.

IV. SYSTEM CONCEPT

The architecture of our packet sniffer is shown in Fig. 2.
Packets are received on the T-Mote Sky and then transported



   
    

Figure 2. Packet Sniffer System Architecture.

Figure 3. Wireshark displaying custom radio packets.

to the PC using UART communication. There, the received
packets are fed into Wireshark for further analysis.

In order to overhear radio packets with the T-Mote Sky, the
CC2420 radio chip has to be configured to the specific channel
and to the broadcast PAN address. Subsequently, the radio chip
signals all received packets to the MSP430 processor and does
not perform any filtering. The only modification to the packet
performed by the radio is the autonomous verification of the
CRC checksum. The RSSI, the LQI and a flag stating if the
CRC was OK replace the former checksum.

Contiki, running on the MSP430 processor, uses the SPI bus
to copy the incoming packet into its RAM, so that the radio
is ready to receive the next packet as soon as possible. In
order to transport the packet to the PC, an application running
in Contiki takes the packet and adds some additional header
information such as the time stamp and length information and
then SLIP encodes the packet. Afterwards, the packet is send
over UART.

On the PC side, a program receives the packet over UART
and reverses the SLIP encoding to get the original packet. The
hex-dump of the packet is then displayed on the local terminal
for a quick verification of the correct function of the WSN.
However, for more complex scenarios or for a large number of
messages, looking at hex-dumps is time consuming and prone
to errors. Therefore, the incoming packets are forwarded to a
local UDP port.

By modifying only two lines in the source code, an incom-
ing UDP datagram on a specific port can be handed over to
the correct dissector. The dissector then analyses the packet
and displays the result in the well-known Wireshark manner
as shown in Fig. 3.

However, the Wireshark dissector assumes that the IEEE
802.15.4 frame footer, consisting of the CRC checksum, is



still present in the packet. The dissector verifies the checksum
against the packet and marks packets as broken if there is a
mismatch. Since the CC2420 radio replaces the checksum with
other information, our program running on the PC recreates
the checksum in case that the CRC check succeeded. However,
thereby the information about RSSI and LQI is deleted. This
enables the Wireshark user to determine if a packet was
received correctly on the first sight. If the CC2420 radio chip
was unable to verify the CRC checksum, our program does
not touch the frame footer.

V. GINMAC WIRESHARK DISSECTOR

Wireshark already comes with a multitude of dissectors
for various protocols. As already mentioned, this includes
IEEE 802.15.4 that is very handy for the analysis of WSN
network traffic. However, there are vast numbers of custom
MAC protocols available, some of which use the header fields
for different purposes than specified in the original standard.

One example of such custom MAC protocol is Gin-
MAC [11]. This MAC protocol is part of the GINSENG [12]
project and uses the specified packet alignment as good as
possible while the semantics are different. Debugging such
a custom protocol can be painful, especially when only the
hex-dump of radio packets is available. Therefore, we have
developed a custom dissector for GinMAC protocol messages.
The dissector is integrated with Wireshark and allows users
to inspect radio packets without exact knowledge of field
alignments.

Another neat feature of Wireshark is that existing dissectors
can be used to analyse the payload of dissected packets. Since
GinMAC is able to transport IPv6 data, one can use the
existing dissector to look at these packets. If the payload of the
IP packets holds additional known protocols, these can again
be analysed with the proper dissectors.

VI. PERFORMANCE EVALUATION

In order to judge the performance of the system, we
have conducted measurements. However, it is important to
know that all measurements presented here use the RTimer
functionality of the Contiki operating system. On the T-Mote
Sky, the timer produces 8192 ticks per second, which limits
the accuracy and resolution of our measurements.

The first thing to measure is the throughput that can be
achieved when transmitting data from the node to the PC
using UART. The standard configuration of Contiki uses
115200 baud and should transport 92.16 kbit of user data per
second. However, due to the maximum data rates of IEEE
802.15.4, this may not be enough to transport all received
packets off the node in real-time. It is important to note that
Contiki uses interrupt-triggered output for UART by default. In
this setting, the function to write data to UART will buffer the
data in a ring buffer. Whenever the UART transceiver signals
that the next byte can be transmitted, Contiki takes the first
byte off the ring buffer and puts it in the specified register.

Our aim was to increase the speed of the UART commu-
nication. In order to do this, we have taken different UART
settings and measured the time it takes to transmit 65535 bytes.

 0

 100

 200

 300

 400

 500

 600

 700

115200 230400 460800 576000 921600

T
h
ro

u
g
h
p
u
t 

(k
b
it

/s
)

Configured UART Speed (baud)

IRQ-triggered
block and wait

theoretical Maximum

Figure 4. Achievable UART throughput of MSP430 for 3.9 MHz CPU clock.

UART SPEED BYTES TOTAL BYTES CORRUPTED
115200 baud 165148200 0
230400 baud 164834682 0
460800 baud 164492850 0
576000 baud 164492850 0
921600 baud 164492850 0

Table I
MSP430 UART RELIABILITY.

Each measurement was conducted two times, either with
interrupt-triggered output enabled or disabled. Based on the
determined time, we have calculated the throughputs that are
presented in Fig. 4. The theoretical maximum is based on
2 bits overhead per byte (start and stop bit). We can see that
there is no difference between interrupt-triggered and non
interrupt-triggered UART communication in the default setting
and that the theoretical maximum is reached. However, for
increased speeds we can see that interrupt-triggered UART
output limits the throughput to 136 kbit/s. For non-interrupt-
triggered UART output the achievable throughput is almost
equal to the theoretical maximum. Only for the highest baud
rate supported by the hardware, the maximum of the MSP430
seems to be reached. The upper bound that we found is
565 kbit/s.

The manual of the MSP430 processor [13] implies that
the probabilities for bit errors are drastically increasing with
higher UART speeds, especially for a CPU clock of 3.9 Mhz.
Therefore, we have measured how many bytes get corrupted
while transmitting data at different baud rates. In order to
do this, the node repeatedly outputs the same byte and the
attached PC checks whether the data was received correctly.
The test ran for one night at different speeds and the results
are shown in Table I. Interestingly, not a single byte got
corrupted during the UART transport. Therefore, we can safely
use UART at higher speeds without the fear of drastically
increased error rates. Additional measurements have to show
if there is a difference between different nodes of the same
type.

Another interesting parameter to measure is the time it takes
to process a packet on the node. This time limits the maximum
data rate at which packets can be sniffed. We first measured
the time it takes to copy the packet from the radio buffer



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

23 bytes 71 bytes

T
im

e 
(m

s)

Radio packet sizes

SPI Delay
UART Delay

Figure 5. Time necessary to copy packets from radio to UART.

over SPI into the RAM of the MSP430. In addition, we have
measured the time it takes to send the packet over UART,
including the overhead for the timestamp and a length field.
We have used 16 and 64 byte payload plus protocol overhead
as packet sizes and the result can be seen in Fig. 5. It can
be seen, that the UART communication takes longer than the
SPI communication and therefore forms the bottleneck. For the
longest measured packet of 71 bytes, transfer over UART takes
2.28 ms. This allows us to transfer 438 packets per second
and essentially means that the radio can produce packets with
249 kbit/s and our sniffer would be able to handle the traffic
load. Especially in setups with acknowledgements and CSMA,
the achievable speed of IEEE 802.15.4 is far below this bound.

The results of this performance evaluation show, that our
sniffer application is well suited to be used for debugging
wireless sensor network applications.

VII. LIMITATIONS

The usability of our packet sniffer is however limited. A
major problem is the standard behaviour of Wireshark to time
stamp packets whenever they are seen by the program or
the underlying library libpcap. The path of packets from the
CC2420 radio to the PC is long and indeterministic, so that the
timing of our packet sniffer is broken. However, this should not
be a real problem since the way in which Wireshark displays
the packets is not suitable for in-depth timing analysis of
network protocols. For this task, the dedicated tools mentioned
in section II may be better suited.

Another important factor is the limitation to a specific
hardware. Since we had to modify the Contiki radio driver for
the CC2420, our sniffer is currently specific to that hardware
platform. However, porting this to other radios with similar
characteristics should not be a problem.

From the practical side, the tool that runs on the Linux PC
and feeds the packets into Wireshark is not a good design.
We want to replace this tool with a modification to libpcap,
so that Wireshark can read the packets directly from the serial
port. This would also solve the timing inaccuracies mentioned
above.

VIII. CONCLUSION

In this demonstration we have shown, that a standard T-
Mote Sky wireless sensor node can be transformed into a
packet sniffer without modifications to the hardware. In order
to achieve this, we have modified the Contiki operating system.
In addition, we have evaluated the critical timing parameters
and are confident, that the system has enough performance to
be helpful in real world situations. Packets received by the
sniffer node can be analysed in Wireshark that offers a wide
range of existing dissectors for various protocols. In addition,
we have created our own dissector for a custom MAC protocol.

The software developed for this sniffer will be contributed to
the Contiki Projects [14] repository, so that other researchers
can use it for their own projects.

REFERENCES

[1] The Institute of Electrical and Electronics Engineers, Inc. (2006, Sep.)
Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks
(WPANs). IEEE 802.15.4-2006.

[2] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
Level Sensor Network Simulation with COOJA,” in Proceedings of
the First IEEE International Workshop on Practical Issues in Building
Sensor Network Applications, Tampa, Florida, USA, Nov. 2006.

[3] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - a Lightweight and
Flexible Operating System for Tiny Networked Sensors,” in Proceedings
of the First IEEE Workshop on Embedded Networked Sensors, Tampa,
Florida, USA, Nov. 2004.

[4] Moteiv Corporation, “Tmote Sky Datasheet,” 2006. [Online]. Available:
http://www.moteiv.com/products/docs/tmote-sky-datasheet.pdf

[5] Wireshark Foundation, “Wireshark - Go deep.” Mar. 2010. [Online].
Available: http://www.wireshark.org/

[6] BzWorks Pte Ltd, “PACKET SNIFFER – IEEE 802.15.4/ZigBeeTM,”
2006. [Online]. Available: http://www.bzworks.com/library/downloads/
WiSens Datasheet.pdf

[7] Daintree Networks, Inc., “Sensor Network Analyzer (SNA) Product Data
Sheet,” 2009. [Online]. Available: http://www.daintree.net/downloads/
datasheets/daintree sna.pdf

[8] B. Scheers, W. Mees, and B. Lauwens, “Developments on an IEEE
802.15.4-based wireless sensor network,” Journal of Telecommunica-
tions and Information Technology, vol. 2, pp. 46–53, 2008.

[9] S. J. Ban, H. Cho, C. Lee, and S. W. Kim, “Implementation of IEEE
802.15.4 Packet Analyzer,” World academy of science, engineering and
technology, vol. 35, pp. 66–69, Nov. 2007.

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System architecture directions for networked sensors,” ACM SIGPLAN
Notices, vol. 35, no. 11, pp. 93–104, Nov. 2000.

[11] P. Suriyachai, J. Brown, and U. Roedig, “Poster Abstract: A MAC Pro-
tocol for Industrial Process Automation and Control,” in In Proceedings
of 7th European Conference on Wireless Sensor Networks (EWSN 10),
Coimbra, Portugal, February 2010.

[12] C. Sreenan, J. S. Silva, L. Wolf, R. Eiras, T. Voigt, U. Roedig,
V. Vassiliou, and G. Hackenbroich, “Performance Control in Wireless
Sensor Networks: The Ginseng Project - [Global Communications News
Letter],” Communications Magazine, vol. 47, no. 8, p. 1, Aug. 2009.

[13] Texas Instruments Incorporated. (2006) MSP430x1xx Family User’s
Guide. [Online]. Available: http://focus.ti.com/lit/ug/slau049f/slau049f.
pdf

[14] A. Dunkels, “Contiki Projects Community.” [Online]. Available:
http://sourceforge.net/projects/contikiprojects/


