
Automatic Policy Refinement Using OWL-S and
Semantic Infrastructure Information

Torsten Klie1, Benjamin Ernst2, and Lars Wolf1

1 Technische Universität Braunschweig
Institute of Operating Systems and Computer Networks

{tklie,wolf}@ibr.cs.tu-bs.de
2 Resco GmbH, Hamburg

benjamin.ernst@resco.de

Abstract. Network management requires a lot of manual work. Due to ongoing
growth of the Internet, more self-management is needed in order to deal with
the growing complexity. Autonomic communication systems address this issue.
Often, they make use of policy-based management systems. Policy-based man-
agement is an approach to simplify management by the use of rules. Policy re-
finement, i.e. breaking down high-level policies to technical configurations is still
a task that needs a significant amount of manual work. We propose SEMPR, an
architecture that uses Web services and automatic Web services composition as a
complementary technique to policy refinement in order to automate policy-based
management. Semantic Web services, described in OWL-S, as well as policies
make use of our simple network ontology NINO. We show the application of our
work in a Home Area Network (HAN) environment and give an outlook on future
research challenges.

1 Introduction

Current network management leads to many errors, misconfigurations, and high ex-
penses because it requires a lot of manual work. We expect the Internet and the number
of connected devices still to grow significantly. Thus, costs and complexity will rise,
too. Automation in network management is needed to be able to deal with the increasing
complexity. Furthermore, administrators who do not have to perform repetitive, simple
(but error prone) tasks can dedicate more time to network planning and optimization.

The term “autonomic communications” or “autonomic networking” is often used to
refer to networks that provide self-management features. “Autonomics” here means the
application of the autonomic computing paradigm [1] to the network management do-
main. Several authors propose the use of policy-based network management (PBNM) to
obtain the desired self-governance [2,3,4]. PBNM can be seen as a possibility to reduce
the complexity of network management tasks by governing the behavior of a system by
the use of rules (policies) without having to reconfigure network devices manually [5].
Policies can exist on different levels of abstraction, which are organized hierarchically
[6]. Although the number of levels differ in the literature, one can generally distin-
guish between high-level policies (HLP) inspired by the business domain and policies



on a more technical level, low-level policies (LLP), which are related to concrete net-
work devices and its features. Translating HLP into LLP is called policy refinement.
Currently, it still requires a large amount of manual work, since a general solution for
policy refinement is not available. Thus, skilled personnel with good knowledge both in
the business domain and in the technical domain is required. Policy refinement is one
of the biggest challenges in the policy-based management research.

Due to the shortcomings of the Simple Network Management (SNMP) Framework
[7], the standard management framework of the IETF, new technologies for manage-
ment have been proposed. A very popular example is Web services, a technology for
software systems that are designed to support inter-operable interactions between ma-
chines using a communication network. The advantages and drawbacks of this technol-
ogy for management purposes have been analyzed by several people [8,9]. Furthermore,
OASIS has proposed Management Using Web Services (MUWS) [10] as part of their
Web Service Distributed Management (WSDM) architecture, and the DMTF has pro-
posed WS Management [11].

In this paper, we will show the use of automatic Web services composition as a
complementary technique to policy refinement in order to further automate network
management. The paper is structured as follows. First of all, we will present our policy-
based architecture for autonomic communications. Then we will describe the basics
about (automatic) Web service composition. In Section 4, we will present our approach
called SEMPR. Then, a case study will show the application of our approach in a Home
Area Network (HAN) environment. After that, we will discuss the related work on
policy-refinement in Section 6. Finally, we will summarize the paper and discuss some
future work in Section 7.

2 Policy-based Architecture for Autonomic Communications

In this section, we will describe our proposed architecture for autonomic communica-
tions (see Figure 1). It contains three parts: the layer with network devices, the policy
engine that manages the devices autonomically, and the user interface with which the
administrator can specify policies and services.

The network devices are located on the bottom layer of our architecture. Some of
them will offer Web services for configuration, for monitoring, and/or for notifications.
They can conform to a (proposed) standard such as WSDM, WS Management, or they
can be proprietary. Gateways allow to access devices that do not support Web services
based management interfaces. The services that are provided by the devices either di-
rectly or via gateways are called low-level services (LLS).

The policy engine is the core of our architecture. It contains the registry for man-
agement Web services, the repository where policies are stored and the component that
makes policy decisions.

Network devices register their LLS in the registry, along with information about the
structure and semantics of their LLS. A service composition engine allows for combin-
ing LLS to higher-level services (HLS) to perform aggregated tasks. For example, it is
possible to compose the Web services for a certain management task (LLS) into a single
HLS that performs the operation in an entire subnet. The registry can be implemented as



Fig. 1. A Policy-based Architecture for Autonomic Communications

a single file, a UDDI database, or peer-to-peer-based. The policy repository is the place
where all the policies are located. It does not only store the policies, it also contains a
policy refinement engine, that allows for breaking down HLP to LLP. In this paper, we
will show how this can be achieved with Web service composition as described before.

The decision component uses the available services that are stored in the registry to
monitor the devices. These monitoring information are used as input to the policy en-
forcement. All policies stored in the repository must be enforced. The resulting policy
decisions may lead to changes in the device configurations. These changes are realized
by calling the appropriate configuration Web services of the devices. A learning com-
ponent not only evaluates the consequences of its own decisions, it also has to check
the policies for possible conflicts. However, we do not address these two issues of the
learning component in this paper and leave them for future reasearch.

With the user interface, which is located on top of the system, administrators can
enter, remove, or change policies in the repository. A graphical user interface will assist
them. Usually, administrators will specify HLP, which will be broken down to LLP in
the repository. Moreover, in addition to the services composed within the refinement
process, administrators can add and compose services manually.



3 Web Services Composition

One of the most important advantages of the machine-to-machine interaction support of
Web services is the composability. Several services can be combined in order to perform
an aggregated task. This composition is rather easy to implement.

The composition of Web services consists of two steps: synthesis, i.e. creating the
composed service by selecting services that shall participate, and orchestration, i.e. the
execution of the composed service. Composition methods can be classified by the way
the synthesis is performed: manually, template-based (such as in the popular Business
Process Execution Language for Web Services (BPEL4WS) [12] approach), or auto-
matically. Of course, having the vision of creating autonomic systems in mind, the
automatic approaches are the most interesting to look at. In our previous work [13],
we analyzed different Web service composition approaches, and proposed the use of
OWL Services (OWL-S) [14]. Other work also argues for the use of OWL-S in network
management [15,16,17].

OWL-S is a commonly known ontology for semantic description of Web services
and Web service compositions. The description is subdivided into three components:
ServiceProfile, ServiceModel, and ServiceGrounding. The ServiceProfile describes what
a service does using functional properties (IOPE: input parameters, output parame-
ters, preconditions, and effects) and non-functional properties (e.g. serviceName,
textDescription). Especially the functional properties are used to publish and
find OWL-S Web services. Comparing the profiles of available services to the profile
of a given task or process is called matchmaking. In the ServiceModel, a Web ser-
vice is mapped to one or more processes. The IOs of processes can be defined using
OWL classes or W3C XML Schema types, whereas the PEs can be modeled as logic
formulas. Processes can be AtomicProcesses, CompositeProcesses or SimpleProcesses
(processes that do not have a grounding and cannot be executed). All processes (except
SimpleProcesses) need a ServiceGrounding that binds them to concrete specifications
and messages. The grounding makes use of the Web Service Description Language
(WSDL).

For the service composition using OWL-S, the IOPEs of the available Web services
are described using OWL-S. Inputs and outputs are defined by a class of an OWL on-
tology. Using this description it is possible to combine different services in order to
obtain a result not achievable by a single individual service. Figure 2 shows a simple
composition based on inputs and outputs. Moreover, it is possible to use preconditions
and effects to find the services that can be combined.

4 SEMPR and NINO

In this section, we will describe our proposed architecture for automatic policy refine-
ment (SEMPR: Semantic Policy Refinement). We will first outline our apporach briefly
and describe our model of the infrastructure (NINO: Network Infrastructure Ontology).
Then, we will present the architecture details of SEMPR. After that, we will describe
the refinement approach in detail. Furthermore, we will provide some information about
the implementation.



Fig. 2. Service composition with OWL-S (using input and output)

4.1 Policy Refinement with Web Service Composition

Our approach is based on semantic Web services in OWL-S. We use service compo-
sition to combine different available services in order to obtain a desired result. The
idea is to create OWL-S services that can perform monitoring or configuration tasks
needed by a policy. In the case of HLP, the OWL-S services will be created as a com-
posed service, using several LLS. In order to find the LLS that have to be combined, we
need a description of the infrastructure and the available Web services (usually LLS).
Therefore, we intruduce NINO. The SEMPR engine, the core component of the SEMPR
architecture, is responsible for identifying the needed results by extracting them from
the policies, for finding relevant services, and for executing the composed services.

4.2 NINO

In order to describe the infrastructure and the Web services that are used for manage-
ment, we needed an information model in form of an OWL ontology. There are several
information models available, such as DEN-ng [18] and CIM [19]. However, these in-
formation models are very large and would need to be converted into OWL. Such a
conversion (as proposed in [20]) would be a research project on its own. We wanted to
concentrate on the use of the ontology for automatic Web services composition. There-
fore, we created our own simple ontology called NINO.

NINO contains two ontologies that are used as repositories: a network repository
ontology (NetworkRepository.owl) with information about the network infras-
tructure and a policy repository ontology (PolicyRepository.owl) with the poli-
cies. These repositories do not contail any definitions, but they contain individuals of
the NINO classes. The definitions of the NINO classes are given in the base ontologies,
a collection of different ontologies that is extensible. Currently, there is a network on-
tology (see Figure 3), a policy ontology, and an ontology containing the information
needed for the home control services needed for our case study (see Section 5).



Fig. 3. Excerpt of the NINO network ontology

The network ontology provides basic classes for modelling the network infrastruc-
ture. The base class is a Device in the network which consists of one ore more
Ressources3. A spezialization of Ressource is NetworkRessource, which
represents e.g. a network interface. It can have Addresses (IP, MAC), belong to
Domains, and have different Functions. The Function concept is comparable
to the concept of Roles in DEN-ng. Different functionality such as routing or packet
filtering is modelled as a subclass of Function. The policy ontology provides the
classes needed to specify policies (such as Action, Condition, etc.).

4.3 SEMPR

The SEMPR engine is the core component of the SEMPR architecture (see Figure 4).
It performs automatic policy refinement by composing and executing Web services
matching the needs of the policies that are being refined. In the following, we will
describe the different parts of the engine.

– Refinement Engine: gets the policies using the NINO API, performs the refinement
for each policy with the matchmaker client, and tells the OWL-S engine to execute
the composite service.

– NINO API: the link between SEMPR engine and NINO ontologies. It provides
functions to read information from NINO (policies and network device descrip-
tions).

– Matchmaker Client: supports the refinement engine by providing OWL-S services
matching the given IOPEs.

– OWL-S Engine: executes the composite service by executing each atomic Web
service sequentially.

3 The distinction between Device and Ressource is necessary to model cases in that a de-
vice contains for example several network interfaces.



Fig. 4. SEMPR architecture

– Control Server: a little server that controls the SEMPR engine. It initiates a refine-
ment process, adds new devices and policies to NINO, or registers or removes Web
services at the matchmaker.

Web services provide the management functionality of network devices. They have
to be created in three steps. First, the interface of the Web service has to be described
with WSDL. Then, the semantic of the service has to be described with OWL-S. Finally,
the Web service has to be implemented. These three steps require manual work.

SEMPR covers most of the tasks of the policy engine in described in Section 2.
It performs the policy refinement by mapping policies to OWL-S service descriptions
which are then composed on demand. The policy decision and the learning component
are not part of SEMPR.

4.4 Policy Refinement Algorithm

An automatic policy refinement requires to break down one or more Policies into con-
crete device configurations without manual user interaction. SEMPR allows this by
using automatic semantic Web service composition. The basic steps that are performed
are described in the following.



1. Extract conditions and actions from the policy that shall be refined.
2. Extract input parameters and other specific information from the conditions and

actions and store them in an input list.
3. Generate the target of the refinement from the conditions and actions. It is necessary

to know the target because it defines the output that the composite Web service shall
have. These information are stored in an output list.

4. The matchmaker looks for services providing the output specified in the output list.
5. If there is a service for which there are all input parameters in the input list, the

service could already be executed. It will get a mark (equal to the number of the
current iteration of the loop). This mark will be used later to determine the execu-
tion order of the services.

6. Output parameters for which a matching service has been found are eliminated from
the output list and put into the input list. These output parameters could already be
generated and used by another service as input.

7. The input parameters of the found services are added to the output list, if they are
not already in the input list.

8. If there are still elements in the output list, the loop starting at step 4 will be exe-
cuted again. Otherwise, the refinement terminates.

The list with the services that have to be executed and the inputs of the policies
are passed to the OWL-S engine, which will invoke the Web services in the predefined
order. The outputs of a Web service call are passed to the next Web services as input.
An example can be found in Section 5.2. The flow chart in Figure 5 shows the steps of
the refinement algorithm.

Fig. 5. Policy Refinement Algorithm (Flow Chart)



4.5 Implementation

NINO and SEMPR have been implemented in Java (Version 5). An Apache Tomcat
server (Version 5.5) [21] has been used as application server for the Web services, as
well as a Web server to store the OWL ontologies. The Apache Axis2 engine (RC 1.1)
[22], an execution environment for Web services based on the SOAP protocol, has been
installed as a servlet under Tomcat. Jena (Version 2.4) [23], an open source framework
for the development of Semantic Web applications from the HP Labs Semantic Web
Programme has been used to work with OWL files. After the refinement process, Web
services are invoked by the OWL-S API (nightly build from November 1st, 2006) [24].
The SEMPR engine communicates with the Web services via SOAP.

5 Case Study: Home Area Networks

Home Area Networks (HANs) are networks located at the home environment of the
user. They interconnect all kinds of different devices: “classic” network devices (such
as computer, routers or printers), multimedia devices (such as streaming clients, VoIP
telephones or set top boxes), and facilities (such as refrigerators, lights, blinds, etc.).
The integration of the last category of devices is currently more a future scenario than
reality. However, there are trends towards a full integration of such devices in houses,
so we expect this to change in the future.

Especially in HANs, the ordinary user should not be bothered with low-level ad-
ministration tasks. First of all, he/she is usually not qualified enough. Second, hiring a
network administrator for these tasks would be too expensive. Finally, if the user expe-
rience is not smooth and comfortable, users will just not invest into HANs. Therefore,
it would be huge advantage if HANs were manageable by HLPs.

5.1 Scenario

Our example HAN consists of four routers, to which several end devices (some with
the option to connect more controlled devices) are connected (see Figure 6).

All devices in the example are represented by an OWL individual. Furthermore,
all its functionality, dependencies and connections are modeled. Figure 7 shows the
OWL description of router R2. In addition to network devices and their functionality,
the ontology contains other individuals with respect to the infrastructure. Rooms, for
example, or other not directly network-compatible devices such as lights are included
as well. Since editing OWL with an ordinary text editor is error prone, we used the
knowledge modeling tool Protégé.

Policies have to be described in the same way as network resources. Each policy
contains a condition and an action. A condition can be either a single condition or sev-
eral conditions combined with AND or OR. Actions can be combined in the same way,
but without logical connectors. A sample, rather simple policy is shown in Figure 8.
This policy says that the light in RoomHall shall switch to the state LightStatus6,
if the sensor in the same room (SensorType4) changes its state to SensorStatus3.



Fig. 6. The Home Area Network (HAN) example

5.2 Policy Refinement Process

In the following, we will show the refinement process step-by-step. To keep the ex-
ample readable, we have chosen a very simple policy (the one presented in the pre-
vious section). The different policy conditions, actions, and Web services involved in
the refinement process are described in Table 1. More detailed information about the
implemented services can be found in [25].

Condition Inputs Outputs Description
SensorConditionByRoom Room, SensorStatus fulfilled if the sensor in the given room

switches to the given state
Action Inputs Outputs Description
LightActionByRoom Room, LightStatus switches the light in the given room

to the given state
Service Inputs Outputs Description
getLight Room Light determines a light in the given room
getSensor Room,SensorType Sensor determines a sensor of the given type

in the given room
getHCS Light NetworkResource determines the network resource

that controls the given light
switchLightBySensor Light, LStat, creates a configuration for the given

SStat, Sensor network resource that connects
Network Resource the given light and the given sensor

Table 1. Conditions, actions, and services used in the example



<p1:Device rdf:ID="Router_2">
<p1:hasRessource rdf:resource="#NetworkRessource_R2"/>
<p1:Name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
Router2
</p1:Name>
</p1:Device>

<p1:NetworkRessource rdf:ID="NetworkRessource_R2">
<p1:isConnectedTo>
<p1:NetworkRessource rdf:ID="NetworkRessource_PC1">

</p1:isConnectedTo>
<p1:isConnectedTo>
<p1:NetworkRessource rdf:ID="NetworkRessource_STB1">

</p1:isConnectedTo>
<p1:isConnectedTo>
<p1:NetworkRessource rdf:ID="NetworkRessource_VoIP2">

</p1:isConnectedTo>
<p1:Name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
NR_R2

</p1:Name>
<p1:isConnectedTo rdf:resource="#NetworkRessource_R1"/>
<p1:belongsToDomain rdf:resource="#HomeNetwork_Domain"/>
<p1:hasFunction rdf:resource="#TrafficPriorityFunction_1"/>
<p1:hasAddress>
<p1:IPv4Address rdf:ID="IPv4Address_23">
<p1:AdressValue rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
192.168.44.20

</p1:AdressValue>
</p1:IPv4Address>

</p1:hasAddress>
</p1:NetworkRessource>

Fig. 7. OWL description of router R2

<j.0:Policy rdf:ID="Policy_4">
<j.0:Name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
VacPol1

</j.0:Name>
<j.0:hasAction>
<j.0:LightActionByRoom rdf:ID="LightActionByRoom_6">
<j.0:Name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
LighAction2

</j.0:Name>
<j.0:hasLightStatus rdf:resource="#LightStatus_6"/>
<j.0:hasRoom rdf:resource="#Room_Hall"/>

</j.0:LightActionByRoom>
</j.0:hasAction>
<j.0:hasCondition>
<j.0:SensorConditionByRoom rdf:ID="SensorConditionByRoom_15">
<j.0:hasRoom rdf:resource="#Room_Hall"/>
<j.0:hasSensorType rdf:resource="#SensorType_4"/>
<j.0:Name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
SCondByRoom 1

</j.0:Name>
<j.0:hasSensorStatus rdf:resource="#SensorStatus_3"/>

</j.0:SensorConditionByRoom>
</j.0:hasCondition>

</j.0:Policy>

Fig. 8. A simple policy in OWL



– Preparation: Extracting inputs and outputs
Inputs: SensorStatus, Room, SensorType, LightStatus
Outputs: SenosrConditionByRoom, LightActionByRoom
Services:

– 0th iteration: Looking for services that can produce the desired output. The found
service is switchLightBySensorService. Its input parameters are added to
the output list if they have not already been on the input list.
Inputs: SensorStatus, Room, SensorType, LightStatus
Outputs: SensorConditionByRoom, LightActionByRoom,

NetworkResource, Light, Sensor
Services: switchLightBySensor

– 1st iteration: Looking for services that can produce the desired output. Since new
parameters have been added to the output list during the last iteration, more ser-
vices are found. All services are checked whether they can be invoked already.
getLightService and getSensorService could be invoked now, because
their needed input (Room) is already available in the input list. Therefore, they are
marked with the number of the current iteration (1) and their output is added to the
input list and removed from the output list.
Inputs: SensorStatus, Room, SensorType, LightStatus, Sensor,

Light
Outputs: SensorConditionByRoom, LightActionByRoom,

NetworkResource
Services: getLightService(1), getHCService, getSensorService(1),

switchLightBySensor

– 2nd iteration: No new service can be found, because no new parameters have been
added to the output list. But due to the new parameters on the input list the service
getHCSService could be invoked now. Its parameter NetworkResource is
moved to the input list.
Inputs: SensorStatus, Room, SensorType, LightStatus, Sensor,

Light, NetworkResource
Outputs: SensorConditionByRoom, LightActionByRoom
Services: getLightService(1), getHCSService(2),

getSensorService(1), switchLightBySensor

– 3rd iteration: With the new input, the last service (switchLightBySensor)
can also be invoked. The output list is now empty and the refinement terminates.
Inputs: SensorStatus, Room, SensorType, LightStatus, Sensor,

Light, NetworkResource
SensorConditionByRoom, LightActionByRoom

Outputs:
Services: getLightService(1), getHCSService(2),

getSensorService(1), switchLightBySensor(3)

– Web service invocation: The Web services are now called in the order determined
by the marks.



5.3 Performance Evaluation

The run-time performance of the policy refinement process is not critical since it is only
invoked from time to time. However, to estimate the performance in large systems and
networks we looked at three steps: service registration at the matchmaker, invocation of
a single OWL-S service, and a complete refinement of a single policy. The time needed
to find the relevant services and determine the execution order can be neglected, since
we always measured 0 ms.

In order to perform tests, different policies have been created. SEMPR has been in-
stalled on a Pentium 4 PC with 3.2 GHz CPU and 2 GiB RAM. Debian Linux (Sarge)
was used as the operation system. The following measured results are based on refine-
ments done with 35 different policies.

Registering an OWL-S Web service at the matchmaker consumes most of the time
(12.985 s on average). The reason for this large amount of time is that the OWL-S
descriptions contain a large number of references to OWL documents, which have to
be read and are often located at different places. Service invocation takes 2.461 s on
average. The differences for services with many parameters are very small. The overall
time needed for the refinement depends on the number of Web services that have to be
executed. In our tests, 3 - 4 Web services had to be called and the average time needed
was 8.880 s.

While using a larger setting for scalability testing, we noticed a memory leak in the
Axis2 engine. Thus, we had to restart our server after the invocation of 35 Web services,
because there was not enough memory left to continue. This is a known bug in Axis2
that will hopefully be fixed soon.

6 Related Work on Policy Refinement

Bandara et al. [26] present a semi-automated approach for policy refinement, which is
based on breaking down goals. The process works in two steps. First, high-level goals
are refined into concrete goals (=system requirements). Then, system requirements are
mapped to specific modules and/or operations available in the system. Goals are rep-
resented as rules in temporal logic and decomposed with elaboration patterns (with
KAOS technology). Bandara et al. use UML state charts to describe the system. The
relationship between the system description and the goals are called a strategy, which
can either be implemented as a policy or as a system functionality. This decision cannot
be automated, but Bandara et al. provide refinement patterns. To further automate the
refinement process, they propose the use of Event Calculus and abductive reasoning.

Rubio-Loyola et al. [27] present an approach that makes use of linear temporal
logic and model checking as an analysis tool. The presented framework is structured
according to the steps that have to be performed: goal management (goal elaboration
and goal selection) and policy refinement. The refinement process consists of the fol-
lowing steps: requirements formulation with linear temporal logic formulas, get system
behavior from system traces with SPIN model checker, apply translation primitives to
generate policies, and encode deployable policies in Ponder.

According to Strassner et al. [28], a policy may exist on different abstraction levels,
representing the view of different constituencies. For example, a Quality of Service



(QoS) policy representing a Service Level Agreement (SLA) looks different from the
viewpoint of a sales person and a network engineer. However, both views represent the
same policy. Therefore, Strassner et al. use the term “Policy Continuum” to refer to the
set of different views. DEN-ng includes this set of views. It is not a single information
model but offers an information model (with its own grammar and vocabulary) for each
level. The policy continuum can be seen as a set of model mappings between the levels,
allowing the translation of policies of different levels into one another. Ontologies that
contain the necessary semantic information and knowledge of the different domains are
needed to enable this translation based on reasoning.

Guerrero et al. [29] present a generic ontology-based policy refinement approach,
which uses the Semantic Web Rule Language (SWRL). They propose a semantic man-
ager that uses policies. They do not only address policy refinement, they also want to
enable real interoperability which includes a backward mapping from LLPs to HLPs.
Policies are represented with SWRL on each level. OWL relationships specify the re-
lationship between high-level ontologies and low-level ontologies. Translation rules in
SWRL can be used to allow the data interchange between the different levels.

Beigi et al. [30] propose transformation approach based on case base reasoning.
They use a case database containing the history of the system behavior to provide an
experimental basis for their transformation approach. The data in the case database is
processed with mathematical analysis tools.

Casassa Mont, Baldwin, and Goh [31] present a template-based approach, which is
related to a security application. They distinguish between two types of users: experts
who know well the application domain and consultants, who are specialists in the busi-
ness domain. The experts create policy refinement templates which the consultants can
use to create and refine policies with the help of a graphical tool.

Although the number of existing approaches is quite high, they all have disadvan-
tages that get in the way of its usage in an autonomic communication environment.
They are either not fully automated ([26], [27], [31]), require a very high modelling ef-
fort ([28]), rely on historic data only ([30]), or a tailored towards a specific application
such as security ([31]). SEMPR is a generic and fully automated approach. Its required
modelling effort is moderate (a NINO model is needed, but no additional mappings are
required). The downside is that it relies entirely on a Web serivce infrastructure in the
form of Web service based management interfaces at the devices.

7 Conclusion

In this paper, we have shown, how automatic Web service composition based on OWL-S
Web services can be used for refining policies. The policies and the network infrastruc-
ture, i.e. the devices and their Web services based management interfaces, are described
using OWL and OWL-S, respectively. For evaluation purposes, we have presented a
simple ontology called NINO. In the proposed SEMPR architecture, the conditions and
actions of a policies written with NINO are extracted and passed to the matchmaking
engine, which tries to find the relevant services and combines them to a composed Web
services that is then executed.



Without the obstacle of the policy refinement problem, policy-based management
systems will be much easier to deploy. With powerful policy-based management-systems
available, autonomic communication will move from a vision closer to reality. However,
autonomic communication is not only about policies. Several issues still have to be re-
solved. One of the most important ones is an information model and/or ontology that
covers all aspects of network management.

The presented approach assumes that all devices are managed via Web services.
Thus, all managed objects must provide such management interfaces. As of today, this
is clearly not the case, but there are trends towards Web services in management (e.g.
OASIS WSDM, WS Management) so this is not an unrealistic scenario for the future.
On the other hand, for devices not supporting Web service, gateways can be used.

We are working on the integration of SEMPR in our autonomic communications
architecture. Currently, we are investigating more lightweight Web service infrastruc-
tures (more lightweight than Apache Axis2) in order to use Web services on devices
with rather limited resources. Moreover, we are extending the approach to take precon-
ditions and effects of OWL-S Web services into account, and to support policies with
events. Furthermore, we will address policy conflicts and evaluation of policy decisions.
To implement a large-scale testbed of our system, we need also an extended ontology
capable of describing all aspects of the network.

References

1. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Computer Maga-
zine 36(1) (January 2003) 41–50

2. Davy, S., Barrett, K., Balasubramaniam, S., van der Meer, S., Jennings, B., Strassner, J.:
Policy-Based Architecture to Enable Autonomic Communications – A Position Paper. In:
Proc. IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas,
USA (January 2006)

3. Agrawal, D., Lee, K.W., Lobo, J.: Policy-based Management of Networked Computing
Systems. IEEE Communications Magazine 43(10) (October 2005) 69 – 75

4. Klie, T., Wolf, L.: Autonomic Policy-based Management using Web Services. In: Proc. 2nd
CoNext Conference, Lisbon, Portugal (December 2006)

5. Choudhary, A.R.: Policy-Based Network Management. Bell Labs Technical Journal 9(1)
(January 2004) 19–29

6. Moffett, J.D., Sloman, M.S.: Policy Hierarchies for Distributed Systems Management. IEEE
Jounal on Selected Areas in Communications 11(9) (December 1993) 1404–1414

7. Schönwälder, J., Pras, A., Martin-Flatin, J.P.: On the Future of Internet Management Tech-
nologies. IEEE Communications Magazine 41(10) (October 2003)

8. Pras, A., Drevers, T., van de Meent, R., Quartel, D.: Comparing the Performance of SNMP
and Web Services-Based Management. eTransactions on Network and Service Management
1(2) (December 2004)

9. Pavlou, G., Flegkas, P., Gouveris, S., Liotta, A.: On Management Technologies and the
Potential of Web Services. IEEE Communications Magazine 42(7) (July 2004)

10. Vambenepe, W.: Web Services Distributed Management: Management Using 3 Web Services
(MUWS 1.0) Part 14 . OASIS Standard wsdm-muws-part1-1.0 (March 2005)

11. McCollum, R., et al.: Web Services for Management. WS-Management (June 2005)
12. Thatte, S., et al.: Business Process Execution Language for Web Services – Version 1.1.

OASIS Standard BPELv11-May052003 (May 2003)



13. Klie, T., Gebhard, F., Fischer, S.: Towards Automatic Composition of Network Manage-
ment Web Services. In: Proc. of 10th IFIP/IEEE International Symposium on Integrated
Management (IM), Munich, Germany (May 2007)

14. Martin, D., et al.: OWL-S: Semantic Markup for Web Services. DAML White Paper Release
1.1 (November 2004)

15. Keeney, J., Carey, K., Lewis, D., O’Sullivan, D., Wade, V.: Ontology-based Semantics for
Composable Autonomic Elements. In: Proc. of Workshop on AI in AutoComm at 19th Int’l
Joint Conference on Artificial Intelligence, Edinburgh, Scotland (July 2005)

16. de Vergara, J.L., Villagrá, V., Berrocal, J.: Application of OWL-S to Define Management
Interfaces Based on Web Services. In: Proc. 8th IFIP/IEEE Int’l Conference on Management
of Multimedia Networks and Services (MMNS 2005), Barcelona, Spain (September 2005)

17. Fuentes, J.M., de Vergara, J.E.L., Castells, P.: An Ontology-Based Approach to the Descrip-
tion and Execution of Composite Network Management Processes for Network Monitoring.
In: Proc. 17th IFIP/IEEE International Workshop on Distributed Systems, Operations and
Management (DSOM), Dublin, Ireland (October 2006) 86–97

18. Strassner, J.: DEN-ng: Achieving Business-driven Network Management. In: Proc. 2002
IEEE/IFIP Network Operations and Management Symposium, Florence, Italy (April 2002)

19. DMTF: Common Information Model (CIM) Infrastructure Specification. DSP 0004, DMTF
(October 2005) Version 2.3 Final.

20. Quirolgico, S., Assis, P., Westerinen, A., Baskey, M., Stokes, E.: Toward a Formal Common
Information Model Ontology. In: Proc. 5th International Conference on Web Information
Systems Engineering (WISE), Brisbane, Australia (November 2004) 11–21

21. Apache Software Foundation: Apache Tomcat. WWW Page (2007)
http://tomcat.apache.org/.

22. Apache Software Foundation: Apache Axis2/Java – Next Generation Web Services. WWW
Page (April 2007) http://ws.apache.org/axis2/index.html.

23. Hewlett-Packard Development Company: Jena - A Semantic Web Framework for Java.
WWW Page (February 2007) http://jena.sourceforge.net.

24. Sirin, E.: OWL-S API. WWW Page (2004) http://www.mindswap.org/2004/owl-s/api/.
25. Ernst, B.: Automatisches Policy-Refinement mit Hilfe von semantischen Infrastruktur-

Informationen. Diploma thesis, TU Braunschweig (January 2007)
26. Bandara, A.K., Lupu, E.C., Russo, A., Dulay, N., Sloman, M., Flegkas, P., Charalambides,

M., Pavlou, G.: Policy Refinement for IP Differentiated Services Quality of Service Man-
agement. IEEE eTransactions on Network and Service Management 3(2) (2006) 2–13

27. Rubio-Loyola, J., Serrat, J., Charalambides, M., Flegkas, P., Pavlou, G.: A Functional So-
lution for Goal-oriented Policy Refinement. In: Proc. 7th IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY), London, Canada (June 2006)

28. van der Meer, S., Davy, A., Davy, S., Carroll, R., Jennings, B., Strassner, J.: Autonomic
Networking: Prototype Implementation of the Policy Continuum. In: Proc. of 1st IEEE Int’l
Workshop on Broadband Convergence Networks (BcN), Vancouver, Canada (April 2006)

29. Guerrero, A., Villagrá, V.A., de Vergara, J.E.L., Sánchez-Macián, A., Berrocal, J.: Ontology-
based Policy Refinement Using SWRL Rules for Management Information Definitions in
OWL. In: Proc. 17th IFIP/IEEE International Workshop on Distributed Systems, Operations
and Management (DSOM), Dublin, Ireland (October 2006) 227–232

30. Beigi, M.S., Calo, S., Verma, D.: Policy Transformation Techniques in Policy-based Systems
Management. In: Proc. 5th IEEE International Workshop on Policies for Distributed Systems
and Networks (POLICY), New York, USA (June 2004)

31. Mont, M.C., Baldwin, A., Goh, C.: POWER Prototype: Towards Integrated Policy-Based
Management. In: Proc. 6th IFIP/IEEE Network Operations and Management Symposium
(NOMS), Honululu, USA, Hewlett Packard Laboratories Bristol (April 2000) 789 – 802


	Automatic Policy Refinement Using OWL-S and Semantic Infrastructure Information
	Torsten Klie cl@@auth, Benjamin Ernst cl@@auth, Lars Wolf

