

QoS-AODV6E

An Energy-Balancing QoS Routing Scheme for WSNs

Wolf-Bastian Pöttner, Oliver Wellnitz, Lars Wolf

June 16, 2010

Motivation

- Applications for WSNs become more demanding
 - Communication between arbitrary nodes
 - Sensor to actuator communication
 - Guaranteed minimum network service quality
 - Latency, Reliability, Bandwidth
 - Mobile Nodes
 - Long lifetimes with limited energy supply
 - Sparsely populated networks
 - Internet Protocol (IP) as basis

Conclusion

Motivation

- Applications for WSNs become more demanding
 - Communication between arbitrary nodes
 - Sensor to actuator communication
 - Guaranteed minimum network service quality
 - Latency, Reliability, Bandwidth
 - Mobile Nodes
 - Long lifetimes with limited energy supply
 - Sparsely populated networks
 - Internet Protocol (IP) as basis
- Our approach
 - Use IP routing protocol and adapt it to WSNs
 - ${\scriptstyle \bullet}\,$ Add energy-awareness and support for QoS

Ad-hoc On-demand Distance Vector Protocol (AODV)

- General idea
 - Flood route request (RREQ) into the network
 - Receive unicast route replys (RREP)

Ad-hoc On-demand Distance Vector Protocol (AODV)

- General idea
 - Flood route request (RREQ) into the network
 - Receive unicast route replys (RREP)
- Features
 - Reactive routing protocol
 - Mobility support, local route repair
 - Memory efficient
 - Only local computation and knowledge

Ad-hoc On-demand Distance Vector Protocol (AODV)

- General idea
 - Flood route request (RREQ) into the network
 - Receive unicast route replys (RREP)
- Features
 - Reactive routing protocol
 - Mobility support, local route repair
 - Memory efficient
 - Only local computation and knowledge
- Our contributions
 - AODV enhancements for IPv6, QoS and energy-awareness
 - Energy-Aware routing metric
 - Implementation for Contiki
 - Simulations and experimental evaluation

Energy-Aware AODV

- Motivation
 - In sparsely populated networks, every node is important
 - WSNs are dynamic, routes may change
 - Network Lifetime = Minimum lifetime of all nodes

Energy-Aware AODV

- Motivation
 - In sparsely populated networks, every node is important
 - WSNs are dynamic, routes may change
 - Network Lifetime = Minimum lifetime of all nodes
- Goal
 - Maximise network lifetime
 - Achieve similar lifetime of all nodes

Energy-Aware AODV

- Motivation
 - In sparsely populated networks, every node is important
 - WSNs are dynamic, routes may change
 - Network Lifetime = Minimum lifetime of all nodes
- Goal
 - Maximise network lifetime
 - Achieve similar lifetime of all nodes
- Concept
 - Discover paths with the minimum hop count
 - Use the first discovered path
 - Change route, if path with higher minimum residual lifetime is found
 - Constantly adapt to changing energy situation

QoS based AODV

- Motivation
 - Applications depend on the network
 - Network should provide a specified minimum service quality
 - Metrics are
 - End-to-end delay, Bandwidth, Packet delivery rate

QoS based AODV

- Motivation
 - Applications depend on the network
 - Network should provide a specified minimum service quality
 - Metrics are
 - End-to-end delay, Bandwidth, Packet delivery rate
- Goal
 - Select routes that fulfil application requirements

QoS based AODV

- Motivation
 - Applications depend on the network
 - Network should provide a specified minimum service quality
 - Metrics are
 - End-to-end delay, Bandwidth, Packet delivery rate
- Goal
 - Select routes that fulfil application requirements
- Concept
 - Integration of QoS specification in route discovery
 - Extended RREQ messages
 - Intermediate node discard message if requirements are too high
 - Distributed admission control

QoS based AODV (Simulation)

QoS based AODV (Simulation)

Conclusion

- QoS-AODV6E
 - Based on Ad-hoc On-demand Distance Vector protocol
 - Energy-aware and QoS based Routing
 - Implementation for Contiki
- Results
 - Energy-aware routing prolongs network lifetime
 - QoS based routing selects suitable paths and increases service quality
- More details in the paper!

Thank You for Your Attention!

Wolf-Bastian Pöttner

< poettner@ibr.cs.tu-bs.de>

Wolf-Bastian Pöttner | QoS-AODV6E | 9

Conclusion

Jniversität

Braunschweig

